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Intersection properties of partitions
of a cardinal

by

Greg Gibbon (St Lucia)

Abstract. We study the properties P and R which are statements about families of functions,
and are motivated by the characterization of Bernstein’s property B (of families of sets) in terms of
characteristic functions. In an earlier paper we applied constraints that were generalizations of
those introduced by Erdds and Hajnal for families of sets.

Here we impose conditions that are of an opposite nature and have meaning only for families
of functions. Positive results are obtained under weaker conditions, showing that these are more
appropriate for families of functions.

Introduction. In this paper we study the properties P and R introduced in [2].
These are statements about families of functions, and are motivated by the charac-
terization of Bernstein’s property B (of families of sets A) in terms of characteristic
functions y,. In [2] we imposed a condition, denoted by C(2, A), which is a direct
generalization of the condition C(2, 4) for sets, introduced by Erdds and Hajnal [1].

Here we look at families of functions all with the same domain (rather than of
arbitrary domain), and constrained by intersection conditions that are in a sense
opposite from those dealt with in [2]. The earlier intersection conditions require that
like preimages are “well-spaced”, while it seems more natural when considering families
on a fixed domain to require that different preimages be separated.

We introduce the intersection condition C [#, 4] on such a family, defined to mean
that every intersection of the preimages of n different values is of size less than 1.
Positive results are ensured even when the conditions are weaker than those of C (1, 1),
showing that C[n, 2] is more appropriate for families of functions.

Background. A family of sets A is said to possess property B if there is a set T'such
that ANT# @ and yet A & T for all sets A in 4. Equivalently:
Bx(er(x) = 2400 =1)  and  By(er0) # 140) = 1).

Bernstein showed that a family of « sets each of size » always possess property B.

1980 Mathematics Subject Classiffication: 04A20, 03E0S.
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Intersection conditions on A were introduced by Erdés and Hajnal in 1961 (see [1])
to guarantee that larger families of sets possess property B. The family A is said to
satisfy the condition C(y, 4) if [(\B| < 4 for every B in [4]"

A strengthened version of property B was also considered by Erdds and Hajnal in
[1]: A family of sets A has property B(u) if it possesses property B and further the set
Tconfirming property B is also a u-transversal for A; that is, 1 <[Tn A| < p for all sets
A in A. The condition C (3, A) was again imposed on families of sets in order to ensure
that property B (1) holds. In this case it is easily shown that a x-size family of sets each
of size x and satisfying the condition C(3, 1) need not possess property B(u) for any
non-trivial cardinal f.

For this reason, only the effects of the conditions of the form C(2, 1) were studied,

We study properties P and R which are statements about families of functions, and
these are motivated by the characterisation of property B in terms of characteristic
functions.

DEFINITIONS. A family of functions 4 = {¢,: x—0; & < g} is said to possess
property P if there is a function T: S—¢ that satisfies

P: Vo < gVf < 03x, yex n S(T(x) = @,(x) = f) A (T() # @, (») = p)).
A is said to possess property R if T satisfies
R: Vo < g3p < 63x, yex 0 S(T(x) = ¢,(x) = B} A (TQ)  ¢,(0) = B)).
The weaker versions of P and R are P’ and R"
P': Vo < gVB < 63xex 0 S(T(x) = p,(x) = B),
R Vo < g3 < B3xex 0 S((T(x) = @,(x) = B)),
We say that a function T: S—0 witnesses property P for the function ¢ if
W(TG) # o) = B)

for all f < 8, and we say that T witnesses property P for the family A if T witnesses
property P for every function ¢ in 4. These definitions will have the obvious meanings

Ix(T(x) = ¢(x) = f) . and

when P is replaced by P’ or R. Note that we only consider families of functions that

satisfy the non-triviality condition that every preimage of every function is large.
We also extend the p-transversal property to families of functions:
A family of functions 4 = {¢,: S,—0; « < g} is said to possess the y-tranversal
property Z(u) if there is a function T: S—@ that satisfies

Z(): Vo < oV < O(T™*(B) o L(B)| < 4),

and T is said to witness Z (1) for A. A is said to possess property P (u) if there is
a function T: § 6 that witnesses both P and Z (u) for 4. Define P’ (u), R (1) and R’ (1)

similarly. P (u) and R (u) are called the strong transversal properties and P’ (i) and R’ (i)
are called the weak transversal properties.
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Preliminaries. The case for # = 2 is examined in Section 1. Unlike the situation with
sets for C(3, 2), we find in Section 2 that there are positive results when we impose
conditions of the form C[3, A]. There are also negative results that show that these
positive results are the best possible. Finally, Section 3 shows that no positive results
hold when we impose conditions C[y, 2] with 5 > 4.

