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There are uncountably many homeomorphism types
of orbits in flows

by

Robbert Fokkink (Delft)

Abstract. We show the existence of uncountably many non-locally compact orbits of different
homeomorphism type in dynamical systems with transformation group R. This answers a question
of J. M. Aarts. Untill now only four different orbits were known, see [AF]. Using the
characterization of non-locally compact orbits by J. M. Aarts and Z. Frolik we show that the
¢-frequency is an invariant which can be used to distinguish a continuum of orbits of distinct
topological type.

All topological spaces under consideration are separable metric.

Introduction. Consider a flow (X, x), ie. n: R— X is a continuous action of R on X.
There still is no satisfying classification of the homeomorphism types of the orbits
I(x) = {n(x, t)] teR}. If I'(x) is locally compact it is well known that I'(x) is
homeomorphic to either R, S* or a singleton, see [I]. However, if I'(x) is non-locally
compact not much is known. An important difference between the two types of orbits is
that non-locally compact orbits are recurrent but not periodic. Recall that I'(x) is
recurrent if for every neighbourhood Vof x, the set {t| n(x, t}e V} is unbounded. I'(x) is
positively recurrent if {t > 0| n(x, )V} is unbounded.

In [AF] four different orbits in flows were distinguished. It is the purpose of this
paper to show that the set of homeomorphism types has the power of the continuum.

Non-locally compact orbits were characterized by J. M. Aarts as suspensions Z(Q, h)
of universally transitive homeomorphisms, see [A]. A homeomorphism h: Q— Q is
called wuniversally transitive if Q = {h"(0)l neZ}. One can think of a universally
transitive homeomorphism as a cascade with only one orbit. Instead of universally
transitive homeomorphisms we are going to use orbits in the two-sided shift ¢ on
the Cantor set {0, 1}%. The homeomorphism o: {0, 1}* - {0, 1}* is defined by o((x,),)
= (xn+1)n'
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If xe {0, 1}# is non-periodic and recurrent, then the orbit O(x) = {¢"(x)| neZ}is
homeomorphic to Q. In that case ¢ is a universally transitive homeomorphism on O(x).

J. M. Aarts proved that two orbits Z(Q, k) and (@, k) are homeomorphic iff there
are non-empty clopen sets A and B of Q such that the first-return maps h, and kj are
conjugate. In this case h and k are called first-return equivalent. The first-return map
hy: A— A is defined by h,(x) = h")(x) where n(x) = min{neN| n > 0, h"(x)e A}. Note
that h,, is a well-defined homeomorphism if 4 is both positively and negatively recurrent.
It is also to be observed that 4 and B are homeomorphic to Q. J. M. Aarts and Z,
Frolik used this result to show the existence of four different orbits in flows, They
showed that an almost periodic cascade and a “wild” cascade yield non-equivalent
universally transitive homeomorphisms. Consider the two-sided shift oz {0, 1} — {0, 1}2.
Let x be an element of {0, 1}# such that O(x) is dense in {0, 1}Z. In this paper (O(x), o) is
called a wild cascade and x is called a wild element of {0, 1}%. Now J. M. Aarts and Z
Frolik took for both types of cascades a non-negatively recurrent and a both positively
and negatively recurrent version to obtain four different orbits.

In this paper we concentrate on the second case and show that it is possible to
distinguish a continuum of topologically distinct wild orbits in flows (suspensions over
a wild orbit in {0, 1}%). Hence in fact the existence of a continuum plus two
topologically distinct orbits is shown. How can we show that there are in fact
uncountably many different orbits? Translated into terms of recurrent elements in
{{0, 1}%, 0), first-return equivalence is an equivalence relation on {0, 1}%. A tempting way
to try and prove that there are uncountably many different orbits is to show that the
equivalence classes are of the first category. This is difficult if not impossible. The
difficulty in handling first-return equivalence is that there are continuum many clopen
subsets of Q. We will take a different approach and construct elements of different
types. The term type is made precise later. In general elements of different type need
not be non-equivalent. However, it is possible to distinguish uncountably many
non-equivalent types.

