

- [11] D. Bünermann, Auslander-Reiten quivers of exact one-parameter partially ordered sets, in:
 Proc. ICRA III (Puebla 1980). Lecture Notes in Math. 903, Springer, 1981, 55-61.
- [12] P. Dowbor, Representations of hereditary rings (in Polish), Ph. D. thesis, Nicholas Copernicus Univ., Torun 1981.
- [13] P. Dowbor and D. Simson, Quasi-Artin species and rings of finite representation type, J. Algebra 63 (1980), 435-443.
- [14] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, Proc. ICRA II (Ottawa 1979), Lecture Notes in Math. 831, Springer, 1981, 1-71.
- [15] The universal cover of a representation finite algebra, Proc. ICRA III (Puebla 1980), Lecture Notes in Math. 903, Springer, 1981, 68-105.
- [16] D. Happel, Composition factors for indecomposable modules, Proc. Amer. Math. Soc. 86 (1) (1982), 29-31.
- [17] D. Happel and C. M. Ringel, *Tilted algebras*, Trans. Amer. Math. Soc. 274 (2) (1982), 399-443
- [18] K. Igusa and G. Todorov, Radical layers of representable functors, J. Algebra 89 (1984), 105-147.
- [19] A characterization of finite Auslander-Reiten quivers, J. Algebra 89 (1984), 148-177;
- [20] B. Klemp and D. Simson, A diagrammatic characterization of schurian vector space PI-categories of finite type, Bull. Polish Acad. Sci. Math. 32 (1984), 11-18.
- [21] Schurian sp-representation-finite right peak PI-rings and their indecomposable socle projective modules, J. Algebra, 1990, in print.
- [22] L. A. Nazarova and A. V. Roiter, Representations of partially ordered sets, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 28 (1972), 5-31 (in Russian).
- [23] C. M. Ringel, On algorithms for solving vector space problems. I. Report on the Brauer-Thrall conjectures: Roiter's theorem and the theorem of Nazarova and Roiter, in: Proc. Workshop ICRA II (Ottawa 1979), Lecture Notes in Math. 831, Springer, 1980, 104-136.
- [24] Kawada's theorem, Abelian group theory, Lecture Notes in Math. 874, Springer, 1981, 431-447.
- [25] Tame algebras and integral quadratic forms, Lecture Notes in Math. 1099. Springer, 1984.
- [26] K. W. Roggenkamp, Indecomposable representations of orders, in: Topics in Algebra, Part I: Rings and Representations of Algebras, Banach Center Publications 26, PWN, Warszawa 1990, 449-491.
- [27] D. Simson, Partial Coxeter functors and right pure semisimple hereditary rings, J. Algebra 71 (1981), 195-218.
- [28] Vector space categories, right peak rings and their socle projective modules, J. Algebra 92 (1985), 532-571.
- [29] Socle reductions and socle projective modules, J. Algebra 103 (1986), 18-68.
- [30] On Representations of Partially Ordered Sets, Paderborn, July 1986, 188 p.
- [31] A narrow over-ring adjustification functor, J. Algebra, to appear.
- [32] Representations of bounded stratified posets, coverings and socle projective modules, in: Topics in Algebra, Part I: Rings and Representations of Algebras, Banach Center Publications 26, PWN, Warszawa 1990, 499-453.
- [33] A splitting theorem for multipeak path algebras, Fund. Math. 137 (2) (1990).
- [34] D. Simson and A. Skowroński, Extensions of artinian rings by hereditary injective modules, in: Proc. ICRA III (Puebla 1980), Lecture Notes in Math. 903 (1981), 315-330.

INSTITUTE OF MATHEMATICS NICHOLAS COPERNICUS UNIVERSITY ul. Chopina 12/18 87-100 Toruń, Poland

Received 30 May 1989

On supercomplete uniform spaces IV: Countable products

bv

Aarno Hohti (Helsinki) and Jan Pelant (Praha)

Abstract. We show that the product of countably many supercomplete C-scattered spaces is supercomplete. The result implies similar but weaker theorems of [1], [17] and [4].

