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6. Open problems.

PropreM 1. In Theorem 5 suppose we take Fy, F, to be Borel but E an arbitrary

second countable metrizable or even a II}-set. Do the conclusions of Theorem § hold in
this case? '

ProBLeM 2. Does Theorem 7 hold for a Xi-set A? We do not know the answer even
when Z is a convex subset of R2.

PRroBLEM 3. Can Theorem 8 be extended for ITi-sets A? We do not know the answer
even when Z =R,

A question related to Problem 3 is the following:

ProBLEM 4. Let C, and C, be two disjoint IT1-sets in E x X such that for every eeE,
the sections Co(e) and C,(e) are closed. Further assume that there is a Borel set
B containing C, but disjoint from C,. Do there exist disjoint Borel sets B, and B; such
that C, € By, C, < B, and for every ee E, the sections By (e) and B (e) are closed in X?
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A splitting theorem for % -products
by

Philippe Loustaunau (Fairfax, Va.)

Abstract. Let # be a non-principal ultrafilter on an infinite index set A. Let {M,: a€ A} be
a family of left R-modules. We define the & -product of the M,’s to be [T* M, = {(m),c,e [T M.:
asA

acAd €.
{aeA: m, = 0} F}. In the present paper, we determine a necessary condition for the #-product
of the M_’s to split in the corresponding direct product. This condition will be given in terms of
the lattice of ideals which are annihilators of subsets of a certain factor ring of R, and will
depend on F.

R will always denote a ring with identity, all modules will be unital, 4 will always
denote an infinite index set and |X| will always denote the cardinality of a set X.

1. Introduction. The question of when the canonical embedding of a direct sum of
modules splits in the corresponding direct product has been extensively studied. See, for
example, [2], [9], [11], [18], and [19]. Recently modules that are in between direct
sums and direct products, called %-products, have been introduced. See, for example,
[5], [6], [13], [14] and [17]. In [14], a necessary condition was determined for the
canonical embedding of the x-product of modules in the corresponding direct product
to split. This result generalized the above-mentioned classical theorems on the
sum-product splitting property.

The study of x-products can be done in a more natural setting. Indeed, the
n-products are special cases of a larger class of submodules of the direct product, called
F-products, where  is a filter on the index set A. The main objective of this paper is to
determine a necessary condition for the -product of modules to split in the
corresponding direct product. This condition will be given in terms of the lattice of ideals
which are annihilators of subsets of a certain factor ring of R, and will depend on .

Let cpl(#) be the largest cardinal number x such that & is x-complete. If
epl(#) = R, (e.g., if }4| < first measurable cardinal number) and if the # -product splits
in the corresponding direct product, then a certain factor ring of R has the Ascending
Chain Condition (ACC) on annihilators (Theorem 3.5). Under these hypotheses, if R is
simple or if M, = R for every ae A, then R itself has ACC on annihilators (Corollaries
3.6 and 3.7).

The proof of Theorem 3.5 extends a technique that was used in [2] and [14].

Following the classical definition (see, for example, [11, [3], [4], [8], [12] and [16]),
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we say that & is a filter on A if it is a subset of the power set of A that satisfies the
following conditions:

(1) O¢F and AeF,;
(2) If By, B,e#, then B,nB,eF;
(3) If Be# and B€ C< A, then Ce#Z.

Let & be a filter on 4 and let {M,: ae A} be a family of left R-modules. We define

an equivalence relation ~ on [] M, as follows. For (m,).es and (m}),eq in ﬂ M,, we
acAd ued

have (m,) ~ (m;) if and only if {ae A: m, = m,} € #. The equivalence class of (0, 0, ...) is

called the #-product of the M,s, and is denoted by []” M,. Clearly, []* M, is
ucA asAd

a submodule of [] M,. Also, (m)ese[[* M, if and only if {acd: m, = 0}eZ.

aed acA
ExaMPLE. Let x be an infinite cardinal number such that x <‘|4|. Then
F ={B< A: |A\B| <x} is a filter on A and the #-product is the x-product. In
particular, if % = X,, the #-product is the direct sum.