Before we start the construction we settle the notation.

DerFiviTiON 1. A word w is an element of {0, 1}"** for some neN. The integer
n+1is called the length of w and is denoted by A(w). The dictionary 4 is the set of all
words:

4 =J{w| IneN we{0, 1)+1}.
In general an element x of {0, 1} is denoted sloppily by

X =Wy W WoWy oW, with wed for all ieZ.

Of course it has to be clear from the context what coordinates correspond to the words
w;. When this is not the case we use the following notation: (x,) =...x_ 2 Xy | XeXy ...
to mark where the negative coordinates end. We say that x contains wif x = ...w... For
w=(E,)-0€ 4 the inverse word W = (£,,_,)"o. An element x of {0, 1}% is symmetric if
x=(£,) with &, =¢., ‘for all neN.
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Note that an element x of {0, 1}Z has a dense orbit under o iff x contains all words.
First we distinguish only three non-equivalent elements of {0, 1}* with the help of the
frequency (of return). Intuitively, this is the clearest of the invariants we are going to use.

DerFINITION 2. Let x be an element of the Cantor set and let V, W be clopen subsets
of O(x) such that V.= W, For n > 0 the n-frequency of Vwith respect to W is defined by

Vs oy, x) = inf{{meN| m <N, (6,)"()e V}i/N| N > n}.
The frequency of return of V with respect to W is defined as

JV, oy, x) = lim f,(¥, Oy, X).

Hence f(V, oy, x) is the limes inferior of the sequence
({meNl m< N, (oy)y"(x)e V}i/n),.
Similarly we can define f,(V,(6™ ")y, x) and f(¥, (6™ Yy, x).

This definition is inspired by the behaviour of almost periodic cascades. Recall that
a point xe{0, 1}” is almost periodic if for every open subset ¥ < O(x) the set
{m| 6"(x)e V} has bounded gaps. Hence for every clopen V = W the frequency
f(V, oy, x) is positive. This is in general not true for wild elements.

Let x be an element of {0, 1}% and let {V;| ne N} be a neighbourhood basis at x of
clopen sets in O(x), such that for every neN, V,., ¢ V,. The return map to V, is
denoted by ¢, to save indices. We distinguish the following three types of orbits:

Type 1. For every neighbourhood ¥ of x both f(V, 67, x) and f(¥, o, x) are
positive. :

Type 2. For every neighbourhood V of x, f(V, 67 %, x) is positive and
S Va1, 0,,x)=0 for all neN.

Type 3. For every neN, f(Vos1, 07, %) = f(Vas1, 0,, %) = O.

It is not hard to show that elements of different type are nom-equivalent. Let
A<Bc CcD be a chain of clopen sets and let x be an element of A. From the
definition of frequency it is clear that

f(Bs Ops x)
f(A: O¢s X)

The following lemma is an easy éxercise in these inequalities.

f(A3 O'D: X)S{ }Sf(Bs UC’ x)'

LemMA 1. Elements of different type are not first-return equivalent.

Proof. Suppose x is of type 1 and y of type 2 for some x, y e {0, 1}% Let {V,| ne N}
be a neighbourhood basis of clopen sets at y such that f(V, .+, &,, ) = 0 for every neN.
If (O(x), o) and (O(y), o) are first-return equivalent there are clopen sets A = O(x) and
B < O(y) such that g, is conjugate to o,. Without loss of generality we may assume
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that xed, yeB c ¥, and that the conjugating homeomorphism y: A—B maps x
onto y. There is an neN such that ¥, = B. Since y is of type 2 the frequency
f(¥yu1, 0, y) = 0. On the other hand,

FVprss 65 0) = F 7 Frs 1), 7700509, X) = f(y (Vas 1), 0,0, X) > O

since x is of type 1.

The proof in the other cases is similar.

