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If x and y are independent realizations of ¢, then x -y realizes the type p, ,|a, where 4
is the defining function of 4. Thus ¢ and p,, are non-orthogonal. Since ¢ is an arbi«
trary type, T is non-multidimensional. It is clear that T is unsuperstable.
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A subclass of the class MOBI *
by

H. R. Bennett (Lubbock) and J. Chaber (Warszawa)

Abstract. Nécessary and sufficient conditions are given for a regular space to be an open
and compact image of a o-discrete metacompact Moore space. The class of regular spaces satistying
these conditions is invariant under open mappings with compact metric fibers. This gives a charac-~
terization of the minimal class of regular spaces containing all o-discrete metric spaces and
invatiant under open and compact mappings.

" For a class 4 of topological spaces, let MOBI(#") be the minimal class of
T'-spaces containing all metric spaces from " and invariant under open and compact
mappings (see [BChI]). '

Tt is casy to observe that a T-space is in MOBI (o) if and only if it can be
obtained ds an imagé of a' metric space from 2 under & mapping which is a com-
position of a finite number of open and compact mappings with T;-domains [B].

If the class 2 contains the class of all metric spaces, we write MOBI; instead
of MOBI(A). NI

The purpose of this note is to prove .a characterization of the class MOBI,
(o-discrete). This gives a partial solution to the problem of characterizing MOBI,
(se¢ [AT and [Ch2)) and generalizes the characterization of MOBI;(scattered) from
[BCh2]. o ;

There seems to be a pattérn that the solutions of problems concerning MOBI,
are similar to the solutions of the corresponding problems in MOBI,. The main
difference is that the techniques needed in the regular case are more complicated
than those required in MOBIL,. B

In the present paper we [ollow this pattern. We prove that a regular space is
in’ MOBY,(o-discrete) if and only if it is in MOBI,(c-discrete) (see [Ch3]) and
has a basc of countable order.

It tuns out that in characterizing MOBI (o -discrete), the regular case (i = 3)
is much more complicated than the Hausdorff case (i = 2). In fact, the techniques
used in this paper have been distilled from [BCh2] rather than from [Ch3].

* This paper was written while the second author was visiting Téxas Tech University.

AMS subjcct classification: 54C10, 54D18, S4E30. .
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1. Introduction. Unless stated otherwise, all spaces are assumed to be regular,
All mappings are continuous and onto. Open and compact mappings are the open
mappings with compact fibers.

A sequence {G,: 12 1) of subsets of a space Y is called decreasing (strictly
decreasing) if G, <G, (C,,1=G,) for nz1. ’

Recall that a space Y is said to have a base of countable order if there exists
a sequence (%,: n 1) of bases of Y such that each decreasing (or, equivalently,
strictly decreasing) sequence (G,: n 1), where G,€ ¥, for n> 1, satisfies

@ if ye N {G,: n=1}, then {G,: n= 1} is a basc for y in ¥,
If, in addition,
(4) there exists a ye () {G,: n21}

is satisfied, then Y is said to have a A-base (sec [WW?2] and [ChCNY).

It is well known (see [WWT1]), that all spaces in. MOBI, have a base of coun-
table order and all spaces in MOBI, (complete) have a 1-base.

The two known subclasses of the class MOBI, are the classes of spaces with
a point-countable base which are either Jocally nice (see [BChI, 1.8]) or scattered
([BCh2]). In both cases the base of countable order is hidden behind a stronger
property. In the present paper we actually use the base of countable order.

In order to show how this will be done, we start with a proposition which is
a version of our main result for complete spaces.

Proposition 1 1. For a regular space ¥ the following conditions are equivalent.

(@) Y is in MOBI; (scattered),

(b) Y is a scattered space in MOBI,,

() Y is a scattered space with a point-countable base,
(¢) Y has a )-base and is in MOBI, (o -discrete).

. The equivalence of the conditions (), (b) and (c) has been proved in [BCh2].
Since a metric space is scattered if and only if it is ¢-discrete and complete
([N, 3.17, 20], [WW2]) and, in fact, first-countable scattered spaces have a 1-base
[WWZ], the proof of 1.1 reduces to showing that in the class MOBI, (o -diserete)
being scattered is a consequence of having a A-base. Before proving this fact (see 1.2
and 3 below), we have to recall a characterization of MOBI, (o-discrete) from
[Ch3] and the related definitions. v

A neighbornet for a space Y is a relation Ve ¥x ¥ such that for each ye ¥,
yelnt V(:y), where R(y) = {ze Y: (p,z) e R} for a relation R< ¥'x ¥ [711.

