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Random theorems in topology
by

H. Sarbadhikari and S. M. Srivastava (Calcutta)

Abstract. Let E and X be Polish spaces and 4 and B be two disjoint analytic subsets of ExX
with closed vertical sections. We prove the following results.

(i) There is a Borel map f: Ex X —[0, 1] such that f = 0on A4, f=1on B and for each
ecE, the map x—f (e, x) is continuous.

(i) If Z is a retract of finite 6r countable product of intervals and if f : A~ Z is a Borel map
such that for every eeE, the map x—f (e, x) is continuous then there is a Borel measurable
extension F: Ex X —Z of f such that x—F (e, x) is continuous for each e€E.

(itd) If A is Borel then (ii) holds for all convex subsets Z of a second countable affine space of
type m.

1. Notation. For notation and basic results in Descriptive Set Theory we follow
Moschovakis [11]. Throughout X is a Polish space with a bounded metric d. For xe X
and positive real number r, §,(x) (resp. S.(x)) denotes the open (resp. closed) ball of
X with centre x and radius r. Let E be an arbitrary set and & a family of subsets of E.
A multifunction F: E— X is a map with domain E and values non-empty, closed subsets
of X. We say that the multifunction F: E—~X is &-measurable if

F Y (U)={ecE: FlenU # @}
belongs to & for every open set U in X. The set
{(e, x)eExX: xeF(e)}

will be called the Graph of F and will be denoted by G(F). We consider a point map also
as a multifunction.

Let Z be a topological space and f: G(F)—Z a point map. We call f'a G-Cara-
théodory map if

(i) for each ecE, x—f (e, x) is continuous and

(ii) for every £-measurable selector s: E— X of E, the map e—f (e, s(e)) is £-measu-
rable.

Let & be a o-field and G < Ex X. Then a map f: G—Z will be called &-Cara-
théodory or simply Carathéodory if for each ecE, the map x—f (e, x) defined on the
section G(e) of G is continuous and f'is & x By|G-measurable, where &y is the Borel
o-field of X and & x %y is the product o-field.
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Remark. If Z is a metrizable space and (E, &) a measurable space, then for every
&-measurable multifunction F: E— X, each G-Carathéodory map f: G(F)-Z is
Carathéodory.

Proof By [9], fix a sequence {s;} of £-measurable selectors of F such that for every
ecE, {s5;(e)} is dense in F(e). Let C be a closed set in Z and for each positive integer n, let
C, = {zeZ: dist(z, z) < 1/n for some z'eC}.

Then for every (e, x)e G(F),
Sle,x)eC < Vn3i (dist(x, 5,(¢)) < 1/n and f (e, 5,(¢)) € C,).

The rest of our notation is standard. If E is a metrizable space then unless otherwise
mentioned, & will denote its Borel o-field.

For concepts in General Topology we follow Dugundji [6].
2. Introduction. Motivated by results proved in [1, 4, 7] in [13] we proved, among
others, the following two results.

THEOREM 1. Let (E, &) be a measurable space, F: E—X an &-measurable multifunc-
tion and f. G(F)—»R a Carathéodory map. Then there is a Carathéodory map
g1 ExX —R which extends f and which satisfies

gle, X)sco(f({e} xF(e), ecE,
where co(A) denotes the convex hull of A.

THEOREM 2. Let E be a second countable metrizable space, Z a locally convex
topological vector space, F: E~X a measurable multifunction and fGEF)-2Z
a G-Carathéodory map. Then also the conclusions of Theorem 1 hold.

In this paper we give generalizations of these two theorems when E is a Polish space.
While proving Theorem 1 we needed some random analogues of the Urysohn Theorem.
Here we study this in detail and also show that our random Urysohn theorems are

sharp. At the end we prove a random analogue of Lusin’s theorem and raise several
open problems.

