

6. Open problems.

PROBLEM 1. In Theorem 5 suppose we take F_0 , F_1 to be Borel but E an arbitrary second countable metrizable or even a Π_1^1 -set. Do the conclusions of Theorem 5 hold in this case?

PROBLEM 2. Does Theorem 7 hold for a Σ_1^1 -set A? We do not know the answer even when Z is a convex subset of \mathbb{R}^2 .

PROBLEM 3. Can Theorem 8 be extended for Π_1^1 -sets A? We do not know the answer even when Z=R.

A question related to Problem 3 is the following:

PROBLEM 4. Let C_0 and C_1 be two disjoint Π_1^1 -sets in $E \times X$ such that for every $e \in E$, the sections $C_0(e)$ and $C_1(e)$ are closed. Further assume that there is a Borel set B containing C_0 but disjoint from C_1 . Do there exist disjoint Borel sets B_0 and B_1 such that $C_0 \subseteq B_0$, $C_1 \subseteq B_1$ and for every $e \in E$, the sections $B_0(e)$ and $B_1(e)$ are closed in X?

References

- G. F. Andrus and L. Brown, Measurable extension theorems, J. Math. Anal. Appl. 96 (1983), 454-462.
- [2] R. Barua, Structure of hyperarithmetical sets of ambiguous Borel classes, preprint.
- [3] D. Blackwell and C. Ryll-Nardzewski, Non-existence of everywhere proper conditional distributions, Ann. Statist. 34 (1963), 223-225.
- [4] F. S. de Blasi and J. Myjak, On the random Dugundji extension theorem, J. Math. Anal. Appl. 128 (1987), 305-311.
- [5] C. Dellacherie, Ensembles Analytiques: Théorèmes de séparation et applications, Lecture Notes in Math. 465, Springer-Verlag, Berlin-Heildelberg.
- [6] J. Dugundji, Topology, Prentice Hall of India, New Delhi 1975.
- [7] O. Hanš, Measurability of extensions of continuous random transformations, Ann. Statist. 30 (1959), 1152-1157.
- [8] A. Louveau, A separation theorem for Σ_1^1 sets, Trans. Amer. Math. Soc. 260 (1980), 363-378.
- [9] A. Maitra and B. V. Rao, Generalizations of Castaing's theorem on selectors, Colloq. Math. 42 (1979), 295–300.
- [10] D. E. Miller, Borel selectors for separated quotients, Pacific J. Math. 91 (1980), 187-198.
- [11] Y. N. Moschovakis, Descriptive Set Theory, North-Holland Publishing Company, Amsterdam-New York-Oxford.
- [12] J. Saint-Raymond, Boréliens à coupe K_{σ} , Bull. Soc. Math. France 104 (1976), 389-400.
- [13] H. Sarbadhikari and S. M. Srivastava, Random Tietze and Dugundji extension theorems, J. Math. Anal. Appl., submitted.

STAT-MATH DIVISION INDIAN STATISTICAL INSTITUTE 203 B. T. Road Calcutta 700 035 India

Received 7 November 1988; in revised form 7 June 1989

A splitting theorem for F-products

b

Philippe Loustaunau (Fairfax, Va.)

Abstract. Let $\mathscr F$ be a non-principal ultrafilter on an infinite index set A. Let $\{M_a\colon a\in A\}$ be a family of left R-modules. We define the $\mathscr F$ -product of the M_a 's to be $\prod_{a\in A}\mathscr F M_a=\{(m_a)_{a\in A}\in\prod_{a\in A}M_a\colon\{a\in A\colon m_a=0\}\in\mathscr F\}$. In the present paper, we determine a necessary condition for the $\mathscr F$ -product of the M_a 's to split in the corresponding direct product. This condition will be given in terms of the lattice of ideals which are annihilators of subsets of a certain factor ring of R, and will depend on $\mathscr F$.

R will always denote a ring with identity, all modules will be unital, A will always denote an infinite index set and |X| will always denote the cardinality of a set X.

1. Introduction. The question of when the canonical embedding of a direct sum of modules splits in the corresponding direct product has been extensively studied. See, for example, [2], [9], [11], [18], and [19]. Recently modules that are in between direct sums and direct products, called **products*, have been introduced. See, for example, [5], [6], [13], [14] and [17]. In [14], a necessary condition was determined for the canonical embedding of the **product of modules in the corresponding direct product to split. This result generalized the above-mentioned classical theorems on the sum-product splitting property.

The study of \varkappa -products can be done in a more natural setting. Indeed, the \varkappa -products are special cases of a larger class of submodules of the direct product, called \mathscr{F} -products, where \mathscr{F} is a filter on the index set A. The main objective of this paper is to determine a necessary condition for the \mathscr{F} -product of modules to split in the corresponding direct product. This condition will be given in terms of the lattice of ideals which are annihilators of subsets of a certain factor ring of R, and will depend on \mathscr{F} .

Let $\operatorname{cpl}(\mathscr{F})$ be the largest cardinal number \varkappa such that \mathscr{F} is \varkappa -complete. If $\operatorname{cpl}(\mathscr{F})=\aleph_0$ (e.g., if |A|< first measurable cardinal number) and if the \mathscr{F} -product splits in the corresponding direct product, then a certain factor ring of R has the Ascending Chain Condition (ACC) on annihilators (Theorem 3.5). Under these hypotheses, if R is simple or if $M_a=R$ for every $a\in A$, then R itself has ACC on annihilators (Corollaries 3.6 and 3.7).

The proof of Theorem 3.5 extends a technique that was used in [2] and [14]. Following the classical definition (see, for example, [1], [3], [4], [8], [12] and [16]),

we say that \mathcal{F} is a filter on A if it is a subset of the power set of A that satisfies the following conditions:

- (1) $\emptyset \notin \mathcal{F}$ and $A \in \mathcal{F}$;
- (2) If $B_1, B_2 \in \mathcal{F}$, then $B_1 \cap B_2 \in \mathcal{F}$:
- (3) If $B \in \mathcal{F}$ and $B \subseteq C \subseteq A$, then $C \in \mathcal{F}$.

