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On supercomplete uniform spaces IV:
Countable products '

by

Aarno Hohti (Helsinki) and Jan Pelant (Praha)

Abstract. We show that the product of countably many supercomplete C—écattered spaces is
supercomplete. The result implies similar but weaker theorems of [1], [17] and [4].

1. Introduction. It is well known that the product of paracompact spaces is in general
not paracompact. It was proved by Z. Frolik in [5] that a countable product of locally
compact paracompact spaces is paracompact. The same is true for the larger class of
paracompact p-spaces of Arkhangel'skii [2]. Recently a weaker structural condition of
being scattered or C-scattered has been used by K. Alster [1], M. E. Rudin and S.
Watson [17], and by L. M. Friedler, H. W. Martin and S. W. Williams in [4], to obtain
similar results. We prove in this paper a natural extension of their results by showing
that a countable product of supercomplete C-scattered spaces is supercomplete. The
notion of supercompleteness was defined by J. R. Isbell in [13]; by his result — we can
take it as a definition — a uniform space X is supercomplete iff X is topologically
paracompact and the Ginsburg-Isbell locally fine coreflection ([6]) Au is the fine
uniformity of & (X) of X. By using the concept of metric-fine coreflections, we show at
the end of the paper that a countable product of ¢-C-scattered paracompact spaces is
paracompact,

Our proof uses a simple recursive technique based on well-founded (or Noetherian)
trees, applied e.g. in [11], [12], [15] in the context of uniform spaces.

2. Preliminaries. This section consists of preliminary definitions. We refer the reader
to [14] for basic information on uniform spaces. For the definition of the Gins-
burg-Isbell locally fine coreflection A, the reader is referred to the first three papers [8],
(91, [10] in our study on supercomplete spaces. A well-founded tree is a partially ordered
set 7 = (T, <) with a unique minimal element Root(¥) such that every branch, ie.,
maximal linearly ordered subset, of J is finite. We denote by End(7) the set of all
<-maximal elements of . Given pe T, the set of all immediate <-successors of pis
denoted by S(p). Thus, S(p) = {ge T: ¢>p and ¢ >r > p for no re T}. Furthermore,
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~ for every peEnd () there is a unique branch {pg, ..., p,; such that py = Root(7),
p,=p and p;4 €S(p) for 0<i<n

Let 7, and 7, be two well-founded trees. Given p €End (7)), the symbol 7, v, 7,
denotes the tree obtained from Z; by “hanging” 7, below p, ie., it is the tree
T = (T, <) defined by

T = T,u(T\{Root (7,)}),

with the partial order satisfying r < ¢ iff either

(1) g,reT; and g<;1,i=1,2, or

(2 qeT,,reT, and r<p.

Obviously 7 v, 7, is well-founded.

There is a strict connection between well-founded trees and locally fine coreflections.
Indeed, if a £X is a uniform space and % e Ay, then there is a well-founded tree 7~ and
a natural map @: T—2% satisfying the following properties:

(1) @(Root (7)) = X;

(2) e[S(p)] is a uniform cover of ¢(p) for each pe T\End(9);

(3) the sets N{¢(p): peB}, where Be#(J), the collection of all branches of 7,
refine the cover %.

Let K be a closed-hereditary class of topological spaces. A space X is called
K-scattered ([19]) if every nonempty closed subset of X has a point with a K-neighbour-
hood. A K-exhaustion of a K-scattered space X is a sequence (S,),<; of open subsets of
X such that() if y <t < B, then §, = 8,,() S,\{J{S,: <7} isin K for all y<f
and (i) {J {S,: « < B} = X. Theleast such f& Ord for X will be called the K-length of X,
written length, (X). The existence of K-exhaustions can be proved by induction. Indeed,
given a K-scattered space X, let S, = @. Assuming that (S,) has been defined for o < 7,

let ¥, = X\(J{S,: @ <7} In case ¥, =@, (S,)u<, is an exhaustion of X; otherwise the
closed subspace Y, contains a point with an (in X) open neighbourhood U such that
UnY,is in K; we put §,=J{S;: e <t}uU.