3. Random Urysohn theorems.

THEOREM 3. If (E, &) is a measurable space and Fy, F,: E— X measurable multifunc-
tions with G(Fo) G (F,) = @ then there is a Carathéodory map f: Ex X [0, 1] such
that f=0 on G(Fy) and f =1 on G(F)).

Proof. By [9], we get sequences {£,°} and {f,'} of measurable maps from E into
X such that for every eeE, {f; (e)} is dense in F.{¢) where ¢ = 0 or 1. Now we define

~ dist (x, Fy(e))
) = G Fole) s a5, Fr )

infd(x, £, (e))
= infd (x, £ (&) + infd (x, /; (@)
The map f has the desired proi)erties.

(e, x)e Ex X
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We give an example to show that Theorem 3 cannot be extended to the case & = &,
where % is a field. ’

ExaMeLE 1. Let E = 0” and & = X9. Let 4, and 4, be two disjoint £3-sets in the
space of irrationals w® such that there do not exist disjoint I13-sets C, and C, satisfying
A, =Cy and 4, = C, [11, p. 205]. Define Fy, Fy: 0®—[0,1] by :

Fole) = [0, 3/4] if a4,

Fo (o) = {0} if aew\A4,,
Fo(@)=[1/4,1] if xed,,
Fy(@)={1} if aew”\4,.

Then F, and F, are two ZX3-measurable, compact-valued multifunctions with
G(F,) n G(F,) = @. If possible suppose there is a map f: o® x [0, 1] [0, 1] such tha}t
f=0o0n G(F,) and f =1 on G(F,) and such that for every xe[0, 1], e~ f(e, x) is
X9-measurable. Now consider
Co={acw® fla,1/2)=0}, C,={acw® f(x, 1/2)=1}.
These are disjoint II$-sets such that 4; < C;, i =0, 1. This is a contradiction.
For semi-continuous multifunctions we have

LemMA. Let E be a metrizable space, X a Polish space and F: E— X a closed valued
upper or lower semi-continuous multifunction. Then for each xe X the map

e—+dist(x, F(e))

is X9-measurable.
Proof Fix xeX, ecE and reals a < b. We have

dist(x, F(e)) < b

0] S, (x)nF(e) # I
(ii) < @m) (Sy—1m(X)NF (&) # 9),
dist(x,F () > a
(ii) <@m) (S411mX)OF (€) = OB)
(iv) < @m) (Sar 1ym ()N F (e) = ).

Equivalences (i) and (iii) prove the lemma when F is lower semi-continuous. For upper
serni-continuous F we use (ii) and (iv).

We now have ‘

THEOREM 4. Let E be a metrizable space and F,, F,: E— X be lower or upper
semi-continuous multifunctions such that Fo(e)nF(e) = @ for every ee E. Then there is
a map f: ExX—T0, 1] such that

@) f=0o0n Fy, and f=1 on Fy,
(i) x—f (e, x) is continuous for every ecE, and
(iii) e—f (e, x) is Z3-measurable, for each xeX.
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Before we proceed to prove our next theorem we present an example.

ExaMPLE 2. Let A be a X but non-Borel subset of [0, 1]. Fix a metric ¢ on w® and
let &, § be two distinct points of w®. Let U be a non-empty clopen subset of S /2y, (@).
Let B be a Borel subset of [0, 1]x U with closed sections such that A4 = proj (B). Let

F=Bu([0, 1]x {8}).

Then F is a Borel subset of [0, 1]x »® with non-empty closed sections. If possible
suppose the map e— dist(x, F(¢)) defined on [0, 1] is Borel. Then, as

eed <« dist(x, F(e)) < do(w, f),

4 is Borel. Therefore, the map e-dist(«, F(e)) is not Borel.

The above example shows that the simple-minded arguments contained in the
proofs of Theorems 3 and 4 do not work for our main random Urysohn theorem
mentioned in the abstract. Instead we shall use the following three results.

THEOREM A (Saint-Raymond, [12]). Let E and X be two Polish spaces and A and B be

two Zi-subsets of Ex X such that for every ecE, _(;)nB () = @. Then there is a Borel
set Cin Ex X such that for every ecE, C(e) is closed and A< C < (Ex X)\B.