We shall consider families of functions of the form 4 = {¢,; 2 < g} where each ¢,
is in *0. The family constructed in Theorem 1.2 of [2] shows that intersection conditions
are necessary to ensure that a family of this form of size 2* has property R for cardinals
0 satisfying 3 < 0 < x. For 0 = 2, property R is easily seen to be guaranteed without
imposing intersection conditions.

The family constructed in Theorem 1.4 of [2] shows that intersection conditions
are necessary to ensure that property P’ holds for all non-trivial cardinals 6.

We introduce the conditions which, by separating different preimages, will ensure
further positive results.

DErINITIONS. We say that the family of functions o = {¢,: o < g} < *0 satisfies the
condition C[2, A] if

Vo, oy < gV fo, f1 < 0(/30 # Br=>0' (B M o (B, < ).

More generally, we define C [y, A] for cardinals # satisfying # < ». For sets 4, B let
Inj(*B) denote the set {fe“B; fis 1-1}. Then ./ satisfies C [, A] if

vfe'oVg eInj("d) (| {o7hlg(B); B < n}| < ).

We say that such a family where |p; *(f)| = for alla < ¢ and § <0 isa [g, », 6, 1,
Al-family and let the relation [p, x, 0, 5, 2] — P(1) mean that every [g, %, 6, 5, A]-family
has property P(u).

These definitions will have the obvious meanings when P (u), R (1) are replaced by
P'(u). R'(w), P, R, or P

§ 1. Families satisfying C[2, 2]. We are ready to present the main positive results
for families satisfying C[2, A]. The later theorems of this section will show that these
results are the best possible.

THEOREM L1, If Wy < A <% and 0 < X', then
[2%, %, 0, 2, 2J—P(A").

Proof. Suppose that the family & = {¢,; o < 2%} is a [2%, x, 0, 2, A]-family. We
shall construct a function T: Sy~ 0 that witnesses property P(1*). Choose any function
from o/, say ¢q, and for each f§ < 0 choose sets A, B, such that Ay, By = ¢g *(8) with
|4l =Byl = A and A, B, =@. We define T by its preimages. Let n: 68 be any
permutation of @ with the property that z(x) # x for all x in 6. For each f <0 put
T~Y() = A, U By, We show that T witnesses property P(A*) for o.

Let o < 2% and f < 0. We claim o7 (f)n A, # @.
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For suppose by way of contradiction that o *() n 4, = @. But o5 *(#)— o, (B)
=U{os' B ety #par<6), and so A s U{od ' (Bnes () v #p
Ap< ). Because |4y =2 and 6 <X, there must be y < @ with y s f such
that |pg *(B) N @z ‘() = A and this contradicts C[2, A]. A similar argument shows
that @7 '(B)nB,;#@. Also, because |T™'(f) =4 for all <6, we have
IT"YB) NI (B) < A* for all @ <2 Hence the family ./ has property P(1%). m

Theorem 1.2 shows that the result of Theorem 1.1 is the best possible in the sense
that property P(1*) cannot be strengthened to P(A).

THEOREM 1.2. Suppose No < A< % and 2 <0 <% Then

[e<Y0, %, 6, 2, 23+R'(A).

Proof. We shall construct a [(x<%?, %, 6, 2, ]-family ./ which does not possess
property R’ (). Let s = [J{By; B < 6} be any disjoint partition of % such that [By| = x
for all § < 6. For each f < 6, list the sets in [B,]%* by [B,]** = {Cp.; & < x<*}. For
each function @: §—x** define the induced function @: x— 8 by

B if xeBy—Cpyp),

QB(X) = {0 if xECﬂq,(m A ﬁ % 0,
1 if xe Coq,(()).

