

An *n*-dimensional compactum which remains *n*-dimensional after removing all Cantor *n*-manifolds

bv

Roman Pol (Warszawa)

Abstract. For each natural $n, n \ge 2$, a compactum X is constructed such that $\dim X = \dim(X \setminus K_X) = n$, where K_X is the union of all Cantor n-manifolds in X. This answers a question asked by P. S. Alcksandrov.

1. The examples. Our terminology follows Kuratowski [Ku]. We denote by I the unit interval [0, 1], BdA is the boundary of the set A in a topological space and compactum means a compact metrizable space.

Let us recall that an *n*-dimensional Cantor manifold is a compact *n*-dimensional space which cannot be separated by any closed subset of dimension $\leq n-2$.

The following example provides an answer to a question asked by P. S. Aleksandrov, cf. [A; 42], [A-P; Ch. 5, §9, 3], [F₂; §3, 3.2, Question 7].

Example A. For each natural $n \ge 2$ there exists an n-dimensional compact metrizable space X such that the complement $X \setminus K_X$ of the union K_X of all n-dimensional Cantor manifolds in X has dimension n.

More specifically, we shall construct in this note compacta with the following properties.

- * Example B. For each natural $n \ge 2$ there exists an n-dimensional metrizable continuum X and a continuous map $q: X \to I$ onto the unit interval, X being irreducible between $q^{-1}(0)$ and $q^{-1}(1)$, such that
- (i) the image q(K) of the union K of all n-dimensional Cantor manifolds in X has empty interior in I,
- (ii) there exists a σ -compact zero-dimensional set $C \subset X \setminus K$ with q(C) = q(K) such that whenever $C \subset E \subset X$ and q(E) has nonempty interior in I then $\dim(E) = n$.

In particular, $\dim(X \setminus K) = n$.

We shall obtain these examples starting with certain peculiar n-dimensional compacta Z in I^{n+1} and getting X from Z by replacing some disjoint collections of n-balls in Z by disjoint collections of umbrellas. To get the spaces X described in Example A it is enough to use the compacta Z defined by Lelek [L], or Rubin, Schori and Walsh

[R-S-W] (actually, the constructions of the spaces Z we need are based on ideas going back to Mazurkiewicz [M] and Knaster [Kn]); the spaces X described in Example B are based on compacta Z obtained by some results from [P].

Remark. A. V. Ivanov [I] constructed, using the continuum hypothesis, perfectly normal compact (non-metrizable) spaces X with $\dim(X \setminus K_X) = \dim X = n$, K_X being as in Example A. Some striking examples concerning the sets K_X in the class of hereditarily normal compact spaces X were constructed, also under the continuum hypothesis, by V. V. Fedorčuk $[F_1]$.

2. The compacta Z. The examples will be obtained by a modification of certain compacta Z in I^{n+1} . For Example A one can use the compacta Z defined by Lelek [L; Example, p. 80] or Rubin, Schori and Walsh [R-S-W; Example 4.5]:

PROPOSITION A ([L], [R-S-W]). Let $p: I^{n+1} \to I$ be the projection onto the first coordinate and let $L \subset I$ be a Cantor set. For each $n \ge 1$ there exists a compactum $Z \subset I^{n+1}$ such that p(Z) = L and for each $M \subset Z$ with p(M) = L, dim M = n.

For Example B we need compacta Z with slightly stronger properties:

PROPOSITION B. For each $n \ge 1$ there exists an n-dimensional continuum Z in I^{n+1} which joins the opposite faces $\{0\} \times I^n$ and $\{1\} \times I^n$ such that whenever the projection of $M \subset Z$ onto the first coordinate has nonempty interior in I, then $\dim M = n$.

To get such a continuum Z, let us choose pairwise disjoint Cantor sets T_1, T_2, \ldots in I such that each non-degenerate interval in I contains some T_k and let, for each $k, G_k \subset T_k \times I^n$ be an (n-1)-dimensional set such that whenever $M \subset I^{n+1} \setminus G_k$ projects onto T_k , dim M=n. The sets G_k can be taken from [P]: one can consider the zero-dimensional sets N_1, N_2, \ldots defined in Section 3.1 of [P], where T is the set of the irrationals of T_k , and let $T_k = (N_1 \cup \ldots \cup N_n) \cap I^{n+1}$. Now, the union $T_k = (N_k \cup \ldots \cup N_n) \cap I^{n+1}$. Now, the union $T_k \cap I^n$ is $T_k \cap I^n$ in the exists a continuum $T_k \cap I^n$ which joins the opposite faces $T_k \cap I^n$ and $T_k \cap I^n$ this continuum has the required properties.