Tueorem B (Dellacherie, [5]). If E and X are Polish spaces and B < E x X is a Borel
set with B(e) open for every ecE then

B=|J(8,xU)

where B, is Borel in E and U, open in X.

TreorREM C (Miller, [10]). Let E be a second countable metrizable space. Denote by
T the topology on E. Then given any sequence {B,} of Borel sets in E there is a second
countable metrizable topology T on E such that

(i) each of B,e 7", and

(ii) the o-fields generated by I~ and T are the same.

' Actually this is a simpler case of Miller’s theorem and a proof of it is also presented
in ([13, Theorem 57).

From now on E will be a Polish space.

?‘HEOREM 5. Let Fo and F\ be two disjoint £} sets in E x X such that for each e E, the
sections F(e) and F (e) are closed, Then there is a Carathéodory map f: Ex X —1[0, 1]
such that f=0 on F, and f =1 on F,.

Progf. By applying Theorem A twice, we get two disjoint Borel sets €, and C, in
Ex X with C,(e) and C, (e) closed, Fo=Cy and F, = C,. By Theorem B, we write
(ExXNC;=)BixUY), i=0ort
with B; Borel in E and U!. open in X. Denote the topology on E by 7. By Theorem C,

let 7' be a second countable metrizable topology on E such that
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(@) BieJ",new, i=0or 1, and

(ii) the o-fields generated by J and 7' are the same.

Now C, and C, are disjoint closed sets in E x X when E is equipped with 7" and X has
its own Polish topology, say 7. By Urysohn’s theorem there is a 4 x J "-continuous
map f: ExX—[0, 1] such that f =0 on C, and f=1 on C;. Since the o-fields
generated by 4 and 7 are the same, this [ has all the desired properties.

Our next example shows that Theorem 5 does not hold if Fo, F, are IIi.

ExaMpPLE 3. In Example 1 take A, and 4, to be two disjoint II] sets such that there
do not exist disjoint Borel sets Cy and C, with 4, = Coand A; € C,. Define F,and F,
exactly the same way. The same arguments show that there does not exist a Cara-
théodory map f: Ex X —[0, 1] such that f=0 on F, and f=1 on F,.

Remark 1. It is worth noting that the following generalization of Theorem 5 also
holds.

THEOREM 6. Let E and X be Polish spaces, Fy, F, be two disjoint X I setsin ExX
such that for all ecE,Fy(e) and F,(e) are II3. Then there is a Borel map
f: ExX—[0, 1] such that

@ f=0o0n Fy, f=1o0n F, and

(i) for every ecE, x—f (e, x) is Z3-measurable.

Proof For & =1 this is Theorem 5. Let 1 < ¢ < w,. Embed X in a recursively
presented Polish space H, say the Hilbert cube. We now invoke a result of R. Barua
([2)) (which, in fact, is a simple extension of a result of A. Louveau [8]) and get 2 Bore]
set B in Ex X such that !

(i) F, € B< ExX\F,, and

(ii) B(e) is 42 for every ecE.

We take f = Ip, the indicator function of B.

Remark 2. The argument above also works when ¢ =1 and X a zero-dimensional

Polish space. In this case embed X in and as a closed subspace of »”.

"4. Random extension theorems. Using the ideas contained in the proof of Theorem
5 we prove

TueoreM 7. Let A be a Borel set in E x X such that the sections A(e) are closed for
every ec E. Suppose Z is a second countable convex subspace of an affine space of type
m and f: A—Z a Carathéodory map. Then there is a Carathéodory map g: ExX—~2Z
which extends f.

Proof. Fix a countable base W,, W,,... of Z. Let 4, =4 and

A, =ATYW), n=1,2,..