A filter # on A is an ultrafilter if & is maximal, or equivalently, if whenever B < 4,
then either Be# or A\Be%. Let # be an ultrafilter on 4 and let {M,: ac A} be

a family of left R-modules. The set of equivalence classes under ~, denoted ﬂ M,/F,is
aeAd
a left R-module and is called the wltraproduct of the Ms. Hence, in case # is an

ultrafilter on 4, the #-product can be viewed as the kernel of the natural epimorphism
[IM,— []M,/#. The ultraproduct is a very useful construction in Algebra, Model

acA asAd

Theory, Topology and Set Theory. See, for example, [1], [31, [4], [7], [8], [12], [15]
and [16].

2. Preliminaries. In this section, we first look at the case where & is a principal filter,
we then establish some properties of non-principal filters that will be referred to in
proving the main theorem in Section 3. Some of these results have straightforward
proofs that will be omitted.

DeriNiTION 2.1. Let 4 be a filter on 4 and let Be#. We define
Fp={C: CcBand CeF}={BnC: CeF}.
Note that & is a filter on B. Moreover, if # is an ultrafilter on 4, then & is an
ultrafilter on B.
LemMma 2.2, Let & be a filter on A and lét Be . Then, for any family {M,: aec A} of

left R-modules, we have:

MM, ~TP"M, e [] M,

aeA aeB acA\B

Therefore if [[* M, is a direct summand of [ M,, then [17= M, is a direct summand of
aed aed B
H Ma‘ ae,

aeB

©
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DEFINITION 2.3. A filter & is a principal filter on A if there exists Be # such that
F ={C: Cc A and B C}. & is said to be generated by B.

THEOREM 2.4. Let F be the principal filter on A generated by B. Then, for any family
{M,: aeA} of left R-modules, we have [1* M, = [] M,, and hence [1* M, is a direct

aed acA\B aed
summand of [[ M,.
acd

We now turn our attention to the case where & is a non-principal filter. There are
22! non-principal filters on 4, and in fact 22'*' non-principal ultrafilters on 4 (see, for
example, Theorem 1.5, p. 108, in [1]). The rest of this section will be devoted to
establishing some important properties of non-principal filters on A.

DEFINITION 2.5. Let % be a filter on A4, let % be an infinite cardinal number. & is said
to be x-complete if for every S = &, with |S] < %, we have (\Se#. F is said to be
xu-incomplete if F is not x-complete. See, for example, [1], [4] and [15].

Note that a filter & is either principal or x-incomplete for some x.

DEFINITION 2.6. Let & be a non-principal filter on 4. Let x be the least cardinal
number such that & is x-incomplete. Then x cannot be a limit ordinal, for, otherwise,
F would be y* complete for all y <x and hence & would be closed under all
intersections of fewer than x sets, i.e., # would be x-complete. Therefore x is a sucessor
cardinal number. We define cpl(#) to be the predecessor of ». Note that cpl(#) is the
largest cardinal number B such that & is f-complete.

Recall that a cardinal number % is measurable if there exists a nonprincipal
x-complete ultrafilter on x. By [3, Proposition 4.2.7], cpl(#) is a measurable cardinal
number.

The next few results will give some information on cpl(#) and will be referred to in
Section 3.

LEmMMA 2.7 (Lemma 1.12, p. 113 in [1]). Let & be a non-principal ultrafilter on A.
Then, whenever B < cpl(F) and {B;: & < B} is a partition of A, then there exists a unique
¢o < P such that B, eF.