Using the fact that {0, 1}* is a topological group we define, for a clopen
neighbourhood ¥V of 0, n>0 and £ >0, the set

F,(V,0,8)={x| f,(x+V,0,x) >

This is a closed set with empty interior. Let {V,| neN} be a neighbourhood basis of
clopen sets at 0.
The set of elements of type 1 equals

(3,083 0= DAL AAx2)

This is a set of first category. It is our task to show that it has non-empty intersection
with the G, of wild elements:

N {xe{0, 1}*| x contains w}.
wed

Observe that the set of elements of type 1 is not empty since it contains all almost
periodic elements.

Construction 1. We want to construct a wild element xe {0, 1} of type 1. Hence
x has to satisfy the following conditions:

(a) x contains all words.
(b) There is a neighbourhood basis {¥,| ne N} of clopen sets at x in {0, 1}* such
that f(V,, ¢, x) and f(V,, 67*, x) are positive for all neN.

Note that condition (b) implies that x is both positively and negatively recurrent. In
fact the constructed x will be symmetric, so we only have to worry about f'(V,, o, x)!

Let n: N—4 be an enumeration of the dictionary such that n(0) = 0. We will
approximate x with periodic points: a sequence (x,) is constructed with lim,_, ,x, = x
and every x, is periodic. At step n we make sure that =(n) is inserted in x,.
Simultaneously we construct a descending sequence {V,| ne N} of clopen neighbour-
hoods of x such that ¥, = ¥, for all n>m and x,e¥,. We have to make sure that
J(V,, ¢, x) > 0. Itis certainly true that f (¥,, g, x,) > 0 since x, is periodic. This property
must not be lost in the limit, so we choose integers i, and positive real ¢, such that
iV, 0, x,) = 8, for every m = n.

Let us sketch the first steps: choose x, = 0 = ...0000... Instead of zeros we use a’s
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since there are more than two letters in the alphabet; x,=...caaa... and
Vo = {(&)] &, = 0}. Observe that x,, contains n(0) = 0. The frequency of the zeros in x,
is equal to 1. During the inductive proces it must not drop below &, = 4. Now we have
to insert i(1) in x,. Let b be the word b =I(17aaa...aaa n(1). The periodic element
X; =...bbbb... contains n(1) and =(0) and the b’s are placed in such a way that x, is
symmetric and the zeroth coordinate is 0. The neighbourhood V; = {x| x =...b...}.
The frequency of zeros in x, is larger than % for a suitable choice of b and the frequency
of b’s is larger than some g, > 0. At the following step the word =(2) has to be inserted in
x; in such a way that the frequency of the zeros does not drop below 3 and the
frequency of b’s does not drop below &,. To this end take ¢ = 7(2) bbb ...bbbn(2) and
define x, =...cccc..., etc.

In this way we proceed inductively to define x,, V,, ¢, and i,, satisfying' the
following conditions:

(i) x, contains =(0), =(1),..., n(n).
(i) x,eV,, for all m<n.
(iii) x, is symmetric and periodic.
i) V, < ¥, for all m<n.
W S Vs 0, %)= f;, (Vs 674, x,) >, for all m<n.

Suppose we have defined x,, V,, ¢, and i,; now we have to construct x,+1, Vat1,
8,41 and i, 1. The non-precise expression “very long” is used to indicate that we want
X,+1 to satisfy condition (v).

Let x, be the element ...vovv... and let ¥, be the neighbourhood {x| x =...v...}
(it is obvious where v has to be placed: symmetric with respect to 0). Now
w=n(n+1)vov...vvon(n+1) for a very long sequence of v's. The periodic point
Xp+1 =...wwww...Is an element of ¥, such that f; (V,,, o, Xp+1) > ¢, forallm < n We
choose ¥,4+y = {x| x =...w...} such that x,4+,€V,,; and ¥,,, = ¥,. Obviously it is
possible to choose &+, and i,.; such that fi., (Vir1, 0, Xns1) 2 Bt 1.