Let \mathscr{F} be a filter on A and let $\{M_a\colon a\in A\}$ be a family of left R-modules. We define an equivalence relation \sim on $\prod_{a\in A}M_a$ as follows. For $(m_a)_{a\in A}$ and $(m'_a)_{a\in A}$ in $\prod_{a\in A}M_a$, we have $(m_a)\sim (m'_a)$ if and only if $\{a\in A\colon m_a=m'_a\}\in \mathscr{F}$. The equivalence class of $(0,0,\ldots)$ is called the \mathscr{F} -product of the M_a 's, and is denoted by $\prod_{a\in A}^{\mathscr{F}}M_a$. Clearly, $\prod_{a\in A}^{\mathscr{F}}M_a$ is a submodule of $\prod_{a\in A}M_a$. Also, $(m_a)_{a\in A}\in \prod_{a\in A}^{\mathscr{F}}M_a$ if and only if $\{a\in A\colon m_a=0\}\in \mathscr{F}$.

EXAMPLE. Let \varkappa be an infinite cardinal number such that $\varkappa \leqslant |A|$. Then $\mathscr{F} = \{B \subseteq A \colon |A \setminus B| < \varkappa\}$ is a filter on A and the \mathscr{F} -product is the \varkappa -product. In particular, if $\varkappa = \aleph_0$, the \mathscr{F} -product is the direct sum.

A filter \mathscr{F} on A is an ultrafilter if \mathscr{F} is maximal, or equivalently, if whenever $B \subseteq A$, then either $B \in \mathscr{F}$ or $A \setminus B \in \mathscr{F}$. Let \mathscr{F} be an ultrafilter on A and let $\{M_a : a \in A\}$ be a family of left R-modules. The set of equivalence classes under \sim , denoted $\prod_{a \in A} M_a / \mathscr{F}$, is a left R-module and is called the ultraproduct of the M_a 's. Hence, in case \mathscr{F} is an ultrafilter on A, the \mathscr{F} -product can be viewed as the kernel of the natural epimorphism $\prod_{a \in A} M_a / \mathscr{F}$. The ultraproduct is a very useful construction in Algebra, Model Theory, Topology and Set Theory. See, for example, [1], [3], [4], [7], [8], [12], [15] and [16].

2. Preliminaries. In this section, we first look at the case where \mathscr{F} is a principal filter, we then establish some properties of non-principal filters that will be referred to in proving the main theorem in Section 3. Some of these results have straightforward proofs that will be omitted.

DEFINITION 2.1. Let \mathcal{F} be a filter on A and let $B \in \mathcal{F}$. We define

$$\mathscr{F}_B = \{C: C \subseteq B \text{ and } C \in \mathscr{F}\} = \{B \cap C: C \in \mathscr{F}\}.$$

Note that \mathscr{F}_B is a filter on B. Moreover, if \mathscr{F} is an ultrafilter on A, then \mathscr{F}_B is an ultrafilter on B.

LEMMA 2.2. Let \mathscr{F} be a filter on A and let $B \in \mathscr{F}$. Then, for any family $\{M_a \colon a \in A\}$ of left R-modules, we have:

$$\prod_{a\in A} M_a \simeq \prod_{a\in B}^{\mathscr{F}_B} M_a \oplus \prod_{a\in A\setminus B} M_a.$$

Therefore if $\prod_{a \in A}^{\mathscr{F}} M_a$ is a direct summand of $\prod_{a \in A} M_a$, then $\prod_{a \in B}^{\mathscr{F}_B} M_a$ is a direct summand of $\prod_{a \in B} M_a$.

DEFINITION 2.3. A filter \mathscr{F} is a principal filter on A if there exists $B \in \mathscr{F}$ such that $\mathscr{F} = \{C \colon C \subseteq A \text{ and } B \subseteq C\}$. \mathscr{F} is said to be generated by B.

Theorem 2.4. Let \mathscr{F} be the principal filter on A generated by B. Then, for any family $\{M_a\colon a\in A\}$ of left R-modules, we have $\prod_{a\in A}^{\mathscr{F}}M_a\simeq\prod_{a\in A\setminus B}M_a$, and hence $\prod_{a\in A}^{\mathscr{F}}M_a$ is a direct summand of $\prod M_a$.

We now turn our attention to the case where \mathscr{F} is a non-principal filter. There are $2^{2^{1A_1}}$ non-principal filters on A, and in fact $2^{2^{1A_1}}$ non-principal ultrafilters on A (see, for example, Theorem 1.5, p. 108, in [1]). The rest of this section will be devoted to establishing some important properties of non-principal filters on A.

DEFINITION 2.5. Let \mathscr{F} be a filter on A, let \varkappa be an infinite cardinal number. \mathscr{F} is said to be \varkappa -complete if for every $S \subseteq \mathscr{F}$, with $|S| < \varkappa$, we have $\bigcap S \in \mathscr{F}$. \mathscr{F} is said to be \varkappa -incomplete if \mathscr{F} is not \varkappa -complete. See, for example, [1], [4] and [15].

Note that a filter F is either principal or x-incomplete for some x.

DEFINITION 2.6. Let \mathscr{F} be a non-principal filter on A. Let \varkappa be the least cardinal number such that \mathscr{F} is \varkappa -incomplete. Then \varkappa cannot be a limit ordinal, for, otherwise, \mathscr{F} would be γ^+ complete for all $\gamma < \varkappa$ and hence \mathscr{F} would be closed under all intersections of fewer than \varkappa sets, i.e., \mathscr{F} would be \varkappa -complete. Therefore \varkappa is a successor cardinal number. We define $\operatorname{cpl}(\mathscr{F})$ to be the predecessor of \varkappa . Note that $\operatorname{cpl}(\mathscr{F})$ is the largest cardinal number β such that \mathscr{F} is β -complete.

Recall that a cardinal number \varkappa is measurable if there exists a nonprincipal \varkappa -complete ultrafilter on \varkappa . By [3, Proposition 4.2.7], cpl(\mathscr{F}) is a measurable cardinal number.

The next few results will give some information on $\operatorname{cpl}(\mathscr{F})$ and will be referred to in Section 3.

LEMMA 2.7 (Lemma 1.12, p. 113 in [1]). Let \mathscr{F} be a non-principal ultrafilter on A. Then, whenever $\beta < \operatorname{cpl}(\mathscr{F})$ and $\{B_{\xi}: \ \xi < \beta\}$ is a partition of A, then there exists a unique $\xi_0 < \beta$ such that $B_{\xi_0} \in \mathscr{F}$.

