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Spaces of retractions which are homeomorphic
to Hilbert space

by
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Abstract. Let R(X) denote the space of retractions of a compact metric space X with
sup-metric. In this paper, we prove that if X is a dendrite (= one-dimensional compact AR) then
R(X) is homeomorphic to Hilbert space l,. In case X is a non-degenerate compact convex set in
a locally convex linear topological space, let Re(X) be the subspace of R(X) consisting of
retractions with convex images. We also prove that Rc(X) is homeomorphic to /.

0. Introduction. Let X = (X, d) be a compact metric space. A retraction of X is
a map r: X—X such that r? =r, ie, rjr(X) =1id. By R(X) we denote the space of
retractions of X equipped with the sup-metric

d(r, ¥') = sup{d{r(x), r(x) xeX}.

Then R(X) is a separable complete metric space. The Hilbert cube and Hilbert space are
denoted by Q (= I®) and I, respectively. A Q-manifold or an l,-manifold is a separable
(topological) manifold modeled on Q or I, respectively. In case X is a compact
Q-manifold, using the result of Chapman [Ch], Sakai [Sa] has shown that R(X) is an
I,-manifold. In finite-dimensional case, Basmanov and Savchenko [BS] has shown that
R(I) is homeomorphic (=) to [,, where I = [0, 1]. Using this result, it can be shown that
R(SY)\{id} is an l,-manifold. One should remark that id is an isolated point of R(X) in
case X is a closed n-manifold. Recently, Cauty [Ca] has obtained the same result for
a compact surface (= connected 2-manifold), that is, R(X) is an 1,-manifold if X is
a bordered surface (i.e. X s @) and R(X)\{id} is an I,-manifold if X is closed surface.
Similar to the Homeomorphism Group Problem, the following problem [AK, HS 9] is
still open for n > 3:

ProsLem. For X a compact connected n-manifold (n > 3) with 0X # @,is R(X) (or
R(X)\{id} when 06X = @) an l,-manifold? Particularly, is R(I") (» > 3) homeomorphic
to [,?
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In this paper we generalize the result of Basmanov and Savchenko in two different
directions. A dendrite is a non-degenerate locally connected continuum which contains
no circle, or equivalently, it is a one-dimensional compact absolute retract (AR) [Bo,
Ch. V, (13.5)].

TueoreM L. For any dendrite X, R(X) = I,.

In case X is a convex set in a linear topological space, we denote by Rc(X) the

space of all retractions r of X such that Im(r)=r(X) is convex. (Note that
R(I) = Re(I).)

THEOREM 1. If X is a non-degenerate compact convex set in a locally convex linear
topological space then Re(X) = 1,.

1. A strongly convex metric compactum. To prove Theorems I and II simultaneous-
ly, we introduce some notions. Let X = (X, d) be a strongly convex metric compactum,
where X is said to be strongly convex if for each pair of points x, ye X there exists
a unique point ze X such that d(x, z) = d(y, z) = d(x, y)/2 [Bo, Ch. IX, §10]. It is well
known that there is a map A: X?xI-X such that
v d(x, Ax, y, 1) = t-d(x, ) d(y, A(x, y, O) = (1=1)-d(x, y)

for each x, ye X and tel. We denote
xy ={Ax, y, t)| tel}.

Then Xy is the unique path with end-points x and y such that E is isometric to
[0, d(x, y)]. A subset 4 of X said to be convex if;c; < A for each x, ye A. Let C(X)
denote the hyperspace of subcontinua of X with the Hausdorff metric ¢ induced by d:

(4, B) = max{sup{d(x, B)| x4}, sup{d(y, 4)| yeB}},
where
d(x, A) = inf {d(x, y)] yeA}.