LeMMA 2.8 (Lemma 1.13, p. 114, in [1]). Let & be a non-principal filter on A. Then
there exists a sequence {B,: o« < cpl(F)} of elements of # such that B, By for all

a< f<cpl(F),and (| B,¢F. Moreover, if # is an ultrafilter, then we may choose
a<cpl(F)
{B,: o <cpl(#)} such that (| B,=@.
a<cpl{(F)
COROLLARY 2.9. Let & be a filter on A and let BeF. Then cpl(F) = cpl(Fp).

Remark. Let » be a regular cardinal number such that R, < % < |4], and let
F = {B < A: |A\B| < »}. Then cpl(¥) ==

3. Main theorems. Using the Axiom of Choice, we can extend any filter 4 on A to an

ultrafilter &. This extension induces the inclusion []¥ M, = JT" M, for any family
agd - aed
{M,: ae A} of left R-modules. If is therefore natural to only consider ultrafilters # in

the study of the embedding of the #-product in the corresponding direct product.
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The proof of the main theorem (Theorem 3.5) extends a technique that was used in
[2] and [14]. But first we need some definitions and few lemmas.

A pfunctor is a subfunctor of the forgetful functor F: R-.#od— Z-.4/od that
commutes with direct products. Let {U,: & < §} be a well-ordered set of p-functors.
Then {U,: o <d} is a descending chain of p-functors if, for all M eR-.#od,
U,M)2U,(M) for all a < f < 4.

ExaMPLE. For a subset S of R, define U (M) = ann,, (S), for M € R-.#od. Then U (-) is
a p-functor.

LemMa 3.1. Let & be a non-principal ultrafilter on A. Let {M,: ac A} be a family of

left R-modules and let {U,: o < o} be a descending chain of p-functors with cpl (F) < o.
Suppose that A= | A, for some 4, < A satisfying:
1<a<o
(1) 4, # O for all <}
(2) 4,04y =0 for all o # B, &, f < a;
B) U 4,eF forall <o

f<a<a

@ U,M)=2U,, (M) for all acA, and for all a < o.
Then 1% M, is not a direct summand of [] M,

acA aeAd
Note. Conditions (1), (2) and (3) of Lemma 3.1 imply that A ¢F for all x <a.
Therefore the requirement that ¢ > cpl(#) is not a restriction in view of Lemma 2.7.

Proof Let ¢ be the natural isomorphism []JM,~ [] (I] M, Let
aed 1<a<o aed,

S=¢([["M,) and P= [] ([] M,). Note that ((maes )1 <a<c€S if and only if

agd 1Sa<o aedy
U {aed: m,=0}es.

1<a<g

Now, suppose to the contrary that [[* M, is a direct summand of [] M,. Then S is
aeA ued

a direct summand of P. Let P = S®Q and let p: P— S be the natural projection. By (4),
there exists 0 +# X,,eU,(M,)—U,.,(M,) for all acd, and all o< Let
z= [(xa,a),.s,ia],,q and for § < g, let 25 = (X4 1)acays -+ o» (%a,0)aean(0), ... 1.

Cramm. zgeS for all f <o

Let f < g. Since x, , # 0 for all ae 4, and for all « < o, the set of indices whére the
coordinates .of z, are zero is exactly (J 4,. which is in & by (3). Hence z;€S.

p<a<e
Now let uy = z—z, for B < o. There exist Sp, S€S and q,, g€ Q such that z = s+¢
and uy =sy+qp. i
Let f<o. Then z=s5+¢ =zg+uy = zp+(s,+qg) and hence, s = Spt2g.
Let & < B < ¢. Then

(xa,ﬁ)neAﬁE n Uﬂ(Ma) < H Um—Fl(Ma) = U,+1( I—[ M“).

acdg aedg aedy
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Hence,
u, = [(0), ..., (0), (Kot 1)acusss '"]E1<I;I<.,[U““(agﬂ M,)] = U, (P).
Now,
S, =pu)ep[Uy (Pl =
) Upr 1 ()= Ups 1 [0 (E’ M)} € o[17 Vst (MJ)].