A neighbornet ¥ is called co-countable (co-finite) if ¥ '(yp) is countable (finite)
fm: veY !J?.]. A neighbornet ¥ in ¥ is called transitive or antisymmetric il the re-
lation V is transitive FoV=1"V) or respectively, antisymmetric (VA ¥~ =
= {<J’,Ay‘>: ve ¥}) [71]. Since all neighbornets are reflexive, ancighbor;wt ¥ which
is tra'.nsmve s a quasiorder while a transitive and antisymmetric neighbornet is a
partial order. In both these cases, the fact that the relation is a (co-countable)
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neighbornet means that (the initial segments are countable and) the final segments
are open.

LemMa 1.2 (see [Ch3, 4.2)). If a Ty-space Y has a co-countable neighbornet,
then it has a co-countable neighbornet which is both transitive and antisymmetric.

Proof. Suppose that ¥ is a co-countable neighbornet in Y. It is easy to check
that Q = U {V": n> 1} is a transitive co-countable neighbornet in ¥ [J2]. Thus Q
is a quasj-order € with countable initial segments and open final segments. The
relation R = @n Q7! = {{»,2): y<z and z<y} is an equivalence relation with
countable equivalence classes.

For each equivalence class of R, fix an ordering of this class of order type less
than or equal to w. Define P < ¥'x ¥ by putting P()) to be Q(y) without the finite
set of predecessors of y in R(y).

Clearly, P is a co-countablc neighbornet in ¥ and our construction assures
that P is a partial order.

In Section 2 of [Ch3], it was shown that a Hausdorff space Y is in the class
MOBI, (o-discrete) if an only if it is a first-countable space with a co-countable
neighbornet.

We are now ready to finish the proof of (¢')=>(¢) in 1.1 and to show how bases
of countable order work with neighbornets.

PROPOSITION 1.3. If a space Y has an antispmmetric neighbornet and a A-base,
then Y is a scattered space.

Proof. Let V be an antisymmetric neighbornet in ¥ and {%,: n>1) be
a sequence of bases of Y witnessing the fact that Y has a i-base.

If ¥ is not a scattered space, then there cxists a nonempty, closed and dense in

itself subset F of Y.
Since no point of F is isolated in F, one can construct, by induction, sequences

{yy: n20) and {G,: n>0) such that

0 G =Y
and, for n>0,

(1) yoe FAGN{¥o,s s Pu=1h

(2) 34 € Gyyy € G,y and G,., <G,

(3) Gn+1 < V(yn)-

By (2), the sequence {G,: n>1) satisfies (d) and (4. Thus there exists
aye() {G: n=1}and {G,: n>1} is a base for y in ¥. In particular, there exists
and 7 2 0 such that G, .., « V(). Since y, & G,..,. We obtain y, & (). On the other
hand, by (3), y € G,+4 < V(»,) and this contradicts the assumption that ¥ is anti-
symumetric.

2. The main result.
THEOREM 2.1. For a regular space Y.the following conditions are equivalent.
(8) Y is an open and compact image of a o -discrete metacompact Moore space,
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(@) Y is in MOBI, (o-discrete),

(b) Y has a co-countable neighbornet and is in MOBI,,

() Y has an antisymmetric neighbornet and is in MOBI,,

() Y has an antisymmetric neighbornet, point-countable base and a base of coun-
table order,

() Y has a co-countable neighbornet and a base of countable order.

Proof. In [J2] it is shown that o-discrete metacompact Moore spaces are open
finite-to-one images of o-discrete metric spaces. This gives (a)=(a").

The implication (a')=>(b) follows from the fact thai o -~discrete metric spaces
have a co-countable neighbornet and the latter property is invariant under open
mappings with separable fibers [J2].

Lemma 1.2 gives (b)=(b") and (b")=(c) is well known.

In order to prove (¢)=(c'), assume that ¥ is an antisymmetric neighbornet
and #" is a point countable base in Y. For cach ye Y fix a W(p) e such that
yeW(p) = V(»). Since V'is antisymmetric, ‘the indexing of %" = {W(y): ye Y }
is one-to-one and, consequently, %'’ gencrates a co-countable neighbornet.