In the sequel we consider only the class K = ¢ of compact spaces, although our
arguments can be extended to some other classes. (For %-scattered paracompact spaces,
see [18].)

Let (X,: neN) be a countable family of topological spaces. Then T(HN X)) denotes
the set of all trees J with the following property:

(%) the elements of ~ are subsets of HN X, of the form HN Z,; where cach Z; = X, is
closed, and where the set {ie N: Z, # X} is an initial segment of'N. The partial order of
J is the set inclusion order.

For every element P of such a tree 7, define seg(P) = max {neN: =, [P] # X,},
where 7,,: HNX;—~>X,, is the standard projection.

Now assume that the spaces X; are @-scattered and paracompact. Let 7 e T([ | N X0
For each jeN, the jreduct of 9 at PeEnd(7), where j<seg(P)+1, written
red; (7, P), is defined as follows. Put & = length, (n; [P]). If o is a successor ordinal, and
Jj <seg(P), let red; (7, P) = 7 ; if j = seg (P)+1, then let {W,, W,} be a normal closed

cover of X; such that X; W, for i = 0, 1, and let red;(7, P) be obtained from J~ by
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adding the sets n7 ' (W)NP below P, ie., let
red;(7,P)=T v, T,

where 7 is the member of T([Ty X,) consisting of P(=Root(7") and the sets
n 1 [W1nP,i=0, 1. Otherwise, when o is a limit ordinal, 7;[P] has an open cover by
subsets S; with § < a; with respect to the fine uniformity of X > this cover is uniform
and can be refined by a uniform closed cover #. Let red,; (7", P) be obtained by adding
all the elements z;" ' [W]N P below P in . (Notice that lengthy (W) < afor all We %)

Let X be @-scattered. If length,, (X) is a successor ordinal, then there is a compAact
subset of X, denoted by top (X), such that if U is any neighbourhood of tope (X) in
X, then lengthy (X\U) < length, (X). In case length, (X) is a limit ordinal, we simply
define top, (X ) = @. (Notice that the functions red; and top,, are defined by using the
axiom of choice) ~We conclude this preliminary section by a simple lemma.-

Lemma 2.1. Let (P,: neN) be a decreasing family of subsets of [Ty X, such that for
each ie N there is n; such that m; [P,] is compact. Given an open cover "/1; of H X, there
is j such that P, is covered by finitely many elements from ¥ N

Proof. Indeed,

P=an[Pnk]
N

is a product of compact sets. Thus, there is a finite % < ¥ such that
P J{V: VeF}. Write

PO = T] m,[P,]1x I1 X
k>r

k=0
Then P = (\{P": reN}. Hence, there is r such that already P® is covered by £.
Choose j with P; < PV, m ’

3. The result. In this section we prove that the product of a countable family of
@-scattered supercomplete spaces is supercomplete. In the proof we use well-founded
trees and #-exhaustions, defined in Section 2, together with the following principle. Let
X be a set, let o < 2% be a subset of 2* closed under arbitrary increasing unions and let
¢: .o/ — o/ be an expanding map, ic., A € ¢ [4] for alld e o#. Define maps ¢%, aeOrd,
as follows: put ¢¥(A)=A for all AcX, let ¢&*V(4)=¢(p"(4)) and let
¢P(A) = {J{¢p"“(4) a<§p} for § a limit ordinal. There is (obviously) & with
@ = ¢ we call for each 4 = X the set ¢[A4] the closure of A under ¢.

Now let us state the main theorem of our paper.

Tueorem 3.1, Let (4, X,: neN) be a countable family of @-scattered supercomplete
uniform spaces. Then [Ty X, is supercomplete.