LEMMA 2.8 (Lemma 1.13, p. 114, in [1]). Let \mathscr{F} be a non-principal filter on A. Then there exists a sequence $\{B_{\alpha}: \alpha < \operatorname{cpl}(\mathscr{F})\}$ of elements of \mathscr{F} such that $B_{\alpha} \supseteq B_{\beta}$ for all $\alpha < \beta < \operatorname{cpl}(\mathscr{F})$, and $\bigcap_{\alpha < \operatorname{cpl}(\mathscr{F})} B_{\alpha} \notin \mathscr{F}$. Moreover, if \mathscr{F} is an ultrafilter, then we may choose $\{B_{\alpha}: \alpha < \operatorname{cpl}(\mathscr{F})\}$ such that $\bigcap_{\alpha < \operatorname{cpl}(\mathscr{F})} B_{\alpha} = \varnothing$.

COROLLARY 2.9. Let \mathscr{F} be a filter on A and let $B \in \mathscr{F}$. Then $\operatorname{cpl}(\mathscr{F}) = \operatorname{cpl}(\mathscr{F}_B)$. Remark. Let \varkappa be a regular cardinal number such that $\aleph_0 \leqslant \varkappa \leqslant |A|$, and let $\mathscr{F} = \{B \subseteq A : |A \setminus B| < \varkappa\}$. Then $\operatorname{cpl}(\mathscr{F}) = \varkappa$.

3. Main theorems. Using the Axiom of Choice, we can extend any filter \mathscr{G} on A to an ultrafilter \mathscr{F} . This extension induces the inclusion $\prod_{a \in A}^{\mathscr{F}} M_a \subseteq \prod_{a \in A}^{\mathscr{F}} M_a$ for any family $\{M_a \colon a \in A\}$ of left R-modules. If is therefore natural to only consider ultrafilters \mathscr{F} in the study of the embedding of the \mathscr{F} -product in the corresponding direct product.

The proof of the main theorem (Theorem 3.5) extends a technique that was used in [2] and [14]. But first we need some definitions and few lemmas.

A p-functor is a subfunctor of the forgetful functor $F\colon R\text{-}\mathcal{M}od\to \mathbf{Z}\text{-}\mathcal{M}od$ that commutes with direct products. Let $\{U_\alpha\colon \alpha<\delta\}$ be a well-ordered set of p-functors. Then $\{U_\alpha\colon \alpha<\delta\}$ is a descending chain of p-functors if, for all $M\in R\text{-}\mathcal{M}od$, $U_\alpha(M)\supseteq U_\beta(M)$ for all $\alpha<\beta<\delta$.

EXAMPLE. For a subset S of R, define $U(M) = \operatorname{ann}_M(S)$, for $M \in R$ - $\mathcal{M}od$. Then $U(\cdot)$ is a p-functor.

LEMMA 3.1. Let \mathscr{F} be a non-principal ultrafilter on A. Let $\{M_a\colon a\in A\}$ be a family of left R-modules and let $\{U_\alpha\colon \alpha<\sigma\}$ be a descending chain of p-functors with $\operatorname{cpl}(\mathscr{F})\leqslant\sigma$. Suppose that $A=\bigcup_{1\leq\alpha\leq\sigma}A_\alpha$ for some $A_\alpha\subseteq A$ satisfying:

- (1) $A_{\alpha} \neq \emptyset$ for all $\alpha < \sigma$;
- (2) $A_{\alpha} \cap A_{\beta} = \emptyset$ for all $\alpha \neq \beta$, α , $\beta < \sigma$;
- (3) $\bigcup_{\alpha \in \mathscr{F}} A_{\alpha} \in \mathscr{F} \text{ for all } \beta < \sigma;$
- (4) $U_{\alpha}(M_a) \supseteq U_{\alpha+1}(M_a)$ for all $\alpha \in A_{\alpha}$ and for all $\alpha < \sigma$.

Then $\prod_{a\in A}^{\mathscr{F}} M_a$ is not a direct summand of $\prod_{a\in A} M_a$.

Note. Conditions (1), (2) and (3) of Lemma 3.1 imply that $A_{\alpha} \notin \mathscr{F}$ for all $\alpha < \sigma$. Therefore the requirement that $\sigma \ge \text{cpl}(\mathscr{F})$ is not a restriction in view of Lemma 2.7.

Proof. Let φ be the natural isomorphism $\prod_{a \in A} M_a \simeq \prod_{1 \leq \alpha < \sigma} (\prod_{a \in A_\alpha} M_a)$. Let $S = \varphi (\prod_{a \in A} M_a)$ and $P = \prod_{1 \leq \alpha < \sigma} (\prod_{a \in A_\alpha} M_a)$. Note that $((m_a)_{a \in A_\alpha})_{1 \leq \alpha < \sigma} \in S$ if and only if $\bigcup_{1 \leq \alpha < \sigma} \{a \in A_\alpha \colon m_a = 0\} \in \mathscr{F}$.

Now, suppose to the contrary that $\prod_{a\in A}^{\mathcal{F}} M_a$ is a direct summand of $\prod_{a\in A} M_a$. Then S is a direct summand of P. Let $P=S\oplus Q$ and let $p\colon P\to S$ be the natural projection. By (4), there exists $0\neq x_{a,\alpha}\in U_\alpha(M_a)-U_{\alpha+1}(M_a)$ for all $a\in A_\alpha$ and all $\alpha<\sigma$. Let $z= [(x_{a,\alpha})_{a\in A_\alpha}]_{\alpha<\sigma}$ and for $\beta<\sigma$, let $z_\beta=[(x_{a,1})_{a\in A_1},\ldots,(x_{a,\beta})_{a\in A_\beta}(0),\ldots]$.

Claim. $z_{\beta} \in S$ for all $\beta < \sigma$.

Let $\beta < \sigma$. Since $x_{\alpha,\alpha} \neq 0$ for all $\alpha \in A_{\alpha}$ and for all $\alpha < \sigma$, the set of indices where the coordinates of z_{β} are zero is exactly $\bigcup_{\alpha \in \sigma} A_{\alpha}$, which is in \mathscr{F} by (3). Hence $z_{\beta} \in S$.

Now let $u_{\beta}=z-z_{\beta}$ for $\beta<\sigma$. There exist $s_{\beta},\,s\in S$ and $q_{\beta},\,q\in Q$ such that z=s+q and $u_{\beta}=s_{\beta}+q_{\beta}$.