Denote by cc(X) the subspace of C (X) consisting of all compact convex sets in X, and
by Rc(X) the space of all retractions r of X such that Im (r)ecc(X). We assume the
following two conditions:
(*) ify#z and 0<t<1 then d(x, A(y, z, )) < max{d(x, y), d(x, 2)},

(%) ifxe;c_IT2 then d(x, y, y,) < max {d(x,, y,), d(x,, y)}.
As corollaries of the following theorem, we have Theorems I and IL

1.1. THEOREM. Let X = (X, d) be a strongly convex metric compactum satisfying (%)
and (++). Then Re(X) = 1,.

~ Incase X is a dendrite, X admits a convex metric d, that is, for each pair of points x,

yeX there exists zeX such that d(x, z) = d(y, z) = d(x, y)/2. By unique arc-wise
connectedness, X = (X, d) is strongly convex and all subcontinua of X are convex. As is

easily observed, () and (+*) are satisfied. Therefore Theorem I follows from the above
theorem.
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In case X is a non-degenerate compact convex set in a locally convex linear
topological space, X can be affinely embedded in [, by [BP, Ch. II1, Theorem 2.1] (cf.
[BP, Ch. I1I, Proposition 3.1]). Then we may assume without loss of generality that X is
a convex set in [,. Let d be the metric for X induced by the norm of I,. Then “convexity”
with respect to the metric d is identical with “convexity” in the usual sense. As easily
observed, (%) and () are satisfied. Therefore Theorem II follows from the above
theorem.

Before the proof of Theorem 1.1, we consider basic properties which are induced by
(%) and (x). First note that the above map 1 is an equi-connecting map of X. The
condition () implies that for each xeX and &> 0,

() {yeX| d(x,y) <s}ecc(X) and
(3) {yeX| d(x, y) =&} contains no non-degenerate convex set.

By the result of [Hi] or [Du], (2) implies the following

1.2. LEMMA. X is an AR.

By (x%), X satisfies the following condition which is stronger than (2):

@) {xeX] d(x, 4) < e}ecc(X) for each Aecc(X) and &> 0.

For each AeC(X), define A[n] = A(A[n—11*x 1), neN, where A[0] = 4, and
denote by co (4) the closed convex hull of A4 in X, namely the smallest closed convex set
in X containing A. Then we have the following:

1.3. Lemma, co(4) = cl(| ) A [n]).

neN

Proof. Each x, ye U A[n] are contained in same A [n] since A[1] = A[2] = ...

neN
Then xy = A[n+1] < {J A[n]. Hence |J 4[r] is convex. From continuity of 4, it
neN neN .
follows that ol (| ] 4 [x]) is also convex. Therefore co(4) < cl(|) 4 [n]). Conversely, it
neN _neN .
can be shown6 by induction that each A[n] is contained in co(4), whence

(J A[n] = co(A). Since co(A) is closed, (| An]) = co(4). =
neN neN
1.4. LEMMA. co: C(X)—cc(X) is a retraction.

Proof. Since colec(X) =1id, it suffices to show‘the continuity of co. Let 4,
BeC(X). First we show that g (4 [1], B[1]) < ¢ (4, B). Let x,, X2 €A and XEX; Xy F’or
any t> (A, B), we have y,, y,&B such that d(x;, y) <t,i= 1,2, which implies
d(x, B[1]) < d(x, y, y,) <t by (x%). Hence d(x, B[1]) < o(4, B) for each xeA[l].
Similarly, d(y, A[1]) < o(4, B) for each yeB[1]. Therefore o(A[1], B[.l]) < o4, B).
Then by induction, o(4[x], B[n]) < ¢(4, B) for all neN. By Lemma 1.3, it follows that
o(co(4), co(B) < o(4, B), which implies co is continuous. m

Let

2= {(4, x, ecc(X)x X x [0, co)| d(x, 4) < t}‘
and define ¢: E-»ce(X) by ’
A, x, ) =An{yeX]| dix,y) < t}.
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Then we have