Put o = {p; ¢’} so & < *B. It is easily seen that s/ satisfies C[2, 1], since for
each f < 6 we have 3~ !(f) = Byu X,; where X5 =@ for § #0, 1 and | X4 < /4 for
B =0, 1. Also, each preimage ¢ ~!(8) is of size » because |Cp,p| < 4 € . Suppose, for
a contradiction, that there is a function 7: S;—0 witnessing property R’(A) for the
family o, We construct a function ¢: 6-—%<* such that the induced function @ is not
witnessed by T.

We define values ¢ (f) for each = 2. If |T™' () n By < 4, define ¢ (f) by putting
T '(B)nBy=Cppp Then T~ (B¢ '(B) =@ since ¢ '(B)=B;—Cypp. If
IT"'(B)" Byl = A, define @(B) by putting Cppp=9@. Then [T~1(B)n ¢~ (h)
=|T"! (BY Byl = A. In either case, T does not satisfy the requirements of property
R'() for the value . Finally, it is easily seen that the values ¢(0) and ¢ (1) may be
defined so as to complete the proof. m

Theorem 1.3 deals with the case when 6 > 1.

THEOREM 1.3. (i) If No S A <0 <A< x, then [%, x, 0, 2, AJ+R (A1)

() If Ny <6< x, then [%°, x, 0, 2, 2]+R'(87).

Proof. (i) We construct a [x*, », 8, 2, 2]-family which does not possess property
R(A"). Let x = | J{B,; B < 6} be any disjoint partition of % with [By| = % for all g < 0.
For each f < 6, list [B,]%* by [B;]¥* = {Cpa; o < »*} and for each a < »* list Cp, as
follows. Let 1 =X {4,; ¢ < X'} where {A,; ¢ < A} is a strictly increasing sequence of
cardinals each less than A. If [Cp,| = 4, put Cg, = {x}5; y < A,, 6 < 1'}. If |Cpa| < A, put
Cpe = {x}2; 7 <|Cpl}. For each function ¢: §—x* define the induced function
@: x— 0 as follows. Let 6 be partitioned by 0 == U {4, B < 6} such that for each < 6,
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By Ay and Ay = {153 & <6} Put

B if xe By—Cpops
F00) = B . s~ Crow
CAtpe i x = X} for some y.

Define the family o/ by o/ = {¢; pe’(x")}. It is easily seen that .o satisfies C[2, A]
since for any f < 0 and any @ in «/ there is ¢ < A’ such that I(ﬁ“(ﬁ)wB,,x <A, <A
Now, for a contradiction, suppose that there is a function T: S, -0 witnessing that
«/ has property R'(1*). By considering whether there is f<0 such that
IT~*(f) " Byl > A we may definc @: 8—x* such that T does not witness property
R’(A*) and we have the required contradiction.

(if) We proceed as for part (i) except that we consider the set [Bﬁ]‘” for each f§ < 6.
List [B,]%" by [By]¥" = {Cpai @ < «’} and for each o <’ list Cp, by Cp, = (x5
& < |Cpal}. For each f <@ let B denote the unique ordinal for which Be A Let
Ay = {1 £ <0} be any listing of 4, which has the property that

B if fed,,
arbitrary  if f¢ 4,

Tpy =
Define ¢: x—8 by

Bx) = {ﬁ ff x€By—Cpoipy;
Tper1 I X = Xjup for some &.

Put o = {3; pe’(x")} < *0. It is easy to show that o/ satisfies C[2, 2]. There are two
cases as for the proof of part (i) and the argument follows through similarly. =

We now present theorems that investigate the case when 0 = x.

THEOREM 1.4. (i) [2% %, %, 2, 3]+R for any x.

@) [2% % 6, 2, x]+R if ' <0<

Proof (i) Let » = U{B,,; B <=} be any disjoint partition of » with always
|Byl = % and let x = U{Aﬂ; B <} be a disjoint partition of x such that ¢ 4. Define
the family of functions 7, by

o=@ - VB <ul(lo™ (B =) A (lo~*(B)— B, < 1))}.

So for all # <x and every ¢ in 7, we have @' (f) = (¢~ *(B)n By) U X,p where
| Xppl <1 and Xppn By =@ It follows that .« satisfies C[2, 3].
Define the family of functions 7, by

o= won VB < u((lp™ (B) = %) A (Vy < x(lp™ (B) "B, < 1)
Ao B= ) (B, ve 4l < 1)}
So for all # < and every ¢ in ./, we have
o™ (B = (o™ (B LB, vedpl) U Xpp

where |X,,)| < 1 and X, {J{B,; ye4,} = @. It follows that «, satisfies C[2. 3].
Put of = o/, U./,. It can easily be /ﬂ;u.ow{that o satisfies C[2, 3].