Let acA, then aeA, for some unique o <o. Let g,,; P—M, be the natural
projection. Since seS, there exist u<¢ and bed, such that g,,(s) =0. Now,
Xy = 05, (2) = 05,65, = —0y, (5,06 Ups1 (M) by (%), which is a contradiction to
the choice of x;,.

LemMA 3.2. Let & be a non-principal ultrafilter on A. Let {M,: ae A} be a family of
left R-modules. If [[% M, is a direct summand of ]| M,, then {anng(P): Be %} has

aed acd

a maximal element, where Py =[] M,.
aeB

Proof. Suppose to the contrary that {anng (P5): Be#} has no maximal element.
CLAM 1. There exists an ordinal number o and a sequence (Bys<, such that:
(1) B;e& for dll £ <oy

(2) B2 Bs+y for all £ <o,

(3) annR(PB{)g anng (P, ) for all €< a;

(4) ann(Py) < anng (M) if and only if aeB,, { <o;

©) N Bt#.

<o
Proof of Claim 1. Let B, = 4. We proceed by induction. Let « > 1. Suppose that
B, has been defined for all ¢ < u, satisfying 1-4.

Case 1. o is not a limit ordinal. Then B,_; has been defined. By hypothesis,
anng(Pz._) is not maximal. Thus, there exists B.,e& such that
anng(Pp,_ )& anng (Py,). Let B, = {acA: anng(Py) < anng(M,)}. Then B, € B, and

hence B,e #. Also, if ae B, then anng(Py )& anng (Py) < anng(M,) and hence by

induction hypothesis, ae B, ;. Therefore B, € B,_,. Now,

anng (P ) = anng (P, @ Py, p;) = anng (Pp)nanng (P, »)

=anng (P )n[ () anng(M,)] = anng(Py,).

aeBx\Bzx
Case 2. « is a limit ordinal. If () B;¢.#, we let ¢ = o and we stop the induction.
g<a

Otherwise, let B, = () B;e#. If aeB,, then anng (Pp) < anng (M,). Conversely, .if
g<a

anng (Py,) € anng (M), then anng (Py,) < anng (M ) for all £ < o and hence ae B, for all
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¢ < o by induction hypothesis; i.e., ae B,. Clearly, there exists a limit ordinal ¢ such that
B= () B;¢%. Note that ¢ > cpl(#). This completes the proof of Claim 1.

é<a

Camm 2. A\B= |J (B,\B,+))

1<€a<g
Proof of Claim 2. Let ae A\B. Then a¢ B, for some £ < 0. Let o be the least such
ordinal number. Then o is not a limit ordinal. For, if o is a limit ordinal, then
aé¢B, = [ By, by the construction of B, in Claim 1, and therefore a ¢ B, for some ¢ < o,

é<a
which is a contradiction to the choice of o. Hence ae B, ,\B,. Note that B\B,,, # @
for all @ < o. This proves Claim 2.

Now, for ¢ <o¢ and for MeR-#od, define U,(M)=annyanng(Py). Then
{U,: a <o} is a descending chain of p-functors.

Ceam 3. U,M,)2U,,,(M,) for all aeB\B,,,.

Proof of Claim 3. Suppose to the contrary that U,(M,) = U, ,(M,) for some
aeB\B, . ;. Since  aeB,, we have M,=U,M,), and hence
M,=U,,;(M,) = anny anng (Py , ). Therefore ann,(Py , )< anng(M,), so that
aeB,,, by (4) in Claim 1, which is a contradiction to the choice of a.