It remains to prove (¢')=(a). In the next section we show that for any regular
space Y with a co-countable neighbornet and a base of countable order there exists
a regular first-countable space X with a co-finite neighbornet and an open and
compact mapping f of X onto Y. Since regwar first-countable spaces with a co-finite
neighbornet are, precisely, o-djscrete metacompact Moore spaces [J2], this will
prove (c')=(a).

3. The construction. Let ¥ be a regular space with a co-countable neighbornet
and let <%,: n1) be a sequence of bases of ¥ witnessing the fact that ¥ has
a base of countable order. ‘

By 1.2, we can assume that ¥ has a co-countable neighbornet ¥ which is a partial
order < (such that the final segments ¥ V) ={2eY: z2} are open and the
initial segments ¥ ~(y) = {ze Y z<y} are countable).

As in [Ch3], the space X will consist of (increasing with respect to V) finite-

sequences of elements of ¥ and the points compactifying the fibers of the projection e
which maps each sequence onto its last term. However, the topology on the set of
sequences is different than the topology from [J2] which was used in [Ch3] and not
all the (increasing) sequences in ¥ .are considered,

We begin with the inductive definition of the sequences which are o become

elements of X. The construction resembles the induction from the proof of 1.3.

We define, by induction, for each n 2 0, a subset S, of the set of all the increasing
n-element sequences in ¥ and, for each s & Sy 1> 81 Open subset G(s) of Y containing
the last term of s.

We start with

©) " Sy=1{0} and G@) =Y
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and proceed according to the following three conditions.
)] Suvs ={py: peS, and ye G(p\N{c(p)}},

where p"y denotes the extension of p by y and e(p) is the last term of p ({e(@)} = 9).
Moreover, for s = p ye S,

®  yeG(FNeD,., GG
and o
® Gy V).

Given the sets S, and G(s) for se S,, define
§=U {Su: n;l}

and
P=S5uUS,.
Observe that (1) and (2) imply -
(4 if p,geP,pcg and g ye S, then pyes.

‘For p e P define A(p) = {seS: p = s} and recall that e(s) = yfor s =pye S.

Consider e: S— ¥ defined above. Conditions (1) and (3) in the definition of. S
assure that all the sequences in S are strictly increasing with respect to 'the Iia;txal
order V. Thus, for each ye ¥, se e () means that s is a sequence in ¥~ (y).
Since V~1(y) is countable, it follows that e is countable—to-one.(see' [32D.

We shall extend e by adding compactification points to each infinite fiber gf e

Let # denote a point not in ¥ and define S* to be the set of all sequences p * y
such that p"ye S and -
©) e" () A(p) cannot be covered by any-

finite subcollection of {4(p"2): p"zeP}.
Put
X = Sus*, ‘ ‘
" Extend the function e: S— Y to a function f: X— Y by putting £(p"* ) = y

- *
o pB:f:rs ieﬁnixlg the topology of X we shall prove a fact which explains the
definition of ‘X and can be used to show that the fibers of f are compact.

3.1. If D is an infinite subset of ¢~ '(y), then there exists a p € P {uch t’{uzt the
sete™(y) n A(p) D cannot be covered by any finite subcollection of {A(p"z):p"z€ P}.

Proof. Suppose that such a p does mot exist. Put py = & angi note that
e YN A(py)ynD = D is infinite. By induction on n3>0. construct a sequence
{¥y: n=0) such that for each n>0, p, = {Vo, ..., Yu—1) € P and

) . e (MNnA(p)nD is ipﬁnite.
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The fact that for a p,e P satisfying (6) we can find « y,¢ ¥ such that
Dusi = Du ¥y € P satisfies (6) is an easy consequence of our assumption that the
infinite set in (6) can be covered by finitely many sets A(p, z).

From (2), it follows that G(p,) € %, and that {G(p,): n=1) is a decreasing
sequence.

Since (6) implies that e” '(»)nA(p,) is nonempty, condition (4) assures that
P, yeS and (1) gives ye G(p,) for n> 1.

Thus {G(p,): n=1} is a base for p in Y and, in particular, therc exists an
n20 such that G(p,.,) < V(). Since y, = e(p,41) € G(Pysy), this contradicts
the fact that the sequence p,, v is increasing in the partial order ¥ (sec the proof
of 1.3).