2 - Fundamenta Mathematicae 136.1
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Suppose-for a contradiction that there is a function T: Sp—x that witnesses
property R for the family /. Put E = {§ < x; |By,—T~"(B)| = 2}. Firstly suppose that
|E| = x, and construct ¢: » —x as follows. For each f in E, put B;— T B = @~ H{f),
and for each f not in E, put B,n T~ () = @~ (p). List the remaining elements of » by

u—[U{B,—T () peE} U J{B,n T~ (B); BEE} = {v e < o}

where g is some cardinal less than or equal to x, and for each a < ¢ choose inductively
values ¢ (v,) from E — [{p(v,); & < &} U{T(v,)}]. This completes the definition of ¢ and
it is clear that e/, and that T does not witness property R for o.

On the other hand, suppose |E| < ». Construct ¢: x— x as follows. For each 7 in
% — E choose x,e B, n T~!(y) and put ¢(x,) = f il ye Ay Note that ¢(x,) # T(x,) since
y¢ A, For all B <x we now have that lp~ 1(B)} = = since |E| < ». List the remaining
elements of x by x—{x,; y¢ E} = {w,; « < o} where g is some cardinal no greater than
%, and for each a<g put f(@)=v if w,eB, and yeA, For each « <g choose
inductively values ¢(w,) from

x—[{ow,); e < a} U {Tw)} U {Be)}].
This proves part (i).
(i) We use a method similar to that in part (). Let % = | J{B,: B < 8} be a partition
of % such that |B, = x for all f <0, and let @ ={]J{A,: f <0} be such that ¢4,
" Define the family &7, by

o ={g: x=0; Y5 < 8((¢™ (Bl = %) A (l0™" (A= Byl <))},
and &/, by .
o, = {(p: x—0; VB < 6(([(;7'1(3)] =% A (V< 0(le" (BN B| < x)}
Ao~ (B—J{B,: ve 4}l <)}
Put of = o/ Uy, and it follows that o satisfies C[2, x].

Now suppose for a contradiction that T witnesses property R for ./ and put
E={B<8;|B—T '(B) ==}

The proof follows:through by considering the cases |E| =@ and |E| < 0. =

Theorem 1.4 leaves open the truth of the relation [2% x, %, 2, 2] —R.

We now consider the property P*. Theorem 1.5 presgnts a stronger negation under
the weak constraint imposed by C{[2, »]. Theorem 1.6 negates property P’ under the
strong constraint C[2, 2].

THEOREM 1.5 (GCH). Let x be a regular cardinal. Then [2%, x, %, 2, x]+P"

Proof. We shall actually prove a stronger result, namely that there is a family»
o = {{,; & < 2%} of functions ,: x—x for which there is no T: x—x satisfying

Va({B; Y (BN T~ (B) # B} 2 2).

Thus for every function T: »— 3 there is some « such that y; *(f)n T~ 1(B) # & for at
most one f. Recall that for property P’ we need only consider T whose domain is equal
to %.
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We construct the family <7 inductively as follows. Noting that, by the GCH, the
family of functions {T; Te*x} is of size »*, we list this family by {T; o < ="} and for
each < x* we construct a function ,:  —» which agrees with T, at no more than one
value, and also satisfies C[2, %] with respect to the previous functions (of which there
are no more than x). So it suffices to prove the following statement:

Given T: x—x and {@,: o <x} < *x that statisfies C[2, %] and Vz, f <=
(los (PN = ), then there is a function @: » -3 such that for all B, p, v < % with
B#u we have |p Yl =% and |o ‘(W ne (Pl <x and |[{B<x:o *(f)
NnT YR #@} < L

We leave this to the reader, noting that the proof follows by considering whether
there are ordinals ¢, ¢ < x for which

[ee—T t) =l By, B<anfs#vl<u m
THEOREM 1.6. For any cardinal x, [27, », », 2, 2]+P".
Proof Let x = {J{B,; 0 < 8 < %} be any disjoint partition of » with |B,| = x for
all B and list each B, by B, = {x;,; o < 2j. For each function ¢: (% —1{0}) = » define an
induced function §: x—x by

B(x) = B X =xpAa#0f)
P=10 ifx = xp, A 2= (f).