Now, let & = F ;5. (See Definition 2.1.) Then ¥ is a non-principal ultrafilter on

A\B. By Lemma 2.2 and by hypothesis, [ [* M, is a direct summand of [] M,. Also,
acA\B aeA\B
by Corollary 2.9, cpl(%)=cpl(¥#) and hence ¢ =cpl(#). Now, for f<o,

<U B\B,.; = B;\Be¥. We thus obtain a contradiction to Lemma 3.1.
fSa<a

LemMA 3.3. Let & be a non-principal ultrafilter on A. Let {M,: ac A} be a family of
left R-modules. Let {U,: « < cpl(%)} be a descending chain of p-functors. Suppose that
17 M, is a direct summand of [| M,,. If there exists B = A such that for all a B and for

agd aed

all o < cpl(F) we have U,(M,)2 U, ., (M), then B¢ F.
Proof. Suppose to the contrary that Be #. Then, by Lemma 2.2, H"F” M, is

aeB

a direct summand of H M,. Also, by Corollary 2.9, cpl (%) = cpl (¥ ;). Now, by Lemma

aeB
2.8, there exists a sequence (B <cn(# Of elements of & such that B,2 By for
all a<f<cpl(#) and () B,=@. We may clearly choose B, = B. Then

& <cpl(F)
B= L;)ume where E, = ((") B)\B,. For « < cpl(#), E, #@ and E, ¢, since
a<g H<a

B,e Fp. Moreover, E,nE; = @ for all o # f§ with o, f < cpl(#). If B < cpl(F), then
E,= B,e#. Finally, if acE,, then U,(M,)2 U,, (M, by assumption.

B<a<cpi(F)
Therefore the hypotheses of Lemma 3.1 are satisfied and we obtain a contradiction.
Hence B¢ #.

At this point, we need to specialize cpl(%). As was shown in the remark after
Corollary 2.9, given a regular cardinal number »x such that N, < % < |4, there exists
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A splitting theorem for F-products 79

a filter & on A such that cpl(#) = ». The question arises as to whether there exists an
ultrafilter & on A such that cpl(#) = x. The answer is trivial for 4 countable: every
filter # on a countable set A satifies cpl (%) = N,. The existence of a non-principal
ultrafilter # on an uncountable set such that cpl(#) > ¥, is an axiom which in often
used in modern Set Theory. In the next few paragraphs, we will state some results
dealing with this problem that will be used later; a more detailed exposition of these
results and further information on the properties and uses of the definitions that will be
given can be found in [1], [4], [7], [10] and [15].

A cardinal number x > ¥, is said to be w-measurable (or Ulam-measurable) if there
exists a non-principal ultrafilter .7 on a set of cardinality » such that cpl(F) > N,. By
Theorem 8.31 in [4]. a cardinal number x is w-measurable if and only if it is greater or
equal to the first uncountable measurable cardinal. Hence, the existence of
a non-principal ultrafilter # on a set A4 such that cpl(F) > N, is equivalent to the
existence of uncountable measurable cardinal numbers (AMC). It cannot be proved in
standard set theory ZF that such cardinals exist. Moreover, the consistency of the
theory ZF+3IMC cannot be proved in ZF. However, ZF +3IMC is often used in
descriptive set theory and even stronger theories, so-called natural extensions of ZF, are
used and believed to be consistent.

If uncountable measurable cardinals exist, they are very large. In fact, if » is
the first measurable cardinal number, then it is inaccessible (i.e., it is a regular
limit cardinal number) and there are » inaccessible cardinal numbers less than
% (Theorem 3, p. 26 in [15]). The existence of such cardinal numbers is independent
of ZF. Also. the axiom of constructibility, that “V =L in the sense of Gddel.
implies that measurable cardinal numbers do not exist (Theorem 6.9, p. 303
in [17).

In view of the above, the case opl (#) = N, is a very important case. The following
few results deal with this case.

LEMMA 34. Let F be a non-principal ultrafilter on A such that cpl(F) = Rq. Let
{U,: n=1,2, ...} be a descending chain of p-functors. Let {M,: ae A} be a family of left
R-modules. If T]* M, is a direct summand of [ M, then there exist Be# and n such

aeA aed

that for all aeB and for all p=n, U,(M,) = U,(M,).
Proof. For p > 1, define

C,={acd: U,M)R2 U (M) for some g > p}.