1. Introduction. It is well known that the product of paracompact spaces is in general not paracompact. It was proved by Z. Frolik in [5] that a countable product of locally compact paracompact spaces is paracompact. The same is true for the larger class of paracompact p-spaces of Arkhangel'skii [2]. Recently a weaker structural condition of being scattered or C-scattered has been used by K. Alster [1], M. E. Rudin and S. Watson [17], and by L. M. Friedler, H. W. Martin and S. W. Williams in [4], to obtain similar results. We prove in this paper a natural extension of their results by showing that a countable product of supercomplete C-scattered spaces is supercomplete. The notion of supercompleteness was defined by J. R. Isbell in [13]; by his result — we can take it as a definition — a uniform space μX is supercomplete iff X is topologically paracompact and the Ginsburg-Isbell locally fine coreflection ([6]) $\lambda \mu$ is the fine uniformity of $\mathcal{F}(X)$ of X. By using the concept of metric-fine coreflections, we show at the end of the paper that a countable product of σ -C-scattered paracompact spaces is paracompact.

Our proof uses a simple recursive technique based on well-founded (or Noetherian) trees, applied e.g. in [11], [12], [15] in the context of uniform spaces.

2. Preliminaries. This section consists of preliminary definitions. We refer the reader to [14] for basic information on uniform spaces. For the definition of the Ginsburg-Isbell locally fine coreflection λ , the reader is referred to the first three papers [8], [9], [10] in our study on supercomplete spaces. A well-founded tree is a partially ordered set $\mathcal{F} = (T, \leq)$ with a unique minimal element $\text{Root}(\mathcal{F})$ such that every branch, i.e., maximal linearly ordered subset, of \mathcal{F} is finite. We denote by $\text{End}(\mathcal{F})$ the set of all \leq -maximal elements of \mathcal{F} . Given $p \in T$, the set of all immediate \leq -successors of p is denoted by S(p). Thus, $S(p) = \{q \in T: q > p \text{ and } q > r > p \text{ for no } r \in T\}$. Furthermore,

¹⁹⁸⁵ Mathematics Subject Classification: Primary 54E15; Secondary 54B10.

for every $p \in \text{End}(\mathcal{T})$ there is a unique branch $\{p_0, \ldots, p_n\}$ such that $p_0 = \text{Root}(\mathcal{T})$, $p_n = p$ and $p_{i+1} \in S(p_i)$ for $0 \le i < n$.

Let \mathcal{F}_1 and \mathcal{F}_2 be two well-founded trees. Given $p \in \operatorname{End}(\mathcal{F}_1)$, the symbol $\mathcal{F}_1 \vee_p \mathcal{F}_2$ denotes the tree obtained from \mathcal{F}_1 by "hanging" \mathcal{F}_2 below p, i.e., it is the tree $\mathcal{F} = (T, \leq)$ defined by

$$T = T_1 \cup (T_2 \setminus \{\text{Root}(\mathscr{T}_2)\}),$$

with the partial order satisfying $r \leq q$ iff either

- (1) $q, r \in T_i$ and $q \leq r, i = 1, 2$, or
- (2) $q \in T_2$, $r \in T_1$ and $r \leq p$.

Obviously $\mathcal{F}_1 \vee_p \mathcal{F}_2$ is well-founded.

There is a strict connection between well-founded trees and locally fine coreflections. Indeed, if a μX is a uniform space and $\mathcal{U} \in \lambda \mu$, then there is a well-founded tree \mathcal{F} and a natural map ω : $T \to 2^X$ satisfying the following properties:

- (1) $\varphi(\operatorname{Root}(\mathcal{F})) = X$;
- (2) $\varphi \lceil S(p) \rceil$ is a uniform cover of $\varphi(p)$ for each $p \in T \setminus \text{End}(\mathscr{T})$;
- (3) the sets $\bigcap \{ \varphi(p) \colon p \in B \}$, where $B \in \mathcal{B}(\mathcal{F})$, the collection of all branches of \mathcal{F} , refine the cover \mathscr{U} .