In this way we construct a sequence (x,) such that lim,., ,x, is a wild element of

type 1. m

Remark. We could have dropped the condition that x contains all words. Then it
would suffice to construct. an almost periodic element of ({0, 1}%, ¢). A well known
method, reminiscent of Construction 1, is to construct such an element by substitution,
see [MH].

The proof that elements of type 1 exist is satisfactory in the sense that we have
actually constructed such an element. The proof that elements of type 2 and 3 exist can
be given constructively as we will see below. Here is a non-constructive proof that
elements of type 3 exist: .

Let {V,| neN} be a neighbourhood basis of clopen sets at 0. Consider
Fo(Vat1, 0, &) = {x€{0, 1}%] fo(x+V,11, Oxsv,, X) > &}. This is a closed set with
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empty interior in {0, 1}%. The complement of elements of type 3 is equal to:

(8.0.0.8(wn A (0.9,8 Linere3)

This is a set of first category. Hence it is possible to distinguish three non-equivalent
elements of {0, 1}%. =

Is it possible to refine the notation of frequency in order to obtain more orbits? The
first things that comes to mind is to measure the number of returns against a function
depending on the time. For instance, we may consider the limes superior of the sequence

[{m < N| o(x)e V}|/logN.

It is necessary to impose a few restrictions on the function of the time. As usual the
integer part of ceR is denoted by [c].

DEFINITION 3. & is a subset of the set of all functions from N\{0} to N\{0}.
e iff

{a) ¢ is increasing and surjective;

(b) For every ce R, there is a CeR, ¢ such that (p([cn] Co(n) for all ne N\{0}.

Note that from these conditions a third can be derived:

(c) For every de R, ¢ there is 2 DeR., , such that ¢([dn]) = Do (n) for all ne N\{0}.

According to condition (b) there is a constant C such that @([d™'n]) < Co(n).
Hence ¢(n) < o([d~ ' [dn]])+d™* < Co([dn])+d~*. From this inequality it is possible
to derive condition (c). We now are able to generalize the definition of frequency.

DEFINITION 4. Let x be an element of the Cantor set and let ¥, W be clopen subsets
of O(x) such that ¥ = W. For n > 0 the n-@-frequency of Vwith respect to W is defined
by

f;leP(K Ows

The g-frequency (of return) f,(V, oy, x) is equal to lim,. fo.0(V; oy, X).

In general the ¢-frequency is harder to handle than the frequency. The main
difference is that the ¢-frequency can be infinite. We say that the ¢-frequency is positive
if it is neither 0 nor oo. Before we are going to imitate Construction 1 we must decide
what type of element has to be constructed.

DEFINITION 5. An element x of {0, 1}# is of type ¢ if there exists a neighbourhood
basis of clopen sets {V,|ne N} at x such that both f,(V, 41, a,, x) and f,(V,+1, (671),, X)
are positive for every neN.

x) = inf{{meN| m < N, (op)"x)e V}l/o(N)| N > n}.

Is it worthwhile to construct elements of different types? For example: is an element
of type [/ 1 non-equivalent to an element of type [log]? It is our first task to prove
that the answer to both questions is yes.

The k-fold iteration po@o...0p of ¢ is denoted by ¢*. Note that if ¢ € &, then
eF.

LeMMA 2. Suppose x is an element of type ¢ with respect to the neighbourhood basis
{V,| neN}. For all n,keN the ¢*-frequency fp(Vysx, 6,, X) is positive.
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Proof. We prove this for k = 2, the lemma follows by induction. Since x is of type
¢ there are ¢, MeR,, such that

s< [fmeN| m< N, @))€ Vyei}l (M) < M,

MmN, (0,4 "X EVara}l- o)™ < M
for all sufficiently large N. The inequalities imply that
e o([ep(N)]) <

for all sufficiently large N.
By condition (b) and (c) on the function ¢ there exist constants 8, K € R, ; such that

e < |{meN|

{meN| m< N, (6,)"(x)€ V12l < Mo([Mo(N)]+1)

s<|{meN| m<N, (6)"()eVasa}l(@*(N)) "' < K

for all sufficiently large N. This proves Lemma 2.

