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An n-dimensional compactum which remains
n-dimensional after removing all Cantor n-manifolds

by

Roman Pol (Warszawa)

Abstract. For cach natural n,nx2, a compactum X is constructed such that
dim X = dim (X\Ky) = n, where K is the union of all Cantor n-manifolds in X. This answers
a question asked by P. S. Alcksandrov.

1. The examples. Our terminology follows Kuratowski [Ku]. We denote by I the
unit interval [0, 1], Bd4 is the boundary of the set 4 in a topological space and
compactum means a compact metrizable space.

Let us recall that an n-dimensional Cantor manifold is a compact n-dimensional
space which cannot be separated by any closed subset of dimension < n—2.

The following example provides an answer to a question asked by P. S. Aleksandrov,
cf. [A; 42), [A-P; Ch. 5, §9, 3], [F,; §3, 3.2, Question 71.

ExaMPLE A. For each natural n > 2 there exists an n-dimensional compact metrizable
space X such that the complement X\K, of the union Ky of all n-dimensional Cantor
manifolds in X has dimension n.

More specifically, we shall construct in this note compacta with the following
propertics.

" Bxamprt B. For each natural n>2 there exists an n-dimensional metrizable
continuum X and a continuous map q: X - I onto the unit interval, X being irreducible
between ¢~ (0) and ¢~ (1), such that

(1) the image q(K) of the union K of all n-dimensional Cantor manifolds in X has
empty interior in I,

(i) there exists a a-compact zero-dimensional set C < X\K with q(C) = q(K) such
that whenever C < E <« X and ¢(E) has nonempty interior in I then dim(E) = n.

In particular, dim(X\K) =n.

We shall obtain these examples starting with certain peculiar n-dimensional compacta
Zin I"*! and getting X from Z by replacing some disjoint collections of n-balls in Z by
disjoint collections of umbrellas. To get the spaces X described in Example A it is
enough to use the compacta Z defined by Lelek [L], or Rubin, Schori and Walsh
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[R-S-W] (actually, the constructions of the spaces Z we mneed are based
on ideas going back to Mazurkiewicz [M] and Knaster [Kn]); the spaces X described
in Example B are based on compacta Z obtained by some results from [P],
Remark. A. V. Ivanov [I] constructed, using the continuum hypothesis, perfectly
normal compact (non-metrizable) spaces X with dim (X\Ky) = dim X = n, K being as
in Example A. Some striking examples concerning the sets Ky in the class of hereditarily
normal compact spaces X were constructed, also under the continuum hypothesis, by V.
V. Fedoréuk [F,].

2. The compacta Z. The examples will be obtained by a modification of certain
compacta Z in I"*!. For Example A one can use the compacta Z defined by Lelek [L;
Example, p. 80] or Rubin, Schori and Walsh [R-S-W; BExample 4.57]:

Prorosimion A ([L], [R-8-W]). Let p: I"*' 1 be the projection onto the first
coordinate and let L= I be a Cantor set. For each n> 1 there exists a compactum
Z I such that p(Z)= L and for each M < Z with p(M) =L, dim M = n,

For Example B we need compacta Z with slightly stronger properties:

PROPOSITION B. For each n > 1 there exists an n-dimensional continuum Z in "1
which joins the opposite faces {0} x I" and {1} x I" such that whenever the projection of
M < Z onto the first coordinate has nonempty interior in I, then dim M = n.

To get such a continuum Z, let us choose pairwise disjoint Cantor sets Ty, T;, ... in
I such that each non-degenerate interval in I contains some T, and let, for each
k, G, = T, x I" be an (n—1)-dimensional set such that whenever M < I" "1\ G, projects
onto T, dimM =n. The sets G, can be taken from [P]: one can consider the
zero-dimensional sets N, N,, ... defined in Section 3.1 of [P], where T is the set of the

o0
irrationals of T, and let G, =(N,u...UN,)nI"**. Now, the union G= |J G, is
k=1

(n—1)-dimensional, each G, being closed in G, and by a theorem of Mazurkiewicz [Ku;
§59, I1] there exists a continuum Z in I"**\ G which joins the opposite faces {0} x I" and
{1} x I"; this continuum has the required properties.