Proof, Let T= T([]y X)) and note that we can assume that the spaces u, X, are
(non-compact) fine uniform spaces, since (by [14])

ATTm X = AT A X, = AT #X,
N N N
when the spaces p, X, are supercomplete. To show that ]y g, X is supercomplete, we

shall prove that for any given open cover " of [y X, there is a well-founded tree
7 eT, with the following properties:
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(1) Root(7) =[x Xs

(2) for each Pe T\End (), the elements of S(P) form a uniform cover of the subset
P of [[xXs

(3) the elements P e End () refine the cover #"=* (consisting of all the finite unions
of numbers of #7). We can (and shall) assume that ¥~ consists of basic open sets.
(Notice that every open cover of a Tychonoff space X is in & (X) iff for every open cover
¥ of X, ¥ <?is in #(X), cf. [16])

Next we shall define a map E: T — T as follows. Let 7 €T and let Pe End (7). Let
us first define a tree E(J, P). Recall that seg(P) = max {ieN: =;[P] # X,}. We have
to consider 4 cases.

Case 1. There is i< seg(P) such that length,(n;[P]) is a limit ordinal. Let
E(7, P)=red, (7, P).

Case 2. Otherwige, if P is covered by an element of "<, let E(7,P)=J.

Case 3. Otherwise, if

Y= () =7 *[top,(m[P])]

i<seg(P)
is not covered by finitely many elements from ¥, let E(Z, P) = redsypy+1 (7, P).
Case 4. Otherwise, Y is covered by finitely many elements from #°, and we can find,
for all i < seg(P), open subsets U,, W; of X, such that

tope(m[P)) = U;c U= W,

and (}{ni* [#]: i< seg(P)} is covered by an element of ¥ <°. (This easily follows

from our requirement that the elements of ¥” be basic open sets.) Let & be the set of all

i < seg(P) with x; [P] non-compact. In case &F 5 0, let E(7, P) be obtained from 4 by

adding the elements P\rnj'[U;] (je &) and (\{n7*[W]: i < seg(P)} NP below P

(in the obvious sense defined in Section 2); otherwise, simply let E(J, P)

= redseg(p)+1 (7, P). (Notice that if n,[P] is compact, then top(m;[P]) = =;[P].)
Finally, having thus defined the trees E(.7, P) for all PeEnd(7), put

E(T)

= E(T, P).

PgEnd(.7)
The promised tree is obtained quickly from the map E. Let 7 be the tree consisting of
one element, [Ty X;, and let 7 be the closure of 7", under the map E. (Obviously, the
map E constructed above is expanding; 7 is a fixed point of E.)

To show that End (7) is a cover of [y X; refining #"<%, it is enough to prove that
7 is well founded. To see this, suppose that &~ contains an infinite branch. Hence, there
is a sequence (P,: neN) of elements P,e T such that for each neN, P, €S (P,) and
P,y & P,. We claim that there is a sequence (n;: i€ N) such that =, [P,] is compact
for k= n;. It then follows from Lemma 2.1 that some P, is covered by an element
of ¥"=% implying that Case 2 is applied at some P, stopping the branch,
giving the desired contradiction, Thus, assume that there is Jj such that m;[P,]
is non-compact for all n. Then every application of Case 4 to P, reduces %-length:
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lengthe (m; [Py +1]) < lengthy (n; [P,]) for some i<j. Since there are no infinite de-
creasing sequences of ordinals, Case 4 is applied at most finitely many times. Similarly,
Case 1 is applied at most finitely many times with respect to any coordinate ie N, and
there is an infinite subsgt {n;: ie N} of N such that m < myq for all ieN, Case 3 is
applied to P,,seg(P,)>i, and [P, =m[P] for all k3> n;. Consequently,
topq (m; [P,,]) = top,(m,[P,.]) whenever i < k. Define

Pi= () {n7 [topy (m; [P, )] i < k}.

Then (P;: ke N) satisfies the conditions of Lemma 2.1, and hence there is P, covered by
an element of #"**, This implies that Case 4 is applied to P, : a contradiction. Hence,
7 is well founded. This completes the proof of Theorem 3.1. m

COROLLARY 3.2 ([4]). The product of a countable family of %-scattered paracompact
spaces is paracompact.

CoroLLary 3.3 ([11). The product of a countable Jamily of %-scattered Lindeldf spaces
is Lindeldf.

