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Non-multidimensional theories without grbups
by

Akito Tsuboi (Tsukuba)

Abstract. We prove that a non-multidimensional theory Wthh does not interpret an infinite

group is superstable. This result is closely related to Hrushovski's result which states that a uni-

dimensional theory is superstable.

S

0. Tntroduction. In [2], Hrushovski has proven that every unidimensional theory

is superstable. In his treatment of unidimensional theories, he.has two cases: In
the first, therc is an infinite definable group, which help$ him to obtain a superstable
formula; in the second, where there are no such groups, the structure of the models
of the theory is very simple, since everything lics in the algebraic closure of the
minimal type over some parameters. Our result is a generalization of this second
case.: We prove that a non-multidimensional theory without an infinite definable
group is superstable. (In fact we can find a basis of rcgular superstablc types whose
algebraic closure is the whole model.)
The author thanks the referee for a number of helpful suggestions.

1. Preliminaries. We fix a stable theary T and work in a big model € of 7.

Our notations are fairly standard. Types are complete types with parameters, and
they are denoted by paqs The non-forking extension of a stationary type p to the
domain 4 is denoted by p|4. The type of a over A is denoted by tp (a/4). Xf p and g
are statiorary types over A, then p®g denotes the type tp (a" b/ A), where a realizes p*
and b realizes g4 U {a}, U(p) is the U- tank (Lascar rank) of a type p. We simply
write U(a/d) instead of U(tp(a/4)). A theory T is superstable if and only if every
type has an ordinal U-rank. The following inequality of U-ranks is quite 1mportant
U(a"b/4) < U(b/A) ® U(a/A w {b}), where u@f is the natural sum of ordinals o
and f. The set of realizations of a type p in € is denoted by Pl

DerniTion 1.1, We say a theory T is non-multidimensional, ;1f there is a bound:

to the size of families of p'urwm orthogonal types.

Our definition of non~multldxmcnswnallty shght]y differs from Shelah’s ongmaﬂ

one. (See [4, Ch. V, § 2].)
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2. Main Theorem.

THEOREM 2.1. A non-multidimensional theory T which does not interpret an
infinite group is superstable.

Proof. First by induction we construct a sequence {p,|i < a} of non-algebraic
types with the following conditions:

@ Up) <o;

(b) Any two types p; and p; are orthogonal;

(c) If tp(a/B) is a forking extension. of p;, and I; is a basis of P BE for j<i,
then a is in the algebraic closure of Bu |J {fj| j<i}.

Let po be an arbitrary type with U(p,) = 1. (By stability we can easily find
such a type.) Suppose we have already constructed the types {p,| i< B}. If no iypes
are orthogonal to the types {p,| i< B}, we stop the construction. So let r be a type
which is orthogonal to the types {p,| i< f}. We may assume

dom(r)= U {dom(p)li< f}.

We can choose a maximally long sequence {r;] i<y} of non-algebraic types such
that
Dro=r;

(ii) r; is a forking extension of r; (i<j<y); and

(i) 7, is orthogonal to the types {p;| j<f} (i<y).

We show that y is a successor ordinal. In other words, we show:

Cram. s = \) {r)] i<y} is orthogonal to the types {p,| i< p}.

If this is not the case, then there is a type p; (i < ff) which is not orthogonal to
the type s. So there are elements a realizing s and b & acl(a, B)~ acl(B) such that
tp(/B) is p;|B-internal, where B is the domain of s. (See Proposition 2.23 of [3].)
Consider the linking group G of tp(b/B) over p,|B. (See [3, Ch2, 2¢] for the definition
of the linking group.) By our assumption, G must be finite. So b is algebraic over
BUP,, where P, = p|B®. Now there is a k <7y such that

(d) a and P; are dependent over dom (ry).

For each j < i, let J; be a basis of p;|dom (r,)*. Using the induction hypothesis (c) for
i< f, we have

Pycad(dom(r)u{I i< i}).

From this and (d), we see that ¢ and {J {J}| j<i} are dependent over dom(ry).
Trivially a realizes the type r,. So some p, (/< i) must be non-orthogonal to r.
This contradicts our choice of ry. (End of Proof of Claim.)

Thus we see that s is orthogonal to the types {p,| i < £}, and every non-algebraic
forking extension of s is non-orthogonal to some p; (i < f). Let Py = 5. We have to
show that the conditions (a) and (c) are satisfied by Py First we show (c): If (c) is
false for p,, we have a non-algebraic forking extension tp(a/C) of p, with
agacl(Cu U {I| j<B}), where I; (j<f) are bases of the sets (py|C)®. Choose
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small subsets J; (j < f) of [; such that tp(aq/Cu \ {I;] j < p}) does not fork over
cu U {J)| /< B}. By our choice of s = p,, tp(a/Cu U {J;] j < B}) is non-orthogonal
to some p; (i < f5). Since T does not interpret an infinite group, by the same argument
as in the above claim, we have:

a and R; are dependent over Cu {J {/j] j<f},

where R, is the set of realizations of p,|(Cu U {/;] j < ). Note that I, —J, is a basis
of p(Cu U {J;l j<B}. So by the induction hypothesis (c) for i,

a and ) {f;~J;| j<i} are dependent over Cu ) {Jj j<p}.