Let $\beta < \sigma$. Then $z = s + q = z_{\beta} + u_{\beta} = z_{\beta} + (s_{\beta} + q_{\beta})$ and hence, $s = s_{\beta} + z_{\beta}$. Let $\alpha < \beta < \sigma$. Then

$$(x_{a,\beta})_{a\in A_\beta}\in\prod_{\alpha\in A_\beta}U_\beta(M_\alpha)\subseteq\prod_{\alpha\in A_\beta}U_{\alpha+1}(M_\alpha)=U_{\alpha+1}(\prod_{\alpha\in A_\beta}M_\alpha).$$

Hence,

$$u_{\alpha} = \llbracket (0), \, \ldots, \, (0), \, (x_{a,\alpha+1})_{a \in A_{\alpha+1}}, \, \ldots \rrbracket \in \prod_{1 \leq \beta < \sigma} \llbracket U_{\alpha+1} \bigl(\prod_{a \in A_{\beta}} M_a \bigr) \rrbracket = U_{\alpha+1} (P).$$

Now.

$$s_{\alpha} = p(u_{\alpha}) \in p \lceil U_{\alpha+1}(P) \rceil \subseteq$$

$$(*) \hspace{1cm} U_{\alpha+1}(S) = U_{\alpha+1} \left[\varphi \left(\prod_{a \in A}^{\mathscr{F}} M_a \right) \right] \subseteq \varphi \left[\prod_{a \in A}^{\mathscr{F}} U_{\alpha+1}(M_a) \right].$$

Let $a \in A$, then $a \in A_{\alpha}$ for some unique $\alpha < \sigma$. Let $\varrho_{a,\alpha}$: $P \to M_a$ be the natural projection. Since $s \in S$, there exist $\mu < \sigma$ and $b \in A_{\mu}$ such that $\varrho_{b,\mu}(s) = 0$. Now, $x_{b,\mu} = \varrho_{b,\mu}(z_{\mu}) = \varrho_{b,\mu}(s - s_{\mu}) = -\varrho_{b,\mu}(s_{\mu}) \in U_{\mu+1}(M_b)$ by (*), which is a contradiction to the choice of $x_{b,\mu}$.

LEMMA 3.2. Let $\mathscr F$ be a non-principal ultrafilter on A. Let $\{M_a\colon a\in A\}$ be a family of left R-modules. If $\prod_{a\in A}^{\mathscr F} M_a$ is a direct summand of $\prod_{a\in A} M_a$, then $\{\operatorname{ann}_R(P_B)\colon B\in \mathscr F\}$ has a maximal element, where $P_B=\prod_a M_a$.

Proof. Suppose to the contrary that $\{\operatorname{ann}_R(P_B): B \in \mathcal{F}\}$ has no maximal element. CLAIM 1. There exists an ordinal number σ and a sequence $(B_c)_{c<\sigma}$ such that:

- (1) $B_x \in \mathcal{F}$ for all $\xi < \sigma$;
- (2) $B_{\xi} \supseteq B_{\xi+1}$ for all $\xi < \sigma$;
- (3) $\operatorname{ann}_R(P_{B_\xi}) \subseteq \operatorname{ann}_R(P_{B_{\xi+1}})$ for all $\xi < \sigma$;
- (4) $\operatorname{ann}(P_{B_{\varepsilon}}) \subseteq \operatorname{ann}_{R}(M_{a})$ if and only if $a \in B_{\varepsilon}$, $\xi < \sigma$;
- $(5) \bigcap_{\xi < \sigma} B_{\xi} \notin \mathscr{F}.$

Proof of Claim 1. Let $B_1 = A$. We proceed by induction. Let $\alpha > 1$. Suppose that B_s has been defined for all $\xi < \alpha$, satisfying 1-4.

Case 1. α is not a limit ordinal. Then $B_{\alpha-1}$ has been defined. By hypothesis, $\operatorname{ann}_R(P_{B_{\alpha-1}})$ is not maximal. Thus, there exists $B'_\alpha \in \mathscr{F}$ such that $\operatorname{ann}_R(P_{B_{\alpha-1}}) \not\subseteq \operatorname{ann}_R(P_{B'_\alpha})$. Let $B_\alpha = \{a \in A : \operatorname{ann}_R(P_{B'_\alpha}) \subseteq \operatorname{ann}_R(M_a)\}$. Then $B'_\alpha \subseteq B_\alpha$ and hence $B_\alpha \in \mathscr{F}$. Also, if $a \in B_\alpha$, then $\operatorname{ann}_R(P_{B_{\alpha-1}}) \not\subseteq \operatorname{ann}_R(P_{B'_\alpha}) \subseteq \operatorname{ann}_R(M_a)$ and hence by induction hypothesis, $a \in B_{\alpha-1}$. Therefore $B_\alpha \subseteq B_{\alpha-1}$. Now,

$$\operatorname{ann}_R(P_{B_\alpha}) = \operatorname{ann}_R(P_{B'_\alpha} \oplus P_{B_\alpha \setminus B'_\alpha}) = \operatorname{ann}_R(P_{B_\alpha}) \cap \operatorname{ann}_R(P_{B_\alpha \setminus B'_\alpha})$$
$$= \operatorname{ann}_R(P_{B'_\alpha}) \cap \left[\bigcap_{a \in B \setminus B'_a} \operatorname{ann}_R(M_a)\right] = \operatorname{ann}_R(P_{B'_\alpha}).$$

Case 2. α is a limit ordinal. If $\bigcap_{\xi < \alpha} B_{\xi} \notin \mathscr{F}$, we let $\sigma = \alpha$ and we stop the induction. Otherwise, let $B_{\alpha} = \bigcap_{\xi < \alpha} B_{\xi} \in \mathscr{F}$. If $a \in B_{\alpha}$, then $\operatorname{ann}_{R}(P_{B_{\alpha}}) \subseteq \operatorname{ann}_{R}(M_{a})$. Conversely, if $\operatorname{ann}_{R}(P_{B_{\alpha}}) \subseteq \operatorname{ann}_{R}(M_{a})$, then $\operatorname{ann}_{R}(P_{B_{\xi}}) \subseteq \operatorname{ann}_{R}(M_{a})$ for all $\xi < \alpha$ and hence $a \in B_{\xi}$ for all

 $\xi < \alpha$ by induction hypothesis; i.e., $a \in B_{\alpha}$. Clearly, there exists a limit ordinal σ such that $B = \bigcap_{\xi \in \mathcal{I}} B_{\xi} \notin \mathcal{F}$. Note that $\sigma \geqslant \operatorname{cpl}(\mathcal{F})$. This completes the proof of Claim 1.