Observe that if' p is given by 3.1 for an infinite set D e !(y), then
s* = p""y e S*. The topology of X will be defined in such a way that s* will be
an accumulation point for D,

To define the topology of X we need some more notation.

For pe P put

B(p) = {xe X: peax},

where p < x means that the sequence p is an initial segment of the sequence . Note
that

a A(p) = B(p)nS
and, by (0), (1), (4) and the definition of S$*,
® (B =G®).

For each ye Y, fix'a strictly decreasing base {Uy(y): j=0) of neighborhoods
of y in ¥ such that Uy(y) = ¥.

For s = pye S and j 0, define
©) B(py,)) = B(pY)nf~HUy).

| FJx aye Y. From (5) and 3.1, it follows that £~ 1(»)N\S # & if and only if
¢ () is infinite. If ¢™*(p) is infinite, then F~Y(y) is infinite and we can choose
& one-to-one enumeration ky: V7H(y) b of ¥(y). For a tee”(y) define

k(1) = 3 {ky): z is a term of ¢} .

 Let s* = p*"yeS* The traces on J74(p) of the basic neighborhoods of s*
will be of the form

10 F*J) =" 0)nBINU {B(p2): z& ¥V™1(p) and ky(z) <j}.
Note that in view of (5) and (7), for each j=0,
an : F@ ™y pne () # 0.

This will assure that e™!(y) is dense in ™ () and 3.1 will imply that every infinite
subset of ¢*(») has an accumulation point in f7(y).
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We complete the definition of neighborhoods of s* = p™%"p in X by putting
B(s*,j) = F(s*, v U #(s*,j), where
B(s*, J) = {B(t, j+k,(1): te Fis*, )ne (M} .

Note that it p"ze § and /20, then

12)

13) B(p™*¥"y.j)nB(p"z) = @ if either z¢ V71(y) or ky(z)<J.
Moreover, for each x € X, j2 0 and p € P, the definition of B(x,j) implies
(14) if x e B(p), then B(x,0) = B(p)

and

15 F(BG, )= U(S ().

Define the topology in X by using the sets B(x,j) as weak bases at x; that is,
a set B X is open in X if and only if, for each x € B there exists a j > 0 such that
B(x,j) < B.

3.2. The function f: X — Y is continuous.

Proof. The continuity of f follows from (15).

3.3. The sets B(x,j) are open in X.

Proof. First observe that (14) implies that, for each s € S, the set B(s) is open
in X, Thus, from 3.2 and (9), it follows that, for each s € S and j >0, the set B(s, /)
is open in X,

Consider B(s*,]), where s* = p"«"ye §* and j> 0. In view of (12) and the
first part of the proof, in order to prove that B(s*, j) is open in X, it suffices to show
that t* e F(s*, j))\{s*} implies F(t*,/) < F(s*,/). Suppose that 1* = gy #s*
is-in F(s*, j). From (10), it follows that y = y' and p < ¢. Since t* # s*, there exists
a ze Y such that p"z < g. Hence, t* € F(s*,j) implies, by (13), that ze Vi)
and k,(z) ;. Condition (10) gives F(t*, j) = F(t*, 0) = F(s*, j).

From 3.3, it follows that X is a first-countable space.

In order to show that X is regular, we shall need the next two facts.

3.4. For each qe P, the set B(q) is clopen in X.

Proof. If ¢ = @, the B(g) = X. For g S« X the set B(g) = B(g, 0) is open
in X. We shall show that it is also closed m X.

If s = p'y ¢ B(g) and B(s)n B(g) # O, then g is a strict extension of s, which
implies f(g) e ¥(») and, since ¥ is a partial order, y = f(s) ¢ V(f(g)). On the
other hand, 3.2, (8) and (3) give f(B(9)) = G(q) = V(f(g)) and, consequently, we
obtain s ¢ EG}

If s* = p"x"y ¢ B(g) and B(p)n B(q) # @, then g is a strict extension of p and
there exists a ze ¥ such that p’zcg. Take aj>k,(2) if ze V™i(») or j=0if
€ V™1(3). By (13), B(s*,/)nB(p'z) = @ and, since B(g)<B(p'z), we obtain

s ¢ B(g). ‘
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3.5. For each s* e S* the sequence (F(s*.)): j20) Is a decreasing sequence
of closed subsets of X and its intersection is {s*}.