Remark 1. Let Z be a continuum described in Proposition B and let $p\colon Z\to I$ be the restriction to Z of the projection onto the first coordinate. Then the set $\{t\in I\colon \dim p^{-1}(t)=0\}$ is residual in I.

To check this let us consider a countable base V_1, V_2, \ldots in Z with $\operatorname{Bd} V_i \leqslant n-1, i=1,2,\ldots$ (recall that $\dim Z=n$). The sets $B_i=p(\operatorname{Bd} V_i)$ are compact and have empty interior in I and hence $A=I\setminus\bigcup_{i=1}^{\infty}B_i$ is a dense G_{δ} -set in I. If $t\in A$, the fiber $p^{-1}(t)$ is disjoint from every boundary $\operatorname{Bd} V_i$, which means that the intersections $V_i\cap p^{-1}(t)$ form a closed-and-open base in $p^{-1}(t)$, i.e. $\dim p^{-1}(t)=0$.

Actually, the set $\{t: \dim p^{-1}(t) = 0\}$ is G_{δ} , cf. [Ku; § 45, IV].

Remark 2. Compacta similar to those described in Proposition B, but with properties falling somewhat short of our needs, are also defined in Krasinkiewicz [Kr; Corollary 3.4] and in [P; Corollary 5.2(i)].

3. The compacta X. Let us fix a natural number $n \ge 2$ and let Z be an n-dimensional compactum in I^{n+1} defined either in Proposition A or Proposition B. We shall describe a modification of Z which yields a compactum X with properties listed in Example A or Example B, respectively. From now on we shall assume that Z is given by Proposition B—in case A one just neglects certain details; we can assume that the continuum Z is irreducible between the opposite faces $\{0\} \times I^n$ and $\{1\} \times I^n$, cf. [Ku; §48].

Let $p \colon Z \to I$ be the projection onto the first coordinate restricted to the continuum Z.

Let U_1, U_2, \ldots be an open base in I^n and let, for each $i, L_i = \{t \in I: \{t\} \times U_i \subset p^{-1}(t)\}$. The sets L_i are compact and since $L_i \times U_i \subset Z$, L_i has empty interior in I (recall that dim Z = n), therefore, splitting each set $L_i \setminus (L_1 \cup \ldots \cup L_{i-1})$ into countably many sufficiently small compact pieces, one can find pairwise disjoint compact sets

 T_1, T_2, \ldots such that each T_j is contained in some $L_i, \bigcup_{j=1}^{\infty} T_j = \bigcup_{i=1}^{\infty} L_i$ and diam $T_j \to 0$, diam standing for the diameter, cf. [Ku; § 26, II]. Given an index j, fix any i with $T_j \subset L_i$ and choose inside U_i a closed ball $D_j = \{x \in I^n : \|x - c_j\| \le r_j\}$ with center c_j and positive radius $r_j \le 1/j$, disjoint from the boundary of the cube I^n . The sets $T_j \times D_j \subset Z$ are pairwise disjoint (as $T_i \cap T_j = \emptyset$ for $i \ne j$) and diam $(T_i \times D_j) \to 0$.

The compactum X is obtained from Z by replacing each ball $\{t\} \times D_j$, where $t \in T_j$, by an arc — this transforms the fiber $p^{-1}(t)$ into an umbrella. More precisely, we define in Z an upper semi-continuous decomposition D into singletons and the (n-1)-dimensional spheres

$$S(t, r) = \{t\} \times \{x \in I^n: ||x - c_i|| = r\},\$$

where $t \in T_j$ and $0 < r \le r_j$, and we let X = Z/D be the factor space and $d: Z \to X$ the quotient map. Let $q: X \to I$ be the continuous map induced by the projection p, i.e. $p = q \circ d$.

Thus, for $t \in T_j$, $J_t = d(\{t\} \times D_j)$ is an arc whose end point $d(S(t, r_j))$ is the only point in common of J_t and the closure of $q^{-1}(t)\backslash J_t$. It follows that

(1) $e_t = d(t, c_j)$, where $t \in T_j$, does not belong to any *n*-dimensional Cantor manifold in $q^{-1}(t)$,

 e_i being the other end point of the arc J_i . We set

(2)
$$C = \{e_i: t \in T\}, \text{ where } T = \bigcup_{j=1}^{\infty} T_j.$$

Let us notice that since $d^{-1}(e_i) = \{(t, c_i)\},$ where $t \in T_i$,

(3)
$$d^{-1}(C) = \bigcup_{j=1}^{\infty} T_j \times \{c_j\}$$

and d maps $d^{-1}(C)$ homeomorphically onto C, hence C is σ -compact and zero-dimensional. Let us also notice that the continuum X is irreducible between $q^{-1}(0)$ and $q^{-1}(1)$, the fibers of the map d being connected [Ku; §48, I, Th. 3].