Let **K** be a closed-hereditary class of topological spaces. A space X is called **K**-scattered ([19]) if every nonempty closed subset of X has a point with a **K**-neighbourhood. A **K**-exhaustion of a **K**-scattered space X is a sequence $(S_{\alpha})_{\alpha<\beta}$ of open subsets of X such that (i) if $\gamma < \tau < \beta$, then $S_{\gamma} \subset S_{\tau}$, (ii) $S_{\gamma} \setminus \bigcup \{S_{\alpha} : \alpha < \gamma\}$ is in **K** for all $\gamma < \beta$ and (ii) $\bigcup \{S_{\alpha} : \alpha < \beta\} = X$. The least such $\beta \in \text{Ord}$ for X will be called the **K**-length of X, written length K. The existence of **K**-exhaustions can be proved by induction. Indeed, given a **K**-scattered space X, let $S_0 = \emptyset$. Assuming that (S_{α}) has been defined for $\alpha < \tau$, let $Y_{\tau} = X \setminus \bigcup \{S_{\alpha} : \alpha < \tau\}$. In case $Y_{\tau} = \emptyset$, $(S_{\alpha})_{\alpha < \tau}$ is an exhaustion of X; otherwise the closed subspace Y_{τ} contains a point with an (in X) open neighbourhood U such that $\overline{U \cap Y_{\tau}}$ is in K; we put $S_{\tau} = \bigcup \{S_{\alpha} : \alpha < \tau\} \cup U$.

In the sequel we consider only the class $K = \mathcal{C}$ of compact spaces, although our arguments can be extended to some other classes. (For \mathcal{C} -scattered paracompact spaces, see [18].)

Let $(X_n: n \in \mathbb{N})$ be a countable family of topological spaces. Then $T(\prod_N X_i)$ denotes the set of all trees $\mathscr T$ with the following property:

(*) the elements of \mathscr{T} are subsets of $\prod_{N} X_{i}$ of the form $\prod_{N} Z_{i}$ where each $Z_{i} \subset X_{i}$ is closed, and where the set $\{i \in \mathbb{N}: Z_{i} \neq X_{i}\}$ is an initial segment of N. The partial order of \mathscr{T} is the set inclusion order.

For every element P of such a tree \mathscr{T} , define $seg(P) = \max\{n \in \mathbb{N}: \pi_n[P] \neq X_n\}$, where $\pi_n: \prod_n X_i \to X_n$ is the standard projection.

Now assume that the spaces X_i are $\mathscr C$ -scattered and paracompact. Let $\mathscr T \in T(\prod_N X_i)$. For each $j \in \mathbb N$, the j-reduct of $\mathscr T$ at $P \in \operatorname{End}(\mathscr T)$, where $j \leqslant \operatorname{seg}(P) + 1$, written $\operatorname{red}_j(\mathscr T, P)$, is defined as follows. Put $\alpha = \operatorname{length}_{\mathscr C}(\pi_j[P])$. If α is a successor ordinal, and $j \leqslant \operatorname{seg}(P)$, let $\operatorname{red}_j(\mathscr T, P) = \mathscr T$; if $j = \operatorname{seg}(P) + 1$, then let $\{W_0, W_1\}$ be a normal closed cover of X_i such that $X_i \neq W_i$ for i = 0, 1, and let $\operatorname{red}_i(\mathscr T, P)$ be obtained from $\mathscr T$ by

adding the sets $\pi_i^{-1}(W_i) \cap P$ below P. i.e. let

$$\operatorname{red}_{j}(\mathcal{F}, P) = \mathcal{F} \vee_{P} \mathcal{F}',$$

where \mathscr{T}' is the member of $T(\prod_N X_2)$ consisting of $P(=\operatorname{Root}(\mathscr{T}'))$ and the sets $\pi_j^{-1}[W_i] \cap P$, i=0,1. Otherwise, when α is a limit ordinal, $\pi_j[P]$ has an open cover by subsets S_β with $\beta < \alpha$; with respect to the fine uniformity of X_j , this cover is uniform and can be refined by a uniform closed cover \mathscr{W} . Let $\operatorname{red}_j(\mathscr{T}, P)$ be obtained by adding all the elements $\pi_j^{-1}[W] \cap P$ below P in \mathscr{T} . (Notice that length $\alpha(W) < \alpha$ for all $M \in \mathscr{W}$.)

Let X be \mathscr{C} -scattered. If length $_{\mathscr{C}}(X)$ is a successor ordinal, then there is a compact subset of X, denoted by $\operatorname{top}_{\mathscr{C}}(X)$, such that if U is any neighbourhood of $\operatorname{top}_{\mathscr{C}}(X)$ in X, then $\operatorname{length}_{\mathscr{C}}(X \setminus U) < \operatorname{length}_{\mathscr{C}}(X)$. In case $\operatorname{length}_{\mathscr{C}}(X)$ is a limit ordinal, we simply define $\operatorname{top}_{\mathscr{C}}(X) = \emptyset$. (Notice that the functions red_j and $\operatorname{top}_{\mathscr{C}}$ are defined by using the axiom of choice.) We conclude this preliminary section by a simple lemma.