This contradicts our choice of J;'s. Thus we get (c). For (a), let tp(a/C) be an arbitrary
forking extension of s. By (c), U(a/C) <oo. In fact, we have

Ua/C) < sup{U(p, ) B .0 U(p,)| m<o; j<a}<o.
By the definition of U-ranks, we have U(p,) <oo.

Since T is non-multidimensional, the construction of p;’s must stop at some
stage «. Then every type ¢ is non-orthogonal to some p; (i < a). Thus by the same
argument for (a) and (c) above, we have U(f) <co.

Remarks 2.2, (1) In the above theorem, the U-rank of the fth type p, (8 < o)
is cleatly bounded by »”. So the rank of the theory is bounded by "

(2) By (c) the types p, are regular types. In fact we have proven that a non-
multidimensional theory without an infinite group has a basis of regular superstable
types whose algebraic closure is the whole model.

BExampLes 2.3. (1) Let M be the set ©® = {y| u: ® -} and D be an infinite
set. For each n < w, define the relation E, on M by:

E,(u,v) iff  p(i) = v(i) for every izn.

For each n < @ and each X € M/E,, f,(X, *) is a bijection from the set X/E,_, to D.
Now the theory T = Th(MUD, E,, f)i<, is bi-dimensional (x = 2): The first
type p, generated by D(x) determines the number of E,.,-classes existing in one
E,-class. p, has the rank 1. The second type p, generated by M(x) determines the
number of elements modulo the equivalence relation J {&,| n<w}. This second
type has the rank w.

(2) Let M be the additive group C“. For each n <, let E, be the equivalence
relation. on M defined by:

E(x,») iff x, = Yy,

where x = (X))<o a0d ¥ = ()i<o We shall consider the theory T' = Th(M, E)y<o-
For each 5 €2°, let p,(x) be the non-algebraic type generated by:

{ELx, 0 n(n) = 0}U{TELx,0) n(n) =1}
Let ¢(x) be an arbitrary type. g(x) essentially has the form:
{E(x,a) ne AyU{TE(x, a)} new—-A4}.
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If x and y are independent realizations of ¢, then x -y realizes the type p, ,|a, where 4
is the defining function of 4. Thus ¢ and p,, are non-orthogonal. Since ¢ is an arbi«
trary type, T is non-multidimensional. It is clear that T is unsuperstable.
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A subclass of the class MOBI *
by

H. R. Bennett (Lubbock) and J. Chaber (Warszawa)

Abstract. Nécessary and sufficient conditions are given for a regular space to be an open
and compact image of a o-discrete metacompact Moore space. The class of regular spaces satistying
these conditions is invariant under open mappings with compact metric fibers. This gives a charac-~
terization of the minimal class of regular spaces containing all o-discrete metric spaces and
invatiant under open and compact mappings.

" For a class 4 of topological spaces, let MOBI(#") be the minimal class of
T'-spaces containing all metric spaces from " and invariant under open and compact
mappings (see [BChI]). '

Tt is casy to observe that a T-space is in MOBI (o) if and only if it can be
obtained ds an imagé of a' metric space from 2 under & mapping which is a com-
position of a finite number of open and compact mappings with T;-domains [B].

If the class 2 contains the class of all metric spaces, we write MOBI; instead
of MOBI(A). NI

The purpose of this note is to prove .a characterization of the class MOBI,
(o-discrete). This gives a partial solution to the problem of characterizing MOBI,
(se¢ [AT and [Ch2)) and generalizes the characterization of MOBI;(scattered) from
[BCh2]. o ;

There seems to be a pattérn that the solutions of problems concerning MOBI,
are similar to the solutions of the corresponding problems in MOBI,. The main
difference is that the techniques needed in the regular case are more complicated
than those required in MOBIL,. B

In the present paper we [ollow this pattern. We prove that a regular space is
in’ MOBY,(o-discrete) if and only if it is in MOBI,(c-discrete) (see [Ch3]) and
has a basc of countable order.

It tuns out that in characterizing MOBI (o -discrete), the regular case (i = 3)
is much more complicated than the Hausdorff case (i = 2). In fact, the techniques
used in this paper have been distilled from [BCh2] rather than from [Ch3].

* This paper was written while the second author was visiting Téxas Tech University.
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