Put ./ = {p; pe*x}. For each @ in «/ and for all f < x it is easily checked that
@~ YB)l = » and that ./ satisfies C[2, 2]. Suppose for a contradiction that there is
a function T: x — x that witnesses that =/ has property P. By considering whether there
is non-zero f such that B, = T~1(0) we can construct a ¢ such that T does not
witness P'. m

§ 2. Families satisfying C [3, A]. First we present the main positive result for this
case.

THEOREM 2.1. Suppose 0 < 2/ < i <z Then [2% %, 6, 3, A]—R.

Proof Let &7 = {g,; 2 < 2%} = *0 be any [2* x, 0, 3, i]-family. We may assume
that .«/ does not satisfy C[2, ], otherwise Theorem 1.1 applies. So assume that
lpg H0) n 7 *(1)] = 2 Decompose this set by @5 (0)n 7 '(l) = 4 U B where |A] =
and |B| = 4. Then this induces a decomposition of x, being % = 4 & B U C where [C] =
(since g ' (1) € C). Define T: x—6 by

T 0 ifxeB,
~) =
) 1 ifxeduC.

It follows easily that T witnesses property R for .«7. =

The next theorem (without proof) shows that the result of Theorem 2.1 is best
possible in the sense that property R cannot be strengthened.

THEOREM 2.2. I/ 2 <0 < x, then [2% % 0, 3, 1]+P. =

When # < » the questions for property P are left open, as are those for property
R (except when 6 < X' < 4 < x).
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§ 3. Families satisfying weak conditions. We now examine the question for the cases
when the parameter 7 in the condition C [, 4] is greater than three. The proofs are left
to the reader.

TueoreM 3.1. () [2% % 6, 4, 1]-»R if 3<0<x;

(i) [2% % 0, 4, 1]-P if 2< 0<% ®

Theorem 3.1 shows that under these weaker conditions all questions are solved in
the negative. This appears to correspond to the case C(3, 4) in [2].
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More on locally atomic models
by

Ludomir Newelski (Wroctaw)

Abstract.
TuEOREM. Assume Tis a stable theory with »(T) < 8. If [T} < cov K +b+min(cov L, D), then
any A< C can be extended to a model of T locally atomic over A. ’

This improves Theorem 2.2 from [N2], in which we have a stronger assumption that
%(T) =N, (ie. T is superstable). The coefficients bounding |T| above are defined in terms of
measure and category on the real line, and can vary between ¥, and 2™

§ 1. Introduction. Throughout, we use the same standard terminology as in [N2]. In
particular, Tis a fixed first-order theory in language L, € is the monster model of T, ie.
a very saturated model of T of high cardinality, such that all models of T under
consideration are elementary submodels of €. For a formula feL(G), [A] is the class of
types containing 8. A is a set of parameters from €. L(A) is the set of formulas with
parameters from 4, S(4) is the set of complete 1-types over A. pe S(4) is locally isolated
if for every @(x, y)& L there is a y € p such that W |- plo, ie. for every de 4, Y(x) implies
either ¢(x, @) or T1¢(x, ). A model M of T containing A is locally atomic over 4 if for
each e M, tp(a/A) is locally isolated. The notion of local isolation, invented by Shelah,
is fundamental in stability theory. It is one of the main tools to construct models of
stable theories in the non-totally transcendental case.

To understand the paper, no deep understanding of stability theory is necessary. In
particular, the reader does not have to know what % (T) is, provided he is willing to
accept Lemma 1, (2)—(3) without proof.

Now we explain what the real line coefficients b, b, covK and cov L are.

b=min{|4]: 4 € “w&Vfe“w Iged 37 nf(n < gn},
5 = min{|4]: 4 € “w&Vfew IgeA Vnfn) < gn}.

Thus b is the minimal power of an unbounded family of reals, and D is the minimal
power of a dominating family of reals. If I < 2(X) then we define

covl = min{|A}: A =I1&|J4 =X}

The author would like to thank Janusz Pawlikowski for many valuable comments which
helped to improve presentation.
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