By the arguments contained in the proof of Theorem 5 we get a finer second countable
metrizable topology 7 such that each of 4, is closed when E is equipped with 7' and
the Bore! o-field of E remains the same. This makes A closed and f continuous when
E has the new topology. By the extension theorem of Dugundji ([6], p. 188) there is
a continuous extension g: E x X — Z of f. This g is a Carathéodory map when E has the
original topology.
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THEOREM 8. Let A be a X{'set in Ex X and Z a retract of a finite or countable product
of intervals in R. Let f: A—Z be a Borel measurable Carathéodory map. Then there is
a Carathéodory map g: Ex X —Z which extends f.

Proof Case 1. Z=[-1, 1].

We define a sequence of Carathéodory maps g;: Ex X —[—1,1],i=0,1,... such
that for every i~

() lgi(e, x)| < 3-@3), for all (e, x), and
(i) 1f (e, x)— go(e, X)— ... —g;(e, x)] <, for all (¢, x)e A
To see that such a sequence can be defined we proceed inductively. Let

F§={(e,x)ed: fle, x)< —3} and Fi={(e,x)ed: fle,x)=1}.

By Theorem 5 we get a Carathéodory g,: Ex X —[—1/3, 1/3] having the required
properties. Having defined g, g, ..., g; satisfying ()-(iii), we let

Fitl={(e, x)e A: f (e, X)—go (e, x)— ... —g,(e, x) < =33},
Fi'' ={(e, x)ed: f (e, ) —gole, )= ... —gile, x) 2 1 B}
By Theorem 5, we get a Carathéodory map gy ExX—[~%-(3), 4 ()] such that
giv1=—% (3 on F5'! and is =% (3 on Fi*L
We define

g(e, x) =limg;(e, x), (e,x)eExX.
Case 2. Z=(—-1,1)
Using case 1, we get a Carathéodory map h: Ex X —[—1, 1] which extends f. Let

B={(e, x)eExX: |h(e, x)| = 1}.

Then A and B are two disjoint Xi-sets with closed sections. By Theorem 5, we get
-~ a Carathéodory map

u: ExX—[0,1]

such that u=1on 4 and =0 on B. Put g=u-h.

Remaining cases. It is now clear that the result is true for all intervals. When Z is
a finite or countable product of intervals we extend each of the coordinate functions.
Finally, let Z' be a finite or countable product of intervals and Z a retract of Z'. Fix
a retraction r: Z’—Z. If f: A—Z is a given Carathéodory map, first get a Cara-
théodory map h: Ex X —Z’ which extends f and then take g = roh. This completes
the proof.

In Theorems 1 and 2 we get extensions sgtisfying

gle, X) s co(f({e} xF(e)), eeE.

our next example shows that we cannot have this in Theorems 7 and 8 even when
Z=R
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ExaMPLE 4. Let A, and A4, be two X}-sets in [0, 1] such that A,w 4, = [0, 1] but
there does not exist a Borel set B such that B < A, and B° < A, . Let I, be the space of
all irrationals contained in [0, 1/3] whereas I, is the space of ail those irrationals which
are contained in [2/3, 1]. Let C; be a Borel set in {0, 1] x I; whose sections are closed in
I; and such that Proj(C) = A4,,i=0or 1. Let C = CouC,. Let X be the set of all
irrationals in [0, 1]. Then we have a Borel set in [0, 1] x X whose sections are closed in
X. Define f: C—+R by

fle,x)=x, (e, x)eC.
If possible suppose there is a Carathéodory map g: [0, I]x X — R which extends f and
which satisfies
gle, X) s co(f({e} xC(@), eel0, 1.
Let '

B ={ec[0, 11: gle, 1//D < 1/2}
Then B is Borel, B < 4, and B° < 4,. Contradiction.

5. A random Lusin theorem.

THEOREM 9. Let f: E x X —[0, 1] be a Borel map. Let p(e, B) be a transition function
on E x By. Then for every € > O there exists a Carathéodory map g: ExX—[0, 17 such
that for every ecE

ple, {xeX: gle, x) #S (e, x)}) <e.