If C,¢ # for some n 1, then B = A\C,e F. Moreover, for ac B and p > n, we have
U,(M,) = U,(M,). Therefore, we may assume that C,e # for all p > 1. We will obtain
a contradiction. Note that we have C,2 C,., for all p=1. Let C= () C,. Then

p21

(%) Cy = CU[ U Cp\cp;l—l]'

pz1
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Step 1. F = | C\C,y, ¢7.
po1

Proof. Suppose to the contrary that Fe#. Since C,e# for all p > 1, we have
C\Cpr1 ¢F for all p 2 1. Moreover (C,\C,+ 1) (C\Cys1) = @ for all p # g. Therefo-
re, by Lemma 2.7, there are N, non-empty C\Cp+1's. Hence, we may assume that
C\Cpe1 #@ for all p> 1. For n> 1,

L<) CA\Crti=F\[ U C\Cpeil= [} [FNCN\Cp+i)leZ,
n<p 1<p€n—-1 1<p<n—1
since C\C,4+1¢%.

Now, for p 2 1 and ae C,\Cp11, U, (M) 2 U,s( (M,). Also, Fyis a non-principal
ultrafilter on F. (See Definition 2.1.) By Corollary 2.9, cpl(#,) = cpl (F) = X,.
Therefore the hypothese of Lemma 3.1 are satisfied and hence [[*r M, is not a direct

aeF

summand of []M,. But by Lemma 2.2 and by hypothesis, [[*F M, is a direct

ael aeF

summand of []M,. We thus obtain a contradiction to our assumption.
aeF

Step 2. C= () C,¢ .
p=1

Proof. Suppose to the contrary that Ce%#. For aeC and for p=1, let
n(a, p)=inf{n: n > p and U,(M,) 2 Uni1(M,)}. Then #5(a, p) is well defined for all
acCand all p> 1. For p<g,let Bl = {aeC: y(a, p) = q}. We construct inductively
a sequence (p;) of natural numbers such that p; < p;4, and B2*!e & for all i > 0. Let
po=0. Now, C= () B = (J BL.

1s¢q 1<gq

CLamM 1. Bie&F for some q = 1.

Proof. Suppose to the contrary that B} ¢# for all g > 1. Since B! A B} = @ for all

q 1% ¢, there are ¥, non-empty B}’s, by Lemma 2.7. We may therefore assume that
B; #@ for all g = 1. For n> 1,

UBi=C\ U Bj= [) (C\BeF
nsgq 1sgsn—1 lsgs€n~1
1
since B; ¢ & for all ¢ > 1. For aeB], U,(M)2 Ugi1(M,). Finally, since Ce &F, Fis
a non-principal ultrafilter on C. By Lemma 2.2 and by hypothesis, H'ﬁ‘ M, is a direct

aeC

summand of ]—[Ma. Also by Corollary 2.9, cpl(#,) = cpl(#) = N,. Therefore, we

aeC
obtain a contradiction to Lemma 3.1. Let p, be the natural number such that Bl e#.

Then p1+ 1> Po- Now, suppose that p,, py, ..., p, have been defined such that Py < Dist
and BT e & for alli < n—1. Since BEp- o+ =[ U Byt nBp-*t, ) Bett

# & simil gZppt1 g pptl
ilar argument to the one in the proof of Claim 1 shows that Bin*leF for

some g = p,+1. Let p,,, be that natural number. Then p, < Pui1-

icm°®
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Now, let D, = ﬂ Boit! for nz1. Then D,eZ for all n>1 Also,
isp-1
D,2D,2..2D,2D,4;2... Let D= () D,.
nz1

CrLamm 2. D¢ F.