To check the properties of X we begin with the following two observations (cf. (2)):

- (4) $T = \{t \in I: \dim q^{-1}(t) = n\}, \text{ and if } t \notin T, \dim q^{-1}(t) \leq n-1,$
- (5) each k-dimensional Cantor manifold in X with $k \ge 2$ is contained in some $q^{-1}(t)$

Recall that $T=\bigcup_{i=1}^{\infty}L_i$. Therefore, if $t\notin T$, $p^{-1}(t)$ has empty interior in $\{t\}\times I^n$, hence $\dim p^{-1}(t)\leqslant n-1$ and since d maps in this case $p^{-1}(t)$ onto $q^{-1}(t)$ in a one-to-one way, we get $\dim q^{-1}(t)\leqslant n-1$. On the other hand, if $t\in T$, i.e. $t\in L_i$ for some i, $\{t\}\times U_i\subset p^{-1}(t)$, and since the closed ball D_j is inside U_i , d embeds the n-dimensional region $\{t\}\times (U_i\backslash D_j)$ into $q^{-1}(t)$; the inequality $\dim q^{-1}(t)\leqslant n$ follows from the fact that $q^{-1}(t)$ is a union of a σ -compact set homeomorphic to $p^{-1}(t)\backslash (\{t\}\times D_j)$ and an arc.

To see (5), let us consider a k-dimensional Cantor manifold F in X with $k \ge 2$. The set q(F) is then a singleton $\{t\}$. Otherwise, using Remark 1 in Section 2 we could find an $s \in I \setminus T$, strictly between some two points in q(F), such that $p^{-1}(s)$ is zero-dimensional and the zero-dimensional set $q^{-1}(s)$ would separate the compactum F.

.From (4) and (5) we get

$$\dim X = n$$

as X does not contain any (n+1)-dimensional Cantor manifold, cf. [Ku; § 46, XI]. It remains to check that the set C defined in (2) has the properties stated in Example B, (ii). By (1) and (5), C is disjoint from the union K of all n-dimensional Cantor manifolds in X and, by (4), q(K) = q(C) = T. Let $C \subset E \subset X$, where q(E) has nonempty interior in I, let $H = E \setminus q^{-1}(T)$ and let $M = d^{-1}(C \cup H)$. The map d restricted to M is a homeomorphism onto $C \cup H$ (cf. (3)) and since $p(M) = q(C \cup H) = q(E)$, the properties of Z yield dim M = n, hence dim E = n.

References

[A] P. S. Aleksandrov, On dimension of closed sets, Uspekhi Mat. Nauk 4 (1949), 17-88.
[A-P] P. S. Aleksandrov and B. A. Pasynkov, Introduction to Dimension Theory, Moskva 1973 (in Russian).

[F₁] V. V. Fedorčuk, On the dimension of hereditarily normal spaces, Proc. London Math. Soc. 36 (1978), 163-175.

[F₂] - Foundations of dimension theory, Itogi Nauki i Tekh. (Sovremennye Problemy Mat.) 17 (1988) (in Russian).

[I] A. V. Ivanov, On the internal dimensional kernel in the sense of P. S. Aleksandrov, in: Seminar in General Topology, Izd. Moskov. Univ., 1981, 46-51.

[Kn] B. Knaster, Sur les coupures biconnexes des espaces euclidiens de dimension n > 1 arbitraire, Mat. Sb. 19 (1946), 9-18.

[Kr] J. Krasinkiewicz, Homotopy separators and mappings into cubes, Fund. Math. 131 (1988), 149-154.

[Ku] K. Kuratowski, Topology, vols. I, II, PWN, Warszawa 1966, 1968.

[L] A. Lelek, Dimension inequalities for unions and mappings of separable metric spaces, Colloq. Math. 23 (1971), 69-91.

[M] S. Mazurkiewicz, Sur les problèmes × et à de Urysohn. Fund. Math. 10 (1926),

[P] R. Pol, Countable dimensional universal sets, Trans. Amer. Math. Soc. 297 (1986), 255-268

[R-S-W] L. R. Rubin, R. M. Schori and J. J. Walsh, New dimension-theory techniques for constructing infinite-dimensional examples, Gen. Topology Appl. 10 (1979), 93-102.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF WARSAW PKiN, IXp. 00-901 Warszawa Poland

Received 3 July 1989