Proof. Define a sequence {E,} of subsets of ExX as follows:
2k—1 2k

= {(e, x)eExX: Ts[(e, x)<? for some
k=1,2,...,2"" % or fle, x)=1}.

Then f = Z 1/201g,.

By [3] get Borel sets F, and U, in ExX such that

(i) F,cE,cU,n=1,2,..;

(i) u(e, F,(e\U,{e) < 8/2" for n=1,2,... and e€E; and

(iii) F,(e) and X\U,(e) are compact for each n and e.
Now, e = F, () and e—»X\U, (e) are measurable, closed-valued multifunctions for each
n. Hence by Theorem 3, there exist Carathéodory maps g, E x X —[0, 1] such that

; 0 if (e, x)eX\U,,
3& D=1 i (¢, n)eF,

Put g = i (1/2") g, (e, x).

n=1
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6. Open problems.

PropreM 1. In Theorem 5 suppose we take Fy, F, to be Borel but E an arbitrary

second countable metrizable or even a II}-set. Do the conclusions of Theorem § hold in
this case? '

ProBLeM 2. Does Theorem 7 hold for a Xi-set A? We do not know the answer even
when Z is a convex subset of R2.

PRroBLEM 3. Can Theorem 8 be extended for ITi-sets A? We do not know the answer
even when Z =R,

A question related to Problem 3 is the following:

ProBLEM 4. Let C, and C, be two disjoint IT1-sets in E x X such that for every eeE,
the sections Co(e) and C,(e) are closed. Further assume that there is a Borel set
B containing C, but disjoint from C,. Do there exist disjoint Borel sets B, and B; such
that C, € By, C, < B, and for every ee E, the sections By (e) and B (e) are closed in X?
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A splitting theorem for % -products
by

Philippe Loustaunau (Fairfax, Va.)

Abstract. Let # be a non-principal ultrafilter on an infinite index set A. Let {M,: a€ A} be
a family of left R-modules. We define the & -product of the M,’s to be [T* M, = {(m),c,e [T M.:
asA

acAd €.
{aeA: m, = 0} F}. In the present paper, we determine a necessary condition for the #-product
of the M_’s to split in the corresponding direct product. This condition will be given in terms of
the lattice of ideals which are annihilators of subsets of a certain factor ring of R, and will
depend on F.

R will always denote a ring with identity, all modules will be unital, 4 will always
denote an infinite index set and |X| will always denote the cardinality of a set X.

1. Introduction. The question of when the canonical embedding of a direct sum of
modules splits in the corresponding direct product has been extensively studied. See, for
example, [2], [9], [11], [18], and [19]. Recently modules that are in between direct
sums and direct products, called %-products, have been introduced. See, for example,
[5], [6], [13], [14] and [17]. In [14], a necessary condition was determined for the
canonical embedding of the x-product of modules in the corresponding direct product
to split. This result generalized the above-mentioned classical theorems on the
sum-product splitting property.

The study of x-products can be done in a more natural setting. Indeed, the
n-products are special cases of a larger class of submodules of the direct product, called
F-products, where  is a filter on the index set A. The main objective of this paper is to
determine a necessary condition for the -product of modules to split in the
corresponding direct product. This condition will be given in terms of the lattice of ideals
which are annihilators of subsets of a certain factor ring of R, and will depend on .

Let cpl(#) be the largest cardinal number x such that & is x-complete. If
epl(#) = R, (e.g., if }4| < first measurable cardinal number) and if the # -product splits
in the corresponding direct product, then a certain factor ring of R has the Ascending
Chain Condition (ACC) on annihilators (Theorem 3.5). Under these hypotheses, if R is
simple or if M, = R for every ae A, then R itself has ACC on annihilators (Corollaries
3.6 and 3.7).

The proof of Theorem 3.5 extends a technique that was used in [2] and [14].

Following the classical definition (see, for example, [11, [3], [4], [8], [12] and [16]),
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