LEMMA 2.1. Let $(P_n: n \in N)$ be a decreasing family of subsets of $\prod_N X_i$ such that for each $i \in N$ there is n_i such that $\pi_i[P_{n_i}]$ is compact. Given an open cover $\mathscr V$ of $\prod_N X_i$, there is j such that P_i is covered by finitely many elements from $\mathscr V$.

Proof. Indeed.

$$P = \prod_{N} \pi_{k} \left[P_{n_{k}} \right]$$

is a product of compact sets. Thus, there is a finite $\mathscr{F} \subset \mathscr{V}$ such that $P \subset \{\}\{V \colon V \in \mathscr{F}\}$. Write

$$P^{(r)} = \prod_{k=0}^{r} \pi_k [P_{n_k}] \times \prod_{k>r} X_k.$$

Then $P = \bigcap \{P^{(r)}: r \in N\}$. Hence, there is r such that already $P^{(r)}$ is covered by \mathscr{F} . Choose j with $P_j \subset P^{(r)}$.

3. The result. In this section we prove that the product of a countable family of $\mathscr C$ -scattered supercomplete spaces is supercomplete. In the proof we use well-founded trees and $\mathscr C$ -exhaustions, defined in Section 2, together with the following principle. Let X be a set, let $\mathscr A \subset 2^X$ be a subset of 2^X closed under arbitrary increasing unions and let $\phi: \mathscr A \to \mathscr A$ be an expanding map, i.e., $A \subseteq \phi[A]$ for all $A \in \mathscr A$. Define maps $\phi^x, \alpha \in \operatorname{Ord}$, as follows: put $\phi^{(0)}(A) = A$ for all $A \subset X$, let $\phi^{(\alpha+1)}(A) = \phi(\phi^{(\alpha)}(A))$ and let $\phi^{(\beta)}(A) = \bigcup \{\phi^{(\alpha)}(A) \mid \alpha < \beta\}$ for β a limit ordinal. There is (obviously) $\widetilde{\alpha}$ with $\phi^{(\beta)}(A) = \phi(\alpha)$; we call for each $A \subset X$ the set $\phi^{(\alpha)}[A]$ the closure of A under ϕ .

Now let us state the main theorem of our paper.

THEOREM 3.1. Let $(\mu_n X_n : n \in N)$ be a countable family of \mathscr{C} -scattered supercomplete uniform spaces. Then $\prod_N \mu_i X_i$ is supercomplete.

Proof. Let $T = T(\prod_N X_i)$ and note that we can assume that the spaces $u_i X_i$ are (non-compact) fine uniform spaces, since (by [14])

$$\lambda \prod_{N} \mu_{i} X_{i} = \lambda \prod_{N} \lambda \mu_{i} X_{i} = \lambda \prod_{N} \mathscr{F} X_{i}$$

when the spaces $\mu_i X_i$ are supercomplete. To show that $\prod_N \mu_i X_i$ is supercomplete, we shall prove that for any given open cover $\mathscr V$ of $\prod_N X_i$, there is a well-founded tree $\mathscr F \in T$, with the following properties:

- (1) Root $(\mathcal{T}) = \prod_{N} X_i$;
- (2) for each $P \in T \setminus \text{End}(\mathcal{F})$, the elements of S(P) form a uniform cover of the subset P of $\prod_{i} X_i$;
- (3) the elements $P \in \operatorname{End}(\mathcal{F})$ refine the cover $\mathscr{V}^{<\omega}$ (consisting of all the finite unions of numbers of \mathscr{V}). We can (and shall) assume that \mathscr{V} consists of basic open sets. (Notice that every open cover of a Tychonoff space X is in $\mathscr{F}(X)$ iff for every open cover \mathscr{V} of X, $\mathscr{V}^{<\omega}$ is in $\mathscr{F}(X)$, cf. [16].)

Next we shall define a map $E \colon T \to T$ as follows. Let $\mathscr{T} \in T$ and let $P \in \operatorname{End}(\mathscr{T})$. Let us first define a tree $E(\mathscr{T}, P)$. Recall that $\operatorname{seg}(P) = \max\{i \in N \colon \pi_i[P] \neq X_i\}$. We have to consider 4 cases.