Proof If D =@, then D¢ F. If D#@, let aeD. Then U, (M)2U, 4 (M)
2U,,,(M,) for all n>1. Hence, by Lemma 3.3, D¢Z#. Then D \DeZ and
D\D = U DA\D,+1. By Lemma 2.7, there are N, non-empty D,\Dy+1. We may

nz1

therefore assume that D,\D, 41 # @ foralln > 1. Form > 1, U DA\Dys1=D,\DeZF.

m<n

Also, for ae D \D,4y, aeD, and hence U, (M )2 U, (M) 2 U,..,(M,). Finally,

since D \DeZ, %, is a non-principal ultrafilter on D,\D. By Lemma 2.2 and by

hypothesis, []*®:-® M, is a direct summand of [] M,. Also, by Corollary 2.3,
ueDi\D ) aeD\D

epl(F p,p) = cpl(F) =Ny We thus obtain a contradiction to Lemma 3.1. This

completes the proof of Step 2.

Now, by (), C; = CUF with CAF = @. Also, by Steps 1 and 2, Cé.% and F¢F.
Therefore C, ¢ %, which is a contradiction to our hypothesis. This completes the proof
of the lemma.

THEOREM 3.5. Let F be a non-principal ultrafilter on A such that cpl () = No. Let
{M,: ae A} be a family of left R-modules. If [1% M, is a direct summand of [1M,, then

agd aeAd
there exists Be F such that the factor ring R = Rjanng([1M,) satisfies the Ascending

ueB

Chain Condition (ACC) on annihilators.
Note. C. F. Faith; in [9], extensively studied rings with ACC on annihilators.
Proof. For C < 4, define Po= [[ M,. By Lemma 3.2, {anng(Pc): Ce#} has

aeC
a maximal element, say anng(Pp) for some BeZ . Let R = R/anng (Py).
Now, let anng (B,) < annz(B,) € ... be an ascending chain of annihilators of subsets
of R We need to show that this chain stops.
Define the descending chain of p-functors {¥,: n = 1} via V,(M) = anny, anng(B,)
for M e R-.#od. Note that []#* M, and ] M, are R-modules. Also, by Lemma 2.2,

ueB aeB
[17* M, is a direct summand of J] M, as R-modules, and hence as R-modules. By
aeB ueB

Corollary 2.9, cpl (% ) = cpl (#) =N,. Hence, by Lemma 3.4, there exists Ce ¥ 5 and
there exists n 3> 1 such that for allaueC and allp=n, V, (M,) = V,(M,). Now, since the
V,’s commute with direct product, we have V,(P¢) = V,(Pc) for all p>

Cramm 1 (Claim 1 of Theorem 4 in [14]). If X is a faithful left R-module and if
S, T< R with annyanng S = anny anng T, then anng$S = anng T

CLAM 2. P, is a faithful left R-module for all Le %y

Proof L<B implies that anng(Py) < anng(Py). Since  LeF,
anng (P,) = anng (Pp), by the choice of B. Therefore anng(Pp) = 0.
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Since Ce &, P, is a faithful R-module, and since annp, anng (B,) = V,(Pc) = V,(P¢)
= annp,anng (B,) for all p > n, we have anng (B,) = anng (B,) for all p = n, by Claim 2,
Hence R has ACC on annihilators.

COROLLARY 3.6. Let R be a simple ring. Let & be a non-principal ultrafilter on A such

that cpl(F) = Ny. Let {M,: ae A} be a family of left R-modules. If [[7 M, is a direct
acA
summand of T M,, then R has ACC on annihilators.
aed

COROLLARY 3.7. Let & be a non-principal ultrafilter on A such that cpl(F) = R,. If
[17 R is a direct summand of [| R, then R has ACC on annihilators.
acd acA

Note that Theorem 3.5 and Corollaries 3.6 and 3.7 can be applied to any
non-principal ultrafilter on any set A with |A4] < first measurable cardinal number. In
particular, these results can be applied to any non-principal ultrafilter on any set A if
there are no measurable cardinals.

Acknowledgment. The author wishes to thank Steven Buechler for suggesting this
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