Proof. The least obvious fact, that the sets F(s*, /) are closed in X follows
from 3.2, 3.4 and (10).

3.6. The space X is a Ty-space. : ‘

Proof. The points of S* are closed by 3.5. If s is a point of S, then
{5} = B{synf~(s) is closed by 3.2 and 3.4.

We are now ready to prove that X is a regular space.

3.7. For each x € X, the sequence {B(x,j): j=0) is strictly decreasing.

Proof. If x=gs=pyeS and j20, then by 34, 32 and '(9),

our task is reduced to showing that I;(AS_*,_]'”-ﬁ)—\f"‘(y) < B(s*, j).

Suppose that ¥’ # y and x"ef " 1(y). If x' is in the closure of an element of
2(s*,j+1), then x' is in the corresponding clement of % (s*, j), by the first part
of our proof. Thus, in order to finish the proof, it suffices to show that #(s*, j+1)
is locally finite at x'. ‘

Choose an iz 0 such that U(y)nUy) = @. By (15), if B(x',1) intersects
an element B(z,j+1+k, (1)) of B(s*, j+1), then j+1+k(r)<i In view of the
definition of k,(f), the number of such ree™*(y) is finite. Thus B(x’, i) intersects
finitely many elements of #(s*, j+1) and the proof is finished. ‘

3.8, The space X has a co-finite neighbornet.

Proof. We shall show that the collection {B(s, 0): s S}u {B(s*, 0): s* ¢ S*}
defines a co-finite neighbornet in X. S
‘ Let x he‘a p9i11t in X. Ifﬂ,\ﬂe B(s, 0) = B(s), then s < x and so the number
of such s & S is ﬁmﬁte; IExe(p»y,0), then paxand yis a term of x. Again, the
number of such p % y in S* is finite.
. We hgvc qlx?w;l that the space X has the required properties and the function
Ji X Yis continuous. It remains to prove that fis an open and compact mapping,
3.9. The mapping f: X~ Y is open. ‘
Proof.’ If se S,'. then, by (1?, e(A(s)) = G(s). Thus (7) and (8) imply f (B(s))
= G(s), ~*w11lch, in view of (9) gives f(B(s,))) = G N U[(f(s) for j=0.
If s* € S* and j 2 0, then (10), (11), (12) and the first part of the proof assure
that f(B(s*,)) is open in Y. o
» The f.act t.hat the fibers of f are compact can be proved by observing that if
I is 1nﬁmt_e, thep, by (11), e™*() is dense in f~*(y) and so 3.1 implies that
every locally finite collection of open subsets of f~(y) is finite. Since the definition
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of S* assures that £~1(y) is countable, this can be used to show that f “i(y) is.
compact. .

We shall modify the proof of 3.1 in order to give a direct reasoning showing
that the fibers of f are compact.

3.10. The fibers of f are compact.

Proof. Fix a ye ¥ and put E = ¢ '()) =S, F=f"'(y)= X. If 5€ E, then
B(s)nF = {s}, thus all points of E are isolated in F. If s* € F\E, and j =0, then
B(s*,j) F = F(s*,j), thus 3.5 implies that F is a zero-dimensional space.

Suppose that % is a cover of F consisting of clopen subsets of F and assume that
1o finite subcollection of % covers F. Since, by (11), E is dense in F and the elements
of & are closed, it follows that no finite subcollection of % covers E.

We shall construct, by induction, a sequence {y,: n>0) in ¥ such that, for
each 120, pp = {Po, s Yy—1p Will satisfy ’

(16) En A(p,) cannot be covered by any finite subcollection of % .
Since A(@) = S, condition (16) is satisfied by p, = &. Suppose that we have
Pa = {Po» s Pum1p satisfying (16).

Assume first that p,"*"y is not in S*. Since EnA(p,) # & and (4) imply that
p.y €S, this means that (5) does not hold and, consequently, we can find ay, € ¥
such that p,.( = Py, satisfies (16).

If p, %"y = s* & S*, then there exists a />0 such that F(s*, ;) is contained in
an element U of #. Thus (16) implies that En A(p,)\F(s*, /) cannot be covered
by any finite subcollection of %. Since, by (7) and (10), the set En A(p)NF(s*, /)
is covered by the finite collection {A(p, 2): z€ ¥ ~!(y) and ky(z) <j}, we can find
an element A(p,, ) in this collection such that (16} will be satisfied.