1.5. LEMMA. &: E—ce(X) is continuous.

Proof. Assume that & is not continuous at (4, x, tj€ Z, that is, there are ¢ >0
and (4, x,,t,)€E, neN, such that (4, x, t)~(4.x, 1) as n-—x but
0(E(4,, x,. t,), E(A4, X, 1)) > & Then for each ne N, (i} there is a, € &(A,, X,. t,) such that
d(a,, &(4, x, 1)) >¢ or (ii) there is b,e(d, x, 1) such that d(b,, &(4,. x,. t,) > ¢
Without loss of generality, we may assume that (i) holds for all neN and a,—a as
n-co or (i) holds for all neN and b,—b as n— 0. In the former case, aeé(4, x, t)
since A,— A, d(x,,a)-d(x,a) and f,»t as n—co. This is contrary to
d(a,, &4, x, ) >¢ In the latter case, bef(4, x, t) and d(b, £(A,, x,, 1)) > & for
sufficiently large ne N. Choose a,& 4, so that a,—b as n—oo. For each neN, take
c,€¢(A,, X,, ). We may furthermore assume that ¢,—c¢ as n— . Observe that
ceé(4, x, t). For sufficiently small s >0, d(b, A(b, ¢, 8)) < &/2. Then, from convexity,
AMay, ¢,, )€ A, for all neN. By (%),

d(x, A(b, ¢, 8)) < max {d(x, b), d(x, )} £ ¢,
that is,
§ = t—d(x, Ab, ¢, 5)) > 0.
For sufficiently large neN, |t,—t| < &/3, d(x,, x) < §/3 and d(A(b, ¢, 3), A(a,, ¢, s))
< min{/3, ¢/2}. Then
(%, Aay, s 8) < dlx,, X)+d(x, Ab, ¢, 8)+d(AD, ¢, 8), Ma,, ¢, s)
<83+(t—8)+d83=t-08/3<t,

whence A(a,, ¢,, $)€&(A, X, t,). And
d(b, Aa,, ¢, ) < d(b, A(b, ¢, H)+d (2, ¢, 5), Aay, ¢, 8) < &
This is contrary to d(b, £(A,, X, £,)) > & Therefore £ is continuous. m

1.6. LEMMA. There exists a map y: cc(X)— Re(X) such that Im(y,)=A and
dx, y4(x)) = d(x, 4) for all Aecc(X), where y, = 7y(A).

Proof. For each Aecc(X) and each x e X, y ,(x) € 4 is uniquely determined so that
d(x, y4(x)) = d(x, A), that is, y ,(x) is the nearest point of A from x. In fact, there is an
acA such that d(x, a) = d(x, 4), and if d(x, a,) = d(x, a,) = d(x, 4) for a,, a,€4,
then Za—z c{yeX| d(x, y) =d(x, A)} since m is contained in both 4 and
{yeX| d(x, y) < d(x, A)} from convexity. Hence a;=a, from (3). Since
E(4, x, d(x, 4)) = {y.(x)}, y4(x) is continuous with respect to both Aece(X) and xe X.
Thus we have the desired map y: c¢(X)— Re(X). m

2. Proof of Theorem 1.1. First of all, we show that Re(X) is an AR.

2.1. LEMMA. Rc¢(X) is an AR.

Proof. Let M(X) we denote the space of (continuous) maps of X into itself
equipped with the sup-metric. Since M (X) is an AR, it suffices to show that Re(X) is
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a retract of M (X). As is easily observed, Im: M (X)— C(X) is continuous. By Lemma
14, we have a map #n: M(X)-ce(X) such that AlRe(X) =Im. Let

@ =yon: M(X)—Re(X), where y is a map obtained by Lemma 1.5. We denote

F={(f, x)eM(X)xX| xelm(p(f)}.

Clearly F is closed in M (X) x X. Since X is an AR by Lemma 1.2, we can define a map
¥: M(X)x X —X with the property:

DL if(f, x)eF,
¥U. )= {f(x) if(f, ) eR(X)x X.