Case 1. There is $i \leq \text{seg}(P)$ such that length_{\(\varPerightarrow\)} $(\pi_l[P])$ is a limit ordinal. Let $E(\mathscr{T}, P) = \text{red}_l(\mathscr{T}, P)$.

Case 2. Otherwise, if P is covered by an element of $\mathscr{V}^{<\omega}$, let $E(\mathscr{F}, P) = \mathscr{F}$.

Case 3. Otherwise, if

$$Y = \bigcap_{i \leq \operatorname{scg}(P)} \pi_i^{-1} \left[\operatorname{top}_{\mathscr{C}}(\pi_i [P]) \right]$$

is not covered by finitely many elements from \mathscr{V} , let $E(\mathscr{F}, P) = \operatorname{red}_{\operatorname{seg}(P)+1}(\mathscr{F}, P)$. Case 4. Otherwise, Y is covered by finitely many elements from \mathscr{V} , and we can find, for all $i \leq \operatorname{seg}(P)$, open subsets U_i , W_i of X_i such that

$$top_{\mathscr{C}}(\pi_i[P]) \subset U_i \subset \overline{U}_i \subset W_i$$

and $\bigcap \{\pi_i^{-1}[\overline{W_i}]: i \leq \operatorname{seg}(P)\}$ is covered by an element of $\mathscr{V}^{<\omega}$. (This easily follows from our requirement that the elements of \mathscr{V} be basic open sets.) Let \mathscr{F} be the set of all $i \leq \operatorname{seg}(P)$ with $\pi_i[P]$ non-compact. In case $\mathscr{F} \neq 0$, let $E(\mathscr{F}, P)$ be obtained from \mathscr{F} by adding the elements $P \setminus \pi_j^{-1}[U_j]$ $(j \in \mathscr{F})$ and $\bigcap \{\pi_i^{-1}[\overline{W_i}]: i \leq \operatorname{seg}(P)\} \cap P$ below P (in the obvious sense defined in Section 2); otherwise, simply let $E(\mathscr{F}, P) = \operatorname{red}_{\operatorname{seg}(P)+1}(\mathscr{F}, P)$. (Notice that if $\pi_i[P]$ is compact, then $\operatorname{top}_{\mathscr{C}}(\pi_i[P]) = \pi_i[P]$.)

Finally, having thus defined the trees $E(\mathcal{F}, P)$ for all $P \in \text{End}(\mathcal{F})$, put

$$E(\mathcal{T}) = \bigcup_{P \in \text{End}(\mathcal{F})} E(\mathcal{T}, P).$$

The promised tree is obtained quickly from the map E. Let \mathcal{F}_0 be the tree consisting of one element, $\prod_N X_i$, and let \mathcal{F} be the closure of \mathcal{F}_0 under the map E. (Obviously, the map E constructed above is expanding; \mathcal{F} is a fixed point of E.)

To show that $\operatorname{End}(\mathcal{T})$ is a cover of $\prod_N X_i$ refining $\mathscr{V}^{<\omega}$, it is enough to prove that \mathscr{T} is well founded. To see this, suppose that \mathscr{T} contains an infinite branch. Hence, there is a sequence $(P_n: n \in N)$ of elements $P_n \in T$ such that for each $n \in N$, $P_{n+1} \in S(P_n)$ and $P_{n+1} \subset P_n$. We claim that there is a sequence $(n_i: i \in N)$ such that $\pi_i[P_k]$ is compact for $k = n_i$. It then follows from Lemma 2.1 that some P_r is covered by an element of $\mathscr{V}^{<\omega}$, implying that Case 2 is applied at some P_r , stopping the branch, giving the desired contradiction. Thus, assume that there is j such that $\pi_j[P_n]$ is non-compact for all n. Then every application of Case 4 to P_n reduces \mathscr{C} -length:

length_{\varphi} ($\pi_i[P_{n+1}]$) < length_{\varphi} ($\pi_i[P_n]$) for some $i \le j$. Since there are no infinite decreasing sequences of ordinals, Case 4 is applied at most finitely many times. Similarly, Case 1 is applied at most finitely many times with respect to any coordinate $i \in N$, and there is an infinite subset $\{n_i : i \in N\}$ of N such that $n_i < n_{i+1}$ for all $i \in N$, Case 3 is applied to P_{n_i} , $\sec(P_{n_i}) \ge i$, and $\pi_i[P_{n_i}] = \pi_i[P_k]$ for all $k \ge n_i$. Consequently, $\cot_{v_i}(\pi_i[P_{n_i}]) = \cot_{v_i}(\pi_i[P_{n_k}])$ whenever $i \le k$. Define

$$P'_k = \bigcap \left\{ \pi_i^{-1} \left[\text{top}_{\mathscr{K}} (\pi_i \lceil P_m \rceil) \right] \colon i \leq k \right\}.$$