The lemma implies that there is no difference between elements of type ¢ and of
type @2 However, it also implies that an element of type ¢ and an element of type y are
non-equivalent if ¥ is considerably smaller than ¢" for every neN.

DEFINITION 6. Let ¢,  be elements of
o <Y, if

Z. ¢ is called smaller than v, denoted by

)
im 2
e Y4 (7)

Now we can generalize Lemma 1.

=0 for all keN.

LemMA 3. Let x be an element of type @ and let y be an element of type Y. If < ¢
then (O(x), o) and (0(y), 6) are not first-return equivalent.

The proof of Lemma 3 is almost an exact copy of the proof of Lemma 1.

Proof Let x be of type ¢ with respect to {¥,| ne N}, a neighbourhood basis of
clopen sets at x. Similarly, let y be of type 3 with respect to {W,| neN}. Suppose that
(0(x), o) and (0(y), o) are first-return equivalent. Then there are clopen subsets
A < O(x) and B = O(y) such that o, is conjugate to g5. Without loss of generality we
may assume that xe 4 = ¥, and ye B ¢ W, and that the conjugating homeomorphism
y maps x onto y.

Choose ne N such that ¥, = A. There is an me N such that W, = y(Vy+1). Hence

0 < fym(W,, 00, ¥) < fwm(?(Vnﬂ), Gos ¥) < Jym(Vat 15 s X)s
from which it follows that

Jim |{kl k<N, (,)(x)€ Vas1}I™(N) > 0.

This contradicts the fact that

Tim p(N)"(N) =
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We have convinced ourselves that it is worthwhile to construct elements of type ¢.
So all that remains is an imitation of Construction 1. This is straightforward except for
one technical detail. As pointed out before we must be extra careful since the
@-frequency may be infinite. Whereas we had to make sure in Construction 1 that the
frequency of return of x;4+, to ¥4y was not zero, now we have to make sure as well that
it is not infinite. The element x; 4 is obtained from x; by inserting words. In order to
deal with the problem of inserting too many words we label them. This is done by using
the maximal number of consecutive zeros. Let =: N — 4 be an injection such that the
maximal number of consecutive zeros in n(n) is equal to n+1. It is possible to choose
7 in such a way that for every we 4 there is an ie N such that w is pohtained in (). Also
7(0) = 0. We assume that if p(n)—@(n—1)=1, then @(+1)—¢(n) =0 and that
o <id.

Construction 2. Again we are going to construct a sequence (x,) such that
x =lim,. X, is a wild element of type ¢. At first sight the construction may seem
different from Construction 1, but in fact it is a straightforward imitation.

Since 7(0) = O we want x, to be an element such that the ¢-frequency of the zeros
in x, is positive. Define x, = (¢,), with &, = 0iff (n))—o(n|—1) = 1 for |n] > 1, {, =0
and £_, = &, = 1. Observe that in the case that ¢ = id is allowed we get almost the
same x, as in Construction 1. As in Construction 1 we denote the zeros by a’s. Now we
have to insert m(1) in x,. Take a very long block (£,)¥y = 11...1]01...11 and insert
m between ¢_y and £_y.y, insert 7(1) between £y, and £y. Recall that the | marks
the zeroth coordinate. The obtained word is called b. The important words in x, are the
a’s, the s are there to get the right frequency. In Construction 1 we replaced every a by
b. In this case that would be too much, juét like ...0000... contains too many zeros to
be the right x,. That is why we replace the nth a by b iff p(n)—@(n—1) = 1. We must
convince ourselves that the -frequency of a’s in x, is at least 4, as in Construction 1. It
comes as no surprise that this holds true; because ¢ < id, the fraction of altered a’s is
negligible. We choose

Vi={x| x=..1=x(1)1...1]01...