Let ¢: M(X)—M (X) be the map induced by ¥. Then Im (¢(f)) = Im(p(f)) and
:ﬁ(f)|Im(rp(j)) =id for each feM (X). Since each ¢(f) is a retraction, we can define
a map 6: M (X)- Re(X) by 6(f) = ¢(foy/(f). Since Im(¢ (1)) = Im(r) and y(r) = r for
each reRe(X), O|Re(X) =id. Hence Re(X) is a retract of MX). u

A closed set 4 in a metric space M = (M, d) is called a strong Z-set if for any map
g M—(0,00) there is a map f M—M such that d(f (x), x) <e(x) and
Anclf(M)=@. Let X* denote the subset of R(X) consisting of constant maps.
Obviously X* is closed in R(X). !

2.2. LemMA. X* v {id} is a strong Z-set in Rc(X).

Proof For each map &: Re(X)—(0, 1), choose a map 8: Rc(X)—(0, 1) so that
3(r) < &(r}/4 and d(x, Im(r)) < 2-6(r) implies d(x, r(x)) < &(r)/4. By [Na, Corollary 3.4]
and (4), we have a map o: Re(X)— ce(X) defined by

afr) = {xeX]| d(x, Im()) < 5(r)}.

Let y be the map obtained by Lemma 1.6. Since y,(x), r(x)€a(r) for all re Re(X) and
xeX, we can define a map ¢: Re(X)— Re(X) by

() (%) = A2an(x), 7(x), ux, 1)),
where 1 is the map satisfying (1) and u: X x Re(X)—>1I is a Urysohn map such that
0 ifxea) and ‘
ifd(x, a(r) = 6().

Then as easily observed, Im(p(r)) = a(r) and d(¢(7), 7) < &(r)/2 for each reRc(X).
Next choose a, be X so that

d(a, b) = diam X = sup{d(x, y)| x, yeX}.

And choose a map §": Re(X)—(0, co) such that &'(r) < 5()/2 and g(4, «(r) <& ()
implies d(y,, Vo) < £(r)/2. Let € be the map obtained in Lemma 1.6. Then we can define
a map f: Re(X)—ce(X) by

B = &(a(), a, d(a, b)—&' ()
= {xelm(e() da, x) <d(a, b)—5'()}.

u(x,r)=0

u(x, r)=1

4 — Fundamenta Mathematicae 136.1
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In fact, a(r) contains a closed ball with center x&Im(r) and radius é(r). From (1), we
have yeX -such that d(x,y)=38(r)/4 and d(a,y)=d(a, x)—35(r)/4. Then
d(y, z) < 8(r)/4 implies d(x, z) < 5(r) and d(a, z) < d(a, x)—J'(r), that is, ze fi(r). Thus
B(r) contains a closed ball with center y and radius 8(r)/4, hence B(r) # @. Since
B(r) = afr) = Im(ep(r)) for each reRe(X), we can define a map y: Re(X)— Re(X) by
Y0 = ypnoe(). Since o(B(r), a(r)) < (),

AW, o) = d(ypnlim(e(r), id)
= d(7pnlo(r), Yae 2 (1) < dpery, Vo) < 8()/2,

hence d(y(7), r) <&(r) for each reRe(X).

Now we will show that (X*u{id})necly(Re(X)=@. If there are
r,€Re(X), neN, such that ¥(r,)—id, ie, Im(y(r,) = f(r,) > X as n— o0, so &(r,) 0,
which implies &'(id) = 0. This is a contradiction. Suppose there are r,& Re(X), neN,
such that y(r,)>roeX* as n—co. Then &(r,) =0 because Im{y(r,) = B(r,) contains
a closed ball with radius §(r,)/4. Hence we have also r,—r,. Then d(rg) = 0, which is
a contradiction. =

In the proof of Theorem 1.1, we use the following version of [DT, Remark 2] (cf.
[Toy,2])

2.3. LEMMA. A separable complete metrizable ANR M is an l,-manifold if M satisfies
the following:

() For each ¢ > 0 there is 6 > 0 such that for each compactum A = M there is
a map f: A—M which is e-homotopic to id and satisfies

dist(f (4), A) = inf{d(f (x), y)| x, ye A} > 6.
Proof of Theorem 1.1. For each a# beX and t> 0, let

Rup, = {reRe(X) d(r(a), r(b)) > t, b¢Im(r)}.
Then each R,;, is open in Re(X) and
Re(INX* U {id}) = | J{Rupal a #beX, t>0}.