Claim 2.
$$A \setminus B = \bigcup_{1 \leq \alpha \leq \sigma} (B_{\alpha} \setminus B_{\alpha+1}).$$

for all $\alpha < \sigma$. This proves Claim 2.

Proof of Claim 2. Let $a \in A \setminus B$. Then $a \notin B_{\xi}$ for some $\xi < \sigma$. Let α be the least such ordinal number. Then α is not a limit ordinal. For, if α is a limit ordinal, then $a \notin B_{\alpha} = \bigcap_{\xi < \alpha} B_{\xi}$, by the construction of B_{α} in Claim 1, and therefore $a \notin B_{\xi}$ for some $\xi < \alpha$, which is a contradiction to the choice of α . Hence $a \in B_{\alpha-1} \setminus B_{\alpha}$. Note that $B_{\alpha} \setminus B_{\alpha+1} \neq \emptyset$

Now, for $\alpha < \sigma$ and for $M \in R$ - \mathcal{M} od, define $U_{\alpha}(M) = \operatorname{ann}_{M} \operatorname{ann}_{R}(P_{B_{\alpha}})$. Then $\{U_{\alpha} \colon \alpha < \sigma\}$ is a descending chain of p-functors.

CLAIM 3.
$$U_{\alpha}(M_{\alpha}) \supseteq U_{\alpha+1}(M_{\alpha})$$
 for all $\alpha \in B_{\alpha} \setminus B_{\alpha+1}$.

Proof of Claim 3. Suppose to the contrary that $U_{\alpha}(M_a) = U_{\alpha+1}(M_a)$ for some $a \in B_{\alpha} \setminus B_{\alpha+1}$. Since $a \in B_{\alpha}$, we have $M_a = U_{\alpha}(M_a)$, and hence $M_a = U_{\alpha+1}(M_a) = \operatorname{ann}_{M_a} \operatorname{ann}_R(P_{B_{\alpha+1}})$. Therefore $\operatorname{ann}_R(P_{B_{\alpha+1}}) \subseteq \operatorname{ann}_R(M_a)$, so that $a \in B_{\alpha+1}$ by (4) in Claim 1, which is a contradiction to the choice of a.

Now, let $\mathscr{G}=\mathscr{F}_{A\backslash B}$. (See Definition 2.1.) Then \mathscr{G} is a non-principal ultrafilter on $A\backslash B$. By Lemma 2.2 and by hypothesis, $\prod_{a\in A\backslash B}\mathscr{M}_a$ is a direct summand of $\prod_{a\in A\backslash B}M_a$. Also, by Corollary 2.9, $\operatorname{cpl}(\mathscr{G})=\operatorname{cpl}(\mathscr{F})$ and hence $\sigma\geqslant\operatorname{cpl}(\mathscr{G})$. Now, for $\beta<\sigma$, $\bigcup_{\beta\leqslant \alpha<\sigma}B_{\alpha}\backslash B_{\alpha+1}=B_{\beta}\backslash B\in\mathscr{G}$. We thus obtain a contradiction to Lemma 3.1.

LEMMA 3.3. Let \mathscr{F} be a non-principal ultrafilter on A. Let $\{M_a\colon a\in A\}$ be a family of left R-modules. Let $\{U_a\colon \alpha<\operatorname{cpl}(\mathscr{F})\}$ be a descending chain of p-functors. Suppose that $\prod_{a\in A}^{\mathscr{F}}M_a$ is a direct summand of $\prod_{a\in A}M_a$. If there exists $B\subseteq A$ such that for all $a\in B$ and for all $\alpha<\operatorname{cpl}(\mathscr{F})$ we have $U_\alpha(M_a)\not\supseteq U_{\alpha+1}(M_a)$, then $B\notin\mathscr{F}$.

Proof. Suppose to the contrary that $B \in \mathscr{F}$. Then, by Lemma 2.2, $\prod_{\alpha \in B} \mathcal{F}^{\mathcal{F}} M_{\alpha}$ is a direct summand of $\prod_{\alpha \in B} M_{\alpha}$. Also, by Corollary 2.9, $\operatorname{cpl}(\mathscr{F}) = \operatorname{cpl}(\mathscr{F}_B)$. Now, by Lemma 2.8, there exists a sequence $(B_{\alpha})_{\alpha < \operatorname{cpl}(\mathscr{F})}$ of elements of \mathscr{F} such that $B_{\alpha} \supseteq B_{\beta}$ for all $\alpha < \beta < \operatorname{cpl}(\mathscr{F})$ and $\bigcap_{\alpha < \operatorname{cpl}(\mathscr{F})} B_{\alpha} = \varnothing$. We may clearly choose $B_1 = B$. Then $B = \bigcup_{\alpha < \operatorname{cpl}(\mathscr{F})} E_{\alpha}$, where $E_{\alpha} = (\bigcap_{\mu < \alpha} B_{\mu}) \setminus B_{\alpha}$. For $\alpha < \operatorname{cpl}(\mathscr{F})$, $E_{\alpha} \ne \varnothing$ and $E_{\alpha} \notin \mathscr{F}_B$, since $B_{\alpha} \in \mathscr{F}_B$. Moreover, $E_{\alpha} \cap E_{\beta} = \varnothing$ for all $\alpha \ne \beta$ with $\alpha, \beta < \operatorname{cpl}(\mathscr{F})$. If $\beta < \operatorname{cpl}(\mathscr{F})$, then $\bigcup_{\beta \leqslant \alpha < \operatorname{cpl}(\mathscr{F})} E_{\alpha} = B_{\beta} \in \mathscr{F}$. Finally, if $a \in E_{\alpha}$, then $U_{\alpha}(M_{\alpha}) \supseteq U_{\alpha+1}(M_{\alpha})$ by assumption. Therefore the hypotheses of Lemma 3.1 are satisfied and we obtain a contradiction. Hence $B \notin \mathscr{F}$.