1n()1...},

the @-frequency of the b’'s with respect to the a4’s is obviously greater than 0.
We construct x,'V,, i,&, and M, satisfying the following five conditions:
(i) x, contains n(0), n(1), ..., n(n).
(i) x,eV, for al m<n.’
(iii) x, is symmetric and does not contain n+2 consecutive zeros.
@) V,c¥, forall m<n
™) ey < frmoVm+1s Oms X0) = frno(Vms1, O, X,) KM, for all m<n—1.
Suppose we have defined x,, V,, &,, i, and M,; now we have to construct
Xnt1s Vot1s Ent1s i+t and M,es. It follows from the inductive procedure that
V,={x| x=...v...} for some word v, just as in Construction 1 (v is symmetric and
contains the Oth coordinate. Unlike the x, from Construction 1 the x, in Construction

2 is not periodic. Between two subsequent v’s there are gaps in order to obtain the right
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frequency. Let (¢,)Yy be a very long word in x, such that (£)¥y=11...0...11 (v
contains the Oth coordinate). We insert m behind £_j and in =(n+1) front of &,.
In this way we obtain a word w. Observe that the word w does not occur in x, since
w contains n+ 2 consecutive zeros and x, does not. Therefore if we alter every mth v into
a w iff p(ml)—¢(im/—1) = 1, then the ¢-frequency of w with respect to v becomes
positive. We must take care that we do not spoil the ¢-frequencies of the previous
words. Let K be an integer, the fraction (¢ — ¢®)/n can be made arbitrarily small (for
all ne N) since ¢ < id. So if we take (£,)¥y sufficiently long and K sufficiently large, then
we can insert 7n(n-1) behind &_y, n(n+1) in front of ¢, and we can alter every mth
word v into w if jm| > K and ¢(Jm|)— ¢(jm| —1) = 1 all without violating the conditions
(i) through (v). If ¥4, = {x| x =...w...} (w contains Oth coordinate), &,+; is chosen
smaller than the ¢-frequency of w with respect to v, then we can find a suitable i, ;.

The reader might argue that two different ¢’s can overlap. This is no serious
obstruction to Construction 2, but we silently assumed that it was not possible. To
repair the argument we may use a more sophisticated label: there is only one block row
of n+1 consecutive zeros in 7(n). Since we have chosen = such that {n(n)| ne N}
contains all words lim,- X, = x is a wild element. Also &, < fi,, ,(Vas1, Ops X) < M,
since this is true for every x, with n > m+ 1. We conclude that x is a wild element of
type ¢. w

The last step we have to take is to show that there are continuum many non
equivalent elements of {0, 1}%. This is an easy exercise in set theory. We first prove that
(#, <) contains a set of order type Q. It suffices to- prove the following lemma.

LeMMA 4. Let ¢, Y be elements of F. If ¢ <V, then there is a ye & such that
o<y <Y

Proof. This depends upon a fairly standard diagonal argument. For technical
reasons we want ¥ to satisfy the following property.

(*) If ye & and for every ke N, y(n) < y*(n) for all sufficiently large n, then y << .

The identity does not satisfy (x), but the equivalent y(n) = [3n] does!

Therefore, if i does not satisfy () then we replace it by Y(n) = [3-y(n)]. Since
@ < we can choose a sequence of integers Ny < N, < ... such that if n > N,, then
Yk(m) = 2¢p(n). We define y by y(n) = max{y(n—1), y*)} if Ni2 <n < N4y Ob-
viously y(n) < y*(n) for sufficiently large n. By property (x), v <.

Also for n> N,. the following inequalities hold:

) = () if Nya Sn<Newap and ") = ") > 2" o ().
This implies that ¢ <y. It is clear from the definition of y that this function satisfies
condition (a) and (b) on elements of #. =

Next we show that it is in fact possible to embed a set of order type R in (¥, <).
Lemma 5 implies that there exists a continuously ordered subset of (#, <) which
contains the rationals. Therefore (#, <) contains the ordered set R, see [K], p. 84.