If each Ry, is an I,-manifold, Re(X) is also an I,-manifold by [To,, Theorem B1] and
Lemma 2.2, hence Re(R) = I, because a contractible /,-manifold is homeomorphic to
L, [He, Corollary 3]. Since R, ;, is a separable complete metrizable ANR by Lemma
2.1, it suffices to show that R,;, has (#) by Lemma 2.3.

Let &> 0. For each compactum 4 = R,;,, we have § > 0 such that d{x, b) < §
implies x ¢ Im(r) and d(r(x), r(b)) < &/4 for all re A. We can define a map ¢: A—-R
as follows:

aynt

3eu(x) .
o)) = l(r(b), r(a), m) if d(x, b) < 20/3,
A(r(b), r(x), u(x)) if d(x, b) > 25/3,
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where u: X —1I is a Urysohn map such that
ux) =0 ifx=> or d(x,b)=25/3 and

u(x)=1 ifd(x, b) = 4/3 or d(x, b) = 4.

Then by using (1), we can see d(r, ¢(r)) < ¢ for each re 4. In fact, if d(x, b) < 25/3 then
‘ 3eu(x)
d(r(x), o(r)(x)) < d(r(x), r(b))+rl(r(b), l(r(b), r(a), m))

< 6/4+3e/4 = ¢.
If 26/3 < d(x, b) < d then
d(r(x), p()(x) < d(r(x), rB)+d(r(b), A((b), r(x), u(x)))
< g/4+d(r(b), r(x)) < &/2.

If d(x, b) > & then ¢(r)(x) = r(x). Since Im(¢()) = Im(r) for all re 4, ¢ is e-homotopic
to id by the homotopy ®: AxI-+R,, defined by

B(r, 5)(x) = Ho), r(x), s).

We will show that d(@(r), r') > &/4 for all r, ¥’ € 4. From convexity of d, we have x & X
such that d(x,, b) = 6/3. Then d(r'(x,), (b)) < ¢/4 and

3e
d(p() (xo)s @) (b)) = d(i‘(b), /1<r(b), 1{a), m))
= 3¢/4

by (1). 1t follows that d(p(r)(b), (b)) > ¢e/4 or d(e(r)(x,), '(xo) > ¢/4. Therefore
d(e(r), r) > ¢/4. =

The authors would like to express their thanks to the referee for comments and
suggestions.
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On decomposition of 3-polyhedra
into a Cartesian product

by

Witold Rosicki (Gdansk)

Abstract. It is well known that the uniqueness of decomposition of 3-polyhedra into
a Cartesian product in general does not hold. In this paper we prove that if there is nonuniqueness
then one of the factors is an arc. We also answer the question when K x I~ Lx I, where K and
L are compact 2-polyhedra.

1. Introduction. In 1938 K. Borsuk [1] proved that decomposition of a compact
polyhedron into a Cartesian product of 1-dimensional factors is unique. However, if one
of the factors is a 2-polyhedron, or 2-manifold with boundary, the uniqueness of
decomposition does not hold. We give some examples.

ExaMpLE 1.1 (R. H. Fox (1947) [2]). The sets K and L are unions of an annulus and
two intervals as in Fig. 1.

o €

. Fig. 1
Then KxI~LxI. m
ExaMpLE 1.2. The sets K and L are unions of a disc and six intervals as in Fig. 2.

® @&

Fig. 2
Then KxI~LxI. m
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