At this point, we need to specialize $\operatorname{cpl}(\mathscr{F})$. As was shown in the remark after Corollary 2.9, given a regular cardinal number κ such that $\aleph_0 \leq \kappa \leq |A|$, there exists

a filter \mathscr{F} on A such that $\operatorname{cpl}(\mathscr{F}) = \varkappa$. The question arises as to whether there exists an ultrafilter \mathscr{F} on A such that $\operatorname{cpl}(\mathscr{F}) = \varkappa$. The answer is trivial for A countable: every filter \mathscr{F} on a countable set A satisfies $\operatorname{cpl}(\mathscr{F}) = \aleph_0$. The existence of a non-principal ultrafilter \mathscr{F} on an uncountable set such that $\operatorname{cpl}(\mathscr{F}) > \aleph_0$ is an axiom which in often used in modern Set Theory. In the next few paragraphs, we will state some results dealing with this problem that will be used later; a more detailed exposition of these results and further information on the properties and uses of the definitions that will be given can be found in [1], [4], [7], [10] and [15].

A cardinal number $\varkappa > \aleph_0$ is said to be ω -measurable (or Ulam-measurable) if there exists a non-principal ultrafilter \mathscr{F} on a set of cardinality \varkappa such that $\operatorname{cpl}(\mathscr{F}) > \aleph_0$. By Theorem 8.31 in [4], a cardinal number \varkappa is ω -measurable if and only if it is greater or equal to the first uncountable measurable cardinal. Hence, the existence of a non-principal ultrafilter \mathscr{F} on a set A such that $\operatorname{cpl}(\mathscr{F}) > \aleph_0$ is equivalent to the existence of uncountable measurable cardinal numbers (3MC). It cannot be proved in standard set theory ZF that such cardinals exist. Moreover, the consistency of the theory ZF+3MC cannot be proved in ZF. However, ZF+3MC is often used in descriptive set theory and even stronger theories, so-called natural extensions of ZF, are used and believed to be consistent.

If uncountable measurable cardinals exist, they are very large. In fact, if \varkappa is the first measurable cardinal number, then it is inaccessible (i.e., it is a regular limit cardinal number) and there are \varkappa inaccessible cardinal numbers less than \varkappa (Theorem 3, p. 26 in [15]). The existence of such cardinal numbers is independent of ZF. Also, the axiom of constructibility, that "V = L" in the sense of Gödel, implies that measurable cardinal numbers do not exist (Theorem 6.9, p. 305 in [1]).

In view of the above, the case opl(\mathscr{F}) = \aleph_0 is a very important case. The following few results deal with this case.

LEMMA 3.4. Let \mathscr{F} be a non-principal ultrafilter on A such that $\operatorname{cpl}(\mathscr{F})=\aleph_0$. Let $\{U_n\colon n=1,2,\ldots\}$ be a descending chain of p-functors. Let $\{M_a\colon a\in A\}$ be a family of left R-modules. If $\prod_{a\in A}\mathscr{F} M_a$ is a direct summand of $\prod_{a\in A}M_a$, then there exist $B\in \mathscr{F}$ and n such that for all $a\in B$ and for all $p\geqslant n$, $U_n(M_a)=U_p(M_a)$.

Proof. For $p \ge 1$, define

$$C_n = \{a \in A: \ U_q(M_a) \supseteq U_{q+1}(M_a) \text{ for some } q \geqslant p\}.$$

If $C_n \notin \mathscr{F}$ for some $n \geqslant 1$, then $B = A \setminus C_n \in \mathscr{F}$. Moreover, for $a \in B$ and $p \geqslant n$, we have $U_n(M_a) = U_p(M_a)$. Therefore, we may assume that $C_p \in \mathscr{F}$ for all $p \geqslant 1$. We will obtain a contradiction. Note that we have $C_p \supseteq C_{p+1}$ for all $p \geqslant 1$. Let $C = \bigcap_{p \geqslant 1} C_p$. Then

$$(*) C_1 = C \cup \left[\bigcup_{p \geqslant 1} C_p \setminus C_{p+1} \right].$$

Step 1. $F = \bigcup_{p \ge 1} C_p \backslash C_{p+1} \notin \mathscr{F}$.

Proof. Suppose to the contrary that $F \in \mathscr{F}$. Since $C_p \in \mathscr{F}$ for all $p \geq 1$, we have $C_p \setminus C_{p+1} \notin \mathscr{F}$ for all $p \geq 1$. Moreover $(C_p \setminus C_{p+1}) \cap (C_q \setminus C_{q+1}) = \emptyset$ for all $p \neq q$. Therefore, by Lemma 2.7, there are \aleph_0 non-empty $C_p \setminus C_{p+1}$'s. Hence, we may assume that $C_p \setminus C_{p+1} \neq \emptyset$ for all $p \geq 1$. For n > 1,

$$\bigcup_{n\leqslant p}C_p\backslash C_{p+1}=F\backslash \big[\bigcup_{1\leqslant p\leqslant n-1}C_p\backslash C_{p+1}\big]=\bigcap_{1\leqslant p\leqslant n-1}[F\backslash (C_p\backslash C_{p+1})]\in \mathscr{F},$$

since $C_n \setminus C_{n+1} \notin \mathcal{F}$.

Now, for $p \ge 1$ and $a \in C_p \setminus C_{p+1}$, $U_p(M_a) \supseteq U_{p+1}(M_a)$. Also, \mathscr{F}_F is a non-principal ultrafilter on F. (See Definition 2.1.) By Corollary 2.9, $\operatorname{cpl}(\mathscr{F}_F) = \operatorname{cpl}(\mathscr{F}) = \aleph_0$. Therefore the hypothese of Lemma 3.1 are satisfied and hence $\prod_{a \in F} F M_a$ is not a direct summand of $\prod_{a \in F} M_a$. But by Lemma 2.2 and by hypothesis, $\prod_{a \in F} F M_a$ is a direct summand of $\prod_{a \in F} M_a$. We thus obtain a contradiction to our assumption.

Step 2.
$$C = \bigcap_{p \ge 1} C_p \notin \mathcal{F}$$
.

Proof. Suppose to the contrary that $C \in \mathcal{F}$. For $a \in C$ and for $p \ge 1$, let $\eta(a, p) = \inf\{n: n \ge p \text{ and } U_n(M_a) \supseteq U_{n+1}(M_a)\}$. Then $\eta(a, p)$ is well defined for all $a \in C$ and all $p \ge 1$. For $p \le q$, let $B_q^p = \{a \in C: \eta(a, p) = q\}$. We construct inductively a sequence (p_i) of natural numbers such that $p_i < p_{i+1}$ and $B_{p_{i+1}}^{p_{i+1}} \in \mathcal{F}$ for all $i \ge 0$. Let

$$p_0 = 0$$
. Now, $C = \bigcup_{1 \le q} B_q^{p_0^{+1}} = \bigcup_{1 \le q} B_q^1$.