Remark 1. Let Z be a continuum described in Proposition B and let p: Z-1 be
the restriction to Z of the projection onto the first coordinate. Then the set
{tel: dimp~!(f) = 0} is residual in I.

To check this let us conmsider a countable base Vi, Voo oo in 2 with
Bd¥i<n—1,i=1,2,... (recall that dim Z = ). The sets By = p(Bd V) arc compact

o
and have empty interior in I and hence 4 = I\ (J B, is a dense Gyset in I. If te 4, the
i=1
fiber p~!(z) is disjoint from every boundary Bd ¥, which means that the intersections
V:np™'(9) form a closed-and-open base in p~*(z), ie. dim P~ =0
Actually, the set {t: dimp~!(f) = 0} is Gy, cf. [Ku; §45, 1V].
Remark 2. Compacta similar to those described in Proposition B, but with
properties falling somewhat short of our needs, are also defined in Krasinkiewicz [Kr;
Corollary 3.4] and in [P; Corollary 5.2 @]
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3. The compacta X. Let us fix a natural number n > 2 and let Z be an n-dimensional
compactum in I"*! defined either in Proposition A or Proposition B. We shall describe
a modification of Z which yields a compactum X with properties listed in Example A or
Example B, respectively. From now on we shall assume that Z is given by Proposition
B — in case A one just neglects certain details; we can assume that the continuum Z is
irreducible between the opposite faces {0} xI" and {1} xI*, cf. [Ku; §48].

Let p: Z—1 be the projection onto the first coordinate restricted to the conti-
nuum Z.

Let Uy, U,,... be an open base in I" and let, for each i, L= {tel: {f}
x U; = p~'(1)}. The sets L, are compact and since L; x U; = Z, L, has empty interior in
I (recall that dim Z = n), therefore, splitting each set L\(L, U...UL;_,) into countably
many sufficiently small compact pieces, orie can find pairwise disjoint compact sets

0 o«
T;, Ty, ... such that each T; is contained in some L;, | ) T;= ) L; and diam T;~0,
ji=1 i=1
diam standing for the diameter, cf. [Ku; § 26, IT]. Given an index j, fix any i with T, = L,
and choose inside U; a closed ball D; = {xeI": ||x—c;|| < r;} with center ¢; and positive
radius 7; < 1/f, disjoint from the boundary of the cube I". The sets T;xD; = Z are
pairwise disjoint (as T,nT; =@ for i # j) and diam (T;x D;)—0.

The compactum X is obtained from Z by replacing each ball {t} xD;, where te T,
by an arc — this transforms the fiber p~*(t) into an umbrelia. More precisely, we define
in Z an upper semi-continuous decomposition D into singletons and the
(n—1)-dimensional spheres

S(t, = {t}x{xel" |x—cj| =r},

where teT; and 0 <r <r;, and we let X = Z/D be the factor space and d: Z—X the
quotient map. Let g: X —1 be the continuous map induced by the projection p, ie.
p=god.

Thus, for te T}, J, = d({t} x D)) is an arc whose end point d(S ¢, ) is the only point
in common of J, and the closure of ¢~*(t)\J,. It follows that
(1) e =d(t, c;), where te T;, does not belong to any n-dimensional Cantor manifold

in g7 (1),

¢, being the other end point of the arc J,. We set

2 C={e:teT}, where T=)T.
=1

Let us notice that since d™* (¢) = {(, ¢;)}, where te T},
(3 0= | Tx{c} .

j=1
and d maps d~'(C) homeomorphically onto C, hence C is g-compact and zero-
dimensional. Let us also notice that the continuum X is irreducible between ¢~ * (0) and

g~ (1), the fibers of the map d being connected [Ku; §48, I, Th. 3].
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To check the properties of X we begin with the following two observations (cf: (2)):
(@4) T={tel: dimg~'(t)=n}, and if t¢ T, dimg™* (1) S n—-1,