This concludes the inductive construction and one can obtain a contradiction
as in the proof of 3.1 (see 1.3).

4. Remarks. We start with some rematks concerning the construction of X.

Remark 4.1. ff the space Y is zero-dimensional, then the space X can be con~
structed to be dimensional.

Proof. If Y is zero-dimensional, then we can assume that the bases
<Uy): j 2 0) consist of sets clopen in Y. The proof of 3.7 can be modified (by
replacing j+ 1 with J) to show that E(.X,]SC B(x,j) for xe X and j=0.

Remark 4.2. If the space Y is completely regular, then the space X can be con-
structed to be completely regular.

Proof. Assume that Y is completely regular and fix 2 ye Y. By induction
on j>0, construct sequences {U;: j=0) of neighborhoods of y in ¥ and
{¢;:j>0) of mappings of ¥ into the unit interval I = [0, 1] satisfying, for j >0,

an Ug= 7Y,

(18) - for z¢ U;,

P () =0 and ¢ 2) =1
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(19) UJ+1 cUin Uj+1()‘) »
for ze Uy -

(20) o) <1/j

By (19), the sequence {U;: j=0) is a strictly decreasing base for y in Y. Use
the sequence <U;: j=0) in place of {U}(p): j= 0) to define the sets B(s,j) for
see”i(p) and j >0 (this affects (9) and, indirectly, (12)).

We shall show that for every xef~'(») and j2> I, there exists & mapping
Vi XTI separating x from X\B(x, /). Since the same modification can be applied
to any y € ¥ (we fix y in order to simplify the notation), it wilt follow that X can be
made completely regular.

Ifx = p'y = se S, then by 3.4, it is sufficient to define the separation on B(s).
In view of (I8), the mapping i == @;of scparates x from BN/~ 1(UJ)
= B(s)\B(x, /).

If x = p"«"y = s* € S%, then, by 3.4, it is sufficient to define the separation
on X' = B(p\U {B(p"2): z& V™) and k,(2) <j}. Define y/ to be 0 on F(s*, ),
the combination of ¢, of on pairwise disjoint clopen scts B(¢) for te e™'(y)n
NF(s*, j) and 1 in the remaining points of X

Clearly, ¥ separates x from X'\B(x,j). We shall show that ¥ is conlinuous
on X',

Since ¥ = 1 on X\B(x,j) and, by 3.7, B(x,j) < B(x,j—1), we only have
to check the continuity of  on

X' nB(x,j—1) = F@s*,))u U {B(t): tee (N Fs*, )} .

This, by the definition of ¥, reduces to showing the continuity of i at the points
of F(s*, \e™ ().

If 1* e F(s*, ))\e”!(»), then ¥(#*) = 0. For an arbitrary k>0 find a i>j
such that k(1) >k for te e”(y) nF(t*,i). Condition (20) assures that w(B(r*, i)
< [0, 1/k), which shows that y is continuous at ¢*.

If the space Y is scattered, then, since the fibers of f are scattered, it foliows that
the space X is also scattered. Thus, our construction is more general than the con-
struction from [BCh2]. However, if the space Y is seattered and the parameters in
both constructions are chosen in a suitable way, then the resulting spaces X are very
similar. If the space ¥'is a scattered space of height 2 and the neighbornet ¥ is chosen
in a natural way (each V() cither consists of one point or contains exactly one non-
isolated point), then our construction. is identical with the construction described in
[BCh2, 3] (see [Chl, 1.2]). In particular, this shows that our construction may give
a non-normal space X even if the space ¥ is normal.

Since having a co-countable neighbornet is equivalent to having a closure-
preserving cover by countable closed sets (see [J2] and spaces having a base of
countable order are invariant under perfect mappings (see [Wo] or [ChCNY), our
characterization gives

COROLLARY 4.3. The class MOBI, (o - discrete) is invariant under perfect mappings.
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Finally, et us note that, since each scattered space is right separated (see [GT]),
Proposition 1.3 can be sharpened to

PROPOSITION 4.4, A regular space Y is a first-countable scatiered space if and
only if Y has a A-base and an antisymmetric neighborner.

Moreover, the proof of 1.3 can be modified to show (see [GJ])

ProrosiTION 4.5. A regular space Y is a scattered space of point-countable
type if and only if' Y is monotonically Cech complete and has an antisymmetric
neighbornet.
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