CLAIM 1. $B_q^1 \in \mathcal{F}$ for some $q \ge 1$.

Proof. Suppose to the contrary that $B_q^1 \notin \mathscr{F}$ for all $q \ge 1$. Since $B_q^1 \cap B_{q'}^1 = \emptyset$ for all $q \ne q'$, there are \aleph_0 non-empty B_q^1 's, by Lemma 2.7. We may therefore assume that $B_q^1 \ne \emptyset$ for all $q \ge 1$. For n > 1,

$$\bigcup_{n \leqslant q} B_q^1 = C \setminus \bigcup_{1 \leqslant q \leqslant n-1} B_q^1 = \bigcap_{1 \leqslant q \leqslant n-1} (C \setminus B_q^1) \in \mathscr{F},$$

since $B_q^1 \notin \mathcal{F}$ for all $q \geqslant 1$. For $a \in B_q^1$, $U_q(M_a) \not\supseteq U_{q+1}(M_a)$. Finally, since $C \in \mathcal{F}$, \mathcal{F}_C is a non-principal ultrafilter on C. By Lemma 2.2 and by hypothesis, $\prod_{\substack{a \in C \\ a \in C}} \mathcal{F}_a$ is a direct summand of $\prod_{\substack{a \in C \\ a \in C}} M_a$. Also by Corollary 2.9, $\operatorname{cpl}(\mathcal{F}_C) = \operatorname{cpl}(\mathcal{F}) = \aleph_0$. Therefore, we obtain a contradiction to Lemma 3.1. Let p_1 be the natural number such that $B_{p_1}^1 \in \mathcal{F}$. Then $p_1 > p_0$. Now, suppose that p_0, p_1, \ldots, p_n have been defined such that $p_i < p_{i+1}$ and $B_{p_1+1}^{p_1+1} \in \mathcal{F}$ for all $i \leqslant n-1$. Since $B_{p_n}^{p_n-1+1} = [\bigcup_{\substack{q \geqslant p_n+1 \\ q \geqslant p_n+1}} B_q^{p_n+1}] \cap B_{p_n}^{p_n-1+1}, \bigcup_{\substack{q \geqslant p_n+1 \\ q \geqslant p_n+1}} B_q^{p_n+1} \in \mathcal{F}$. A similar argument to the one in the proof of Claim 1 shows that $B_q^{p_n+1} \in \mathcal{F}$ for some $q \geqslant p_n+1$. Let p_{n+1} be that natural number. Then $p_n < p_{n+1}$.

Now, let $D_n = \bigcap_{i \leq n-1} B_{p_{i+1}}^{p_i+1}$ for $n \geq 1$. Then $D_n \in \mathscr{F}$ for all $n \geq 1$. Also, $D_1 \supseteq D_2 \supseteq \ldots \supseteq D_n \supseteq D_{n+1} \supseteq \ldots$ Let $D = \bigcap_i D_n$.

CLAIM 2. $D \notin \mathcal{F}$.

Proof. If $D=\varnothing$, then $D\notin\mathscr{F}$. If $D\neq\varnothing$, let $a\in D$. Then $U_{p_n}(M_a)\not\supseteq U_{p_n+1}(M_a)$ $\supseteq U_{p_n+1}(M_a)$ for all $n\geqslant 1$. Hence, by Lemma 3.3, $D\notin\mathscr{F}$. Then $D_1\backslash D\in\mathscr{F}$ and $D_1\backslash D=\bigcup_{n\geqslant 1}D_n\backslash D_{n+1}$. By Lemma 2.7, there are \aleph_0 non-empty $D_n\backslash D_{n+1}$. We may therefore assume that $D_n\backslash D_{n+1}\neq\varnothing$ for all $n\geqslant 1$. For $m\geqslant 1$, $\bigcup_{m\leqslant n}D_n\backslash D_{n+1}=D_m\backslash D\in\mathscr{F}$.

Also, for $a \in D_n \setminus D_{n+1}$, $a \in D_n$ and hence $U_{p_n}(M_a) \supseteq U_{p_{n+1}}(M_a) \supseteq U_{p_{n+1}}(M_a)$. Finally, since $D_1 \setminus D \in \mathcal{F}$, $\mathcal{F}_{D_1 \setminus D}$ is a non-principal ultrafilter on $D_1 \setminus D$. By Lemma 2.2 and by hypothesis, $\prod_{a \in D_1 \setminus D} \mathcal{F}_{D_1} = M_a$ is a direct summand of $\prod_{a \in D_1 \setminus D} M_a$. Also, by Corollary 2.9, $\operatorname{cpl}(\mathcal{F}_{D_1 \setminus D}) = \operatorname{cpl}(\mathcal{F}) = \aleph_0$. We thus obtain a contradiction to Lemma 3.1. This completes the proof of Step 2.

Now, by (*), $C_1 = C \cup F$ with $C \cap F = \emptyset$. Also, by Steps 1 and 2, $C \notin \mathcal{F}$ and $F \notin \mathcal{F}$. Therefore $C_1 \notin \mathcal{F}$, which is a contradiction to our hypothesis. This completes the proof of the lemma.

THEOREM 3.5. Let \mathscr{F} be a non-principal ultrafilter on A such that $\operatorname{cpl}(\mathscr{F})=\aleph_0$. Let $\{M_a\colon a\in A\}$ be a family of left R-modules. If $\prod_{a\in A}^{\mathscr{F}}M_a$ is a direct summand of $\prod_{a\in A}M_a$, then there exists $B\in \mathscr{F}$ such that the factor ring $\overline{R}=R/\operatorname{ann}_R(\prod_{a\in B}M_a)$ satisfies the Ascending Chain Condition (ACC) on annihilators.

Note. C. F. Faith, in [9], extensively studied rings with ACC on annihilators. Proof. For $C \subseteq A$, define $P_C = \prod_{a \in C} M_a$. By Lemma 3.2, $\{\operatorname{ann}_R(P_C): C \in \mathscr{F}\}$ has a maximal element, say $\operatorname{ann}_R(P_n)$ for some $B \in \mathscr{F}$. Let $\overline{R} = R/\operatorname{ann}_R(P_B)$.

Now, let $\operatorname{ann}_{\bar{R}}(B_1) \subseteq \operatorname{ann}_{\bar{R}}(B_2) \subseteq \ldots$ be an ascending chain of annihilators of subsets of \bar{R} . We need to show that this chain stops.