Then $(P_k: k \in N)$ satisfies the conditions of Lemma 2.1, and hence there is P_r covered by an element of $\mathscr{V}^{<\omega}$. This implies that Case 4 is applied to P_{n_r} : a contradiction. Hence, \mathscr{T} is well founded. This completes the proof of Theorem 3.1.

COROLLARY 3.2 ([4]). The product of a countable family of C-scattered paracompact spaces is paracompact.

COROLLARY 3.3 ([1]). The product of a countable family of C-scattered Lindelöf spaces is Lindelöf.

Proof. A Tychonoff space X is Lindelöf iff the uniform space cX — where c(X) denotes the uniformity generated by all countable cozero-covers — is supercomplete ([3]). Thus, if $(X_i: n \in N)$ is a countable family of $\mathscr C$ -scattered Lindelöf spaces, then by 3.1 the product $\prod_N cX_i$ is supercomplete, and clearly $c(\prod_N X_i)$ is finer than $\prod_N c(X_i)$. It follows that

$$\mathscr{F}\left(\prod_{N}X_{i}\right)\subseteq\lambda\prod_{N}c\left(X_{i}\right)\subseteq\lambda c\left(\prod_{N}X_{i}\right)\subseteq\mathscr{F}\left(\prod_{N}X_{i}\right)$$

implying that $\prod_{N} X_i$ is Lindelöf.

Notice that a Tychonoff space X is ultraparacompact iff the uniformity $\mathscr{CL}(X)$ generated by all clopen disjoint covers is fine, in fact, iff $\mathscr{CL}(X)$ is a supercomplete uniformity, since the associated trees (cf. Section 2) are well founded. Thus, we obtain additionally

COROLLARY 3.4. The product of a countable family of ultraparacompact &-scattered spaces is ultraparacompact.

Remark. A space X is called σ - \mathscr{C} -scattered if it is a countable union of closed \mathscr{C} -scattered subspaces. A cover \mathscr{C} of a uniform space μX is called σ -uniform if there is a countable collection $(F_n\colon n\in N)$ of closed subspaces of X such that $X=\bigcup\{F_n\colon n\in N\}$ and for each n, $\mathscr{C}\upharpoonright F_n$ is a uniform cover of the subspace F_n . Notice that if we replace in the proof of 3.1 \mathscr{C} -scattered by σ - \mathscr{C} -scattered, then — by using virtually the same proof but in applying the maps red_i to points P with a new coordinate i, we split P into countably many closed \mathscr{C} -scattered parts — we obtain a well-founded tree \mathscr{T} such that for every $P\in T\setminus \operatorname{End}(\mathscr{T})$, S(P) is a σ -uniform cover of P. Note that the uniformity generated by all σ -uniform open covers of μX is the metric-fine coreflection $m\mu$ (see [6]). (Recall here that every uniform cover has a σ -uniformly discrete refinement, hence so does every σ -uniform cover.) By the modified proof of 3.1, $\lambda m\prod_N \mu_i$ contains every open cover of $\prod_N X_i$ which implies the following

120

THEOREM 3.5. Let $(\mu_i X_i : i \in N)$ be a countable family of σ - \mathscr{C} -scattered supercomplete spaces. Then $m(\prod_N \mu_i X_i)$ is supercomplete.

Corollary 3.6. A countable product of σ -C-scattered paracompact spaces is paracompact.