Proof A Tychonoff space X is Lindelsf iff the uniform space ¢X — where c(X)
denotes the uniformity generated by all countable cozero-covers — is supercomplete
([3D). Thus, if (X,;: neN)is a countable family of %-scattered LindelSf spaces, then by
3.1 the product [y ¢X, is supercomplete, and clearly ¢([ Iy X)) is finer than [Jye(X). It
follows that

.W(]IVIX,.) c XI];IC(Xi) c Ac(];IX,.);.%’F(HXi)

implying that [[yX, is Lindelof. w

Notice that a Tychonoff space X is ultraparacompact iff the uniformity 4.2 (X)
generated by all clopen disjoint covers is fine, in fact, iff ¥.% (X) is a supercomplete
uniformity, since the associated trees (cf. Section 2) are well founded. Thus, we obtain
additionally

COROLLARY 3.4. The product of a countable JSamily of ultraparacompact %-scattered
spaces is ultraparacompact,

Remark. A space X is called o-%-scattered if it is a countable union of closed
%-scatiered subspaces. A cover #” of a uniform space uX is called a-uniform if there is
a countable collection (F,: ne N) of closed subspaces of X such that X = J{F,: neN}
and for cach n, #" | F, is a uniform cover of the subspace F,. Notice that if we replace in
the proof of 3.1 %-scattered by o-%-scattered, then — by using virtually the same proof
but in applying the maps red; to points P with a new coordinate i, we split P into
countably many closed %-scattered parts — we obtain a well-founded tree 7 such that
for every Pe T\End (7), S(P) is a c-uniform cover of P. Note that the uniformity
generated by all g-uniform open covers of uX is the metric-fine coreflection my (see [61).
(Recall here that every uniform cover has a g-uniformly discrete refinement, hence so
does every g-uniform cover.) By the modified proof of 3.1, im [ Tx & contains every open
cover of HN X, which implies the following
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THEOREM 3.5. Let (1; X;: i€ N) be a countable family of o-@-scattered supercomplete
spaces. Then m([ [y u; X,) is supercomplete.

COROLLARY 3.6. A countable product of o-%-scattered paracompact spaces is
paracompact.
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On supercomplete uniform spaces V:
Tamano’s product problem

by

Aarno Hohti (Helsinki)

Abstract. In this paper we solve the analogue of Tamano’s problem [8] for supercomplete
spaces. We show that a supercomplete space uX has the property that its product with every
supercomplete space is again supercomplete if, and only if, X is C-scattered [19].

1. Introduction. This is the last member in our series of papers [4]-[7] on
supercomplete uniform spaces. These spaces were introduced and characterized by J. R.
Isbell in [11]. By definition, uX is supercomplete if the uniform hyperspace H(uX),
equipped with the Hausdorfl uniformity, is a complete uniform space. By [11],
supercompleteness is a uniform form of paracompactness: X is supercomplete iff (1)
X is (topologically) paracompact and (2) the Ginsberg-Isbell locally fine corefiection Au
[3], [11] is the fine uniformity of X. (In this case, every open cover of X can be analyzed
combinatorially by using uniform covers as a starting point.) This notion has also been
studied in the context of linear spaces and closed graph theorems [2], [15]; [10] gives
an application to homogeneous spaces. Several results concerning product spaces and
supercompleteness have been obtained in [4]-[7] and [8]; closely related questions on
uncountable products are dealt with in [17].

In [18], H. Tamano asked for a characterization of paracompact spaces the product
of which with every paracompact space is paracompact. While it is known [16] that in
the class of p-spaces of Arkhangel'skii [1], such paracompact spaces are o-locally
compact, the general problem has proved to be difficult. In this paper we solve the
analogous question for supercomplete spaces, with a relatively simple proof.

2. Preliminaries. The basic reference to uniform spaces is [12]. For a completely
regular space X, & (X) denotes the fine uniformity of X, consisting of all the normal
covers of X, and BX denotes the Cech-Stone compactification of X. The basic
properties of the Cech-Stone compactification can be found e.g. in [20]. We repeat here
the definition of (slowed-down) Ginsburg-Isbell derivatives (see [97]) of uniformities. Let
%(X) = P(P(X)) denote the collection of all covers of X. Then % (X) is ordered by the
relation < of refinement. Let x4, v be filters in € (X) with respect to <. The symbol v/u
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