Define the descending chain of p-functors $\{V_n: n \ge 1\}$ via $V_n(M) = \operatorname{ann}_M \operatorname{ann}_{\bar{R}}(B_n)$ for $M \in \bar{R}$ - $\mathcal{M}od$. Note that $\prod_{a \in B}^{\mathcal{F}_B} M_a$ and $\prod_{a \in B} M_a$ are \bar{R} -modules. Also, by Lemma 2.2, $\prod_{a \in B}^{\mathcal{F}_B} M_a$ is a direct summand of $\prod_{a \in B} M_a$ as R-modules, and hence as \bar{R} -modules. By Corollary 2.9, $\operatorname{cpl}(\mathcal{F}_B) = \operatorname{cpl}(\mathcal{F}) = \aleph_0$. Hence, by Lemma 3.4, there exists $C \in \mathcal{F}_B$ and there exists $n \ge 1$ such that for all $a \in C$ and all $p \ge n$, $V_n(M_a) = V_p(M_a)$. Now, since the V_p 's commute with direct product, we have $V_n(P_C) = V_p(P_C)$ for all $p \ge n$.

CLAIM 1 (Claim 1 of Theorem 4 in [14]). If X is a faithful left \overline{R} -module and if $S, T \subseteq \overline{R}$ with $\operatorname{ann}_X \operatorname{ann}_{\overline{R}} S = \operatorname{ann}_X \operatorname{ann}_{\overline{R}} T$, then $\operatorname{ann}_{\overline{R}} S = \operatorname{ann}_{\overline{R}} T$.

CLAIM 2. P_L is a faithful left \overline{R} -module for all $L \in \mathcal{F}_B$.

Proof. $L \subseteq B$ implies that $\operatorname{ann}_R(P_B) \subseteq \operatorname{ann}_R(P_L)$. Since $L \in \mathcal{F}_B$, $\operatorname{ann}_R(P_L) = \operatorname{ann}_R(P_B)$, by the choice of B. Therefore $\operatorname{ann}_{\bar{R}}(P_L) = 0$.

Since $C \in \mathscr{F}$, P_C is a faithful \overline{R} -module, and since $\operatorname{ann}_{P_C} \operatorname{ann}_{\overline{R}}(B_n) = V_n(P_C) = V_p(P_C)$ = $\operatorname{ann}_{P_C} \operatorname{ann}_{\overline{R}}(B_p)$ for all $p \ge n$, we have $\operatorname{ann}_{\overline{R}}(B_n) = \operatorname{ann}_{\overline{R}}(B_p)$ for all $p \ge n$, by Claim 2. Hence \overline{R} has ACC on annihilators.

COROLLARY 3.6. Let R be a simple ring. Let \mathcal{F} be a non-principal ultrafilter on A such that $\mathrm{cpl}(\mathcal{F})=\aleph_0$. Let $\{M_a\colon a\in A\}$ be a family of left R-modules. If $\prod_{a\in A}^{\mathcal{F}}M_a$ is a direct summand of $\prod_{a\in A}M_a$, then R has ACC on annihilators.

COROLLARY 3.7. Let \mathscr{F} be a non-principal ultrafilter on A such that $\operatorname{cpl}(\mathscr{F}) = \aleph_0$. If $\prod_{a \in A} \mathscr{F}$ R is a direct summand of $\prod_{a \in A} R$, then R has ACC on annihilators.

Note that Theorem 3.5 and Corollaries 3.6 and 3.7 can be applied to any non-principal ultrafilter on any set A with |A| < first measurable cardinal number. In particular, these results can be applied to any non-principal ultrafilter on any set A if there are no measurable cardinals.

Acknowledgment. The author wishes to thank Steven Buechler for suggesting this problem.

References

- [1] J. L. Bell and A. B. Slomson, Models and Ultraproducts: An Introduction, North-Holland, Amsterdam 1969.
- [2] V. Camillo, On Zimmermann-Huisgen's splitting theorem, Proc. Amer. Math. Soc. 94 (1985), 206-208.
- [3] C. C. Chang and H. J. Keisler, Model Theory, North-Holland, Amsterdam 1973.
- [4] W. W. Comfort and S. Negrepontis, The Theory of Ultrafilters, Grundlehren Math. Wiss. Springer-Verlag. New York 1974.
- [5] J. Dauns, Subdirect products of injectives, preprint,
- [6] Uniform dimensions and subdirect products, Pacific J. Math. 126 (1987), 1-19.
- [7] F. R. Drake, Set Theory: an Introduction to Large Cardinals, North-Holland, New York 1974.
- [8] P. C. Eklof, Ultraproducts for algebraists, in: Handbook of Mathematical Logic, edited by J. Barwise, North-Holland, Amsterdam 1977, pp. 105-137.
- [9] C. F. Faith, Rings with ascending chain conditions on annihilators, Nagoya Math. J. 27 (1966), 179-191.
- [10] T. Jech, Set Theory, Monographs in Pure Appl. Math., Academic Press, 1978.
- [11] H. Lenzing, Direct sums of modules as direct summands of their direct products, Comm. Algebra 4 (1976), 681-691.
- [12] H. Lenzing and C. U. Jensen, Model Theoretic Algebra, Gordon and Breach, to appear.
- [13] P. Loustaunau, Large subdirect products of projective modules, Comm. Algebra 17 (1) (1989), 197-215.
- [14] Large subdirect products of modules as direct summand of their direct products, ibid. 17 (2) (1989), 393–412.
- [15] J. R. Schoenfield, Measurable cardinals, in: Logic Colloquium 69, edited by R. D. Gaudy and C. M. E. Yates, North-Holland, Amsterdam 1969, pp. 19-49.
- [16] A. W. Schurle, Topics in Topology, North-Holand, New York 1979.
- [17] M. L. Teply, Large subdirect products, preprint.
- [18] B. Zimmermann-Huisgen, The sum-product splitting property and injective direct sums of modules over von Neumann regular rings, Proc. Amer. Math. Soc. 83 (1981), 251-254.

[19] W. Zimmermann, Rein injektiv direkte Summen von Moduln, Comm. Algebra 5 (1977),

GEORGE MASON UNIVERSITY MATHEMATICAL SCIENCES Fairfax Va. 22030

Received 3 December 1988; in revised form 11 August 1989