LEMMA 5. Let ¢, < @y <€ @3 <... and Yy >, > 03 > ... be a pair of sequences in
& such that ¢, <, for every n, meN There exists a ye.ﬁ/’ such that ¢, <7 <Y, for
every n, meN.
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Proof The proof is almost identical to the proof of Lemma 4. Without loss of
generality every g;, Y, satisfies (+) and also for all i < j and all » we assume that ¢,(n)
< ¢;m) and yY;(n) > ;(n). Again we choose an ascending sequence of integers
N, < N, <... such that if n > N, then (y)¥(n) > 2*¢,(n). The function y is defined by
() = max {y(n—1), YEn)} if N2 < n < Ny 1y2. Obviously y < i, for every ie N. Also if
n > N,., then

Y ) = @)™ (M) if Nue <n<Npsgpe.
Therefore
P = W)™ () = W)™ () 2 27 @,2(n) > 25, (),
which implies that ¢, <y for all neN. u

The main theorem now follows as a corollary of all the work we have done.

THEOREM. There exists a continuum of topologically distinct orbits.

Proof. According to Lemmas 4 and 5 the space (¥, <) contains R as an ordered

subset. Any two different elements of R correspond to non-equivalent orbits accordin,
to Lemma 3. )

We conclude with an unsolved problem. Consider an irrational rotation g, on the
circle $*. The flow Z(S*, g,) is called an irrational flow on the torus. It is well known
when Z(§*, g,) and Z(S", g,) are equivalent. Consider one orbit I, from Z(S*, g,) and
I, from X(s*, @p)- It is highly unsatisfactory that the following question has not been
answered yet:

QUEsTION. Are there « and f such that I', and I'; are not homeomorphic?

Acknowledgement. I would like to thank J. M. Aarts and K. P. Hart for their
valuable suggestions.
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Natural continuity space structures
on dual Heyting algebras

by

Marcel Erné (Hannover) and Ralph Kopperman (New York)

Abstract. Every dual Heyting algebra carries three intrinsic “generalized quasi-metrics™:
d(x, y) = x—y, d*(x, y) = y—x, and d&*(x, y) = (x—y)-+(y—x), where x—y denotes the relativc? dual
pseudocomplement. Formally, these are “continuity functions” satisfying the triangle inequaht}r. In
a dual Heyting algebra, a set of positives is a dual ideal P whose meet is 0. We investigate
properties of the topologies, T(4,), T(A¥), T(43), which arise [rom the continuity spaces so
defined. For example, T(4p) and T(A}) are completely distributive, and T(4}) is a zero-
dimensional Hausdorff topology. Furthermore, we show that for any coframe, that is, for any
complete dual Heyting algebra A:

(1) T(Ap) is the Scott topology iff P satisfies the ascending chain oondition.. .

(2) T(4¥) is the dual Scott topology iff P satisfies the local descending ‘cham condlltmy?.

(3) T(43) is the order topology (Lawson topology, interval topology) iff P is locally finite iff
T(Ap) is compact.

1. Motivation and preliminaries. Continuity spaces are among the many generaliza-
tions of metric spaces found in the literature. In [18] it is shown that all topologies arise
in a patural way from continuity spaces. More to the point for us, it was shown in [12]
that the hull-kernel topology long studied on spaces of prime ideals (see, €.g., [10],.[1 1],
[13], [16], [25]) arises from a continuity space in which the distance betwee‘n two 1dea‘1s
1, J is their set-theoretic difference d(J, J) = J\I. The “converse” continuity space, in
which the distance I\J is used in place of J\I, gives rise to the Scott topolc?gy on the
power set of the underlying ring. Further, its “symmetrization”, in which. J\I is replaced
by (A UI\J), gives rise to the patch topology, which here agrees with the Lawson
topology (see [9], [13]). '

The above construction can be generalized from power sets to arbitrary dual
Heyting algebras, alias (dual) Brouwerian lattices (cf. [17, [22], [24_]). \‘{e shall carry out
this construction below and describe just when it actually does give rise to Scott, dlfal
Scott and Lawson topologies, respectively. The “structure spaces” of [12] are special
cases of the “lattice continuity spaces” studied in the sequel.
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