(5) . each k-dimensional Cantor manifold in X with k > 2 is contained in'some g ().

w
Recall that T = | | L;. Therefore, if t¢ T, p~*(t) has empty interior in {t} xI", hence
i=1
dimp™' (t) < n—1 and since d maps in this case p~'(f) onto ¢~ (1) in a one-to-one
way, we get dimg™'() <n—1. On the other hand, if teT, ie. tel, for some
i, {t} xU; = p~*(t), and since the closed ball D , is inside U}, d embeds the n-dimensional
region {t} x (U;\D) into g™ (¢); the inequality dim ¢ =" () < n follows from the fact that
q~'(2) is a union of a s-compact set homeomorphic to p~! (O\({t} x D)) and an arc,
To see (5), let us consider a k-dimensional Cantor manifold F in X with k > 2. The
set g (F) is then a singleton {t}. Otherwise, using Remark 1 in Section 2 we could find an
seI\T, strictly between some two points in g (F), such that p~ ' (s) is zero-dimensional
and the zero-dimensional set ¢~!(s) would separate the compactum F.
From (4) and (5) we get

©6) dimX =n

as X does not contain any (n+1)-dimensional Cantor manifold, cf. [Ku; §46, X1].

It remains to check that the set C defined in (2) has the properties stated in Example
B, (ii). By (1) and (5), C is disjoint from the union K of all n-dimensional Cantor
manifolds in X and, by (4), q(K) = ¢(C) = T Let C < E = X, where ¢ (E) has nonempty
interior in I, let H= E\g~*(T) and let M = d~* (CUH). The map d restricted to M is
a homeomorphism onto CUH (cf. (3)) and since p(M) = q(CUH) = ¢(E), the proper-
ties of Z yield dim M = n, hence dimE = n.

References

[A] P.S. Aleksandrov, On dimension of closed sets, Uspekhi Mat. Nauk 4 (1949), 17-88,
[A-P] P. S. Aleksandrov and B. A. Pasynkov, Introduction to Dimension Theory,
Moskva 1973 (in Russian).

[F,] V.V. Fedor&uk, On the dimension of hereditarily normal spaces, Proc. London Math,
Soc. 36 (1978), 163-175.

[F,] — Foundations of dimension theory, Ttogi Nauki i Tekh. (Sovremennye Problemy
Mat) 17 (1988) (in Russian).

m A.V.Tvanov, On the internal dimensional kernel in the sense of P 8. Aleksandrov, in:
Seminar in General Topology, T7d. Moskov. Univ,, 1981, 46 51.

[Kn] B. Knaster, Sur les coupures biconnexes des espuces euclidiens de dimension n > 1
arbitraire, Mat. Sb, 19 (1946), 9-18,

[Kr] J. Krasinkiewicz, Homotopy separators and mappings into cubes, Fund. Math, 131
(1988), 149-154.

[Ku] K. Kuratowski, Topology, vols. 1, I, PWN, Warszawa 1966, 1968.

[L] A. Lelek, Dimension inequalities Jor unions and mappings of separable metric spaces,

Collog. Math. 23 (1971), 69-91.

An n-dimensional compactum 131

[M] S. Mazurkiewicz, Sur les problémes x et i de Urysohn. Fund. Math. 10 (1926),
311-319.

[P} R. Pol, Countable dimensional universal sets, Trans. Amer. Math. Soc. 297 (1986),
255-268.

[R-S-W] L. R. Rubin, R. M. Schori and J. J. Walsh, New dimension-theory techniques for
constructing infinite-dimensional examples, Gen. Topology Appl. 10 (1979), 93-102.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF WARSAW

PKiN, IXp.

00-901 Warszawa

Poland

Received 3 July 1989


Artur