References

- [1] K. Alster, A class of spaces whose Cartesian product with every hereditarily Lindelöf space is Lindelöf, Fund. Math. 114 (1981), 173-181.
- [2] A. Arkhangel'skii, On a class of spaces containing all metric and all locally bicompact spaces. Soviet Math. Dokl. 4 (1963), 1051-1055.
- [3] H. Corson, Determination of paracompactness by uniformities, Amer. J. Math. 80 (1958), 185-190.
- [4] L. M. Friedler, H. W. Martin and S. W. Williams, Paracompact C-scattered spaces, Pacific J. Math. 129 (1987), 277-296.
- [5] Z. Frolik, On the topological product of paracompact spaces, Bull. Acad. Polon. Sci. Math. 8 (1960), 747-750.
- [6] A note on metric-fine spaces, Proc. Amer. Math. Soc. 46 (1974), 111-119.
- [7] S. Ginsburg and J. R. Isbell, Some operators on uniform spaces, Trans. Amer. Math. Soc. 93 (1959), 145-168.
- [8] A. Hohti, On supercomplete uniform spaces, Proc. Amer. Math. Soc. (3) 87 (1983), 557-560.
- 79] On supercomplete uniform spaces II, Czechoslovak Math. J. 37 (1987), 376-385.
- [10] On supercomplete uniform spaces III, Proc. Amer. Math. Soc. 97 (1985), 339-342.
- [11] A. Hohti and J. Pelant, On complexity of metric spaces, Fund. Math. 25 (1985), 133-142.
- [12] M. Hušek and J. Pelant, Extensions and restrictions in products of metric spaces, Topology Appl. 25 (1987), 245-252.
- [13] J. Isbell, Supercomplete spaces, Pacific J. Math. 12 (1962), 287-290.
- [14] Uniform spaces, Math. Surveys, no. 12. Amer. Math. Soc., Providence, R. I., 1964.
- [15] J. Pelant, Locally fine uniformities and normal covers, Czechoslovak Math. J. 37 (112) (1987), 181-187.
- [16] M. D. Rice, A note on uniform paracompactness, Proc. Amer. Math. Soc. 62 (1977), 359-362.
- [17] M. E. Rudin and S. Watson. Countable products of scattered paracompact spaces, ibid. 89 (1983), 551-552.
- [18] R. Telgársky, C-scattered and paracompact spaces, Fund. Math. 73 (1971), 59-74.
- [19] Spaces defined by topological games, ibid. 88 (1975), 193-223.

UNIVERSITY OF HELSINKI
DEPARTMENT OF MATHEMATICS
Hallituskatu 15
SF-00100 Helsinki
Finland
INSTITUTE OF MATHEMATICS
ČSAV

Žitná 25 115 67 Prague 1 Czechoslovakia

Received 7 June 1989

On supercomplete uniform spaces V: Tamano's product problem

by

Aarno Hohti (Helsinki)

Abstract. In this paper we solve the analogue of Tamano's problem [8] for supercomplete spaces. We show that a supercomplete space μX has the property that its product with every supercomplete space is again supercomplete if, and only if, X is C-scattered [19].

1. Introduction. This is the last member in our series of papers [4]-[7] on supercomplete uniform spaces. These spaces were introduced and characterized by J. R. Isbell in [11]. By definition, μX is supercomplete if the uniform hyperspace $H(\mu X)$, equipped with the Hausdorff uniformity, is a complete uniform space. By [11], supercompleteness is a uniform form of paracompactness: μX is supercomplete iff (1) X is (topologically) paracompact and (2) the Ginsberg-Isbell locally fine coreflection $\lambda \mu$ [3], [11] is the fine uniformity of X. (In this case, every open cover of X can be analyzed combinatorially by using uniform covers as a starting point.) This notion has also been studied in the context of linear spaces and closed graph theorems [2], [15]; [10] gives an application to homogeneous spaces. Several results concerning product spaces and supercompleteness have been obtained in [4]-[7] and [8]; closely related questions on uncountable products are dealt with in [17].

In [18], H. Tamano asked for a characterization of paracompact spaces the product of which with every paracompact space is paracompact. While it is known [16] that in the class of p-spaces of Arkhangel'skii [1], such paracompact spaces are σ -locally compact, the general problem has proved to be difficult. In this paper we solve the analogous question for supercomplete spaces, with a relatively simple proof.

2. Preliminaries. The basic reference to uniform spaces is [12]. For a completely regular space X, $\mathscr{F}(X)$ denotes the fine uniformity of X, consisting of all the normal covers of X, and βX denotes the Čech-Stone compactification of X. The basic properties of the Čech-Stone compactification can be found e.g. in [20]. We repeat here the definition of (slowed-down) Ginsburg-Isbell derivatives (see [9]) of uniformities. Let $\mathscr{C}(X) \subseteq P(P(X))$ denote the collection of all covers of X. Then $\mathscr{C}(X)$ is ordered by the relation \prec of refinement. Let μ , ν be filters in $\mathscr{C}(X)$ with respect to \prec . The symbol ν/μ