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Weak bounds for the maximal function in weighted Orlicz spaces
by
RICHARD J. BAGBY (Las Cruces, N.Mex,)

Abstract. For ¢ a Young function and wE = [pw(x) dx a nontrivial doubling measure on £, it
is shown that the Hardy-Littlewood maximal function MY satisfies the weak-type inequality

wix: Mf(x}> 1) < J@(c,)f Cl/Apwi) dx
if and only if the conjugate Young function @~ satislies

[&7 (ewQ/Qlw(x))wix) dx < wQ
2

for all cubes @, with some fixed £> 0. When @ is submultiplicative, it is shown that the last
inequality can always be strengthened by replacing &~ by (¢7)!*? for some & > 0. In some
weighted Orlicz classes (IF spaces, for example), this can be used to prove the equivalence of the
weak incquality for MY and the strong inequality .

o (Mf opw(x) dx < [ (e, SN )wx) dx

but we show the cquivalence is generally false.

1. Introduction. In [6], B. Muckenhoupt found a remarkably simple
characterization of the class A, of weight functions w such that the Har-
dy-Littlewood maximal funcmon is bounded in IF (E", w{x) dx). For 1 < p < oo,
he proved that we A, if and only if there is a constant ¢ such that

(fw)ax)( wi)= @~ Vdxp=1 < clQ)F
2 0

for all cubes @ in E"; this inequality is known as the A, condition. Routine
arguments show that the 4, condition is equivalent to a weak-type bound

wix) dx < eA7F f| f (x)|F dx

(s MJ{x) > 1} ‘
for arbitrary functions f'and for all 4 > 0, but in general an inequality of this
type is strictly weaker than continuity in I7(E", w(x}dx). However, for the
maximal function such an inequality does imply continuity in L#(E", w(x) dx)
for all ¢ > p. Muckenhoupt proved that whenever w satisfies the 4, condition,
it must also satisfy the 4,_, condition for sufficiently small ¢ > 0, thereby

proving that the maximal functicn is continuous in IP(E", w(x) dx)
Kerman and Torchinsky [4] then extended Muckenhoupts results by
considering weighted Orlicz spaces. They defined the class A4, of weight
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196 R. J, Baghy

functions to be those for ‘which the maximal function satisfies a bound
[B(MS (x))wx)dx < [P(c|f (x)])w(x)dx

and proved that we A, if and only if we 4, for 1/p the upper index of &,

Chiing, Hunt, and Kurtz [2] found a refinement of Muckenhoupt’s result
by considering weighted Lorentz space norms. They found that weights
satisfying the A(p, 1) condition

j wix)dx/ | w

OnE

(x)dx < ¢(IQINQ~ED”

for arbitrary measurable sets E and cubes Q satisfy the same weak-type
inequality as A, weights provided f is ‘a characteristic function, but not for
general f € I?(E", wdx). Consequently, A(p, 1) is a proper subset of 4, which
also contains A, for all g > p.

Here we present a significant further refinement of Muckenhoupt’'s work by
considering weak-type inequalities for the Hardy-Littlewood maximal function
in weighted Orlicz spaces. We define the class By to be those weight functions
w satisfying

< [®(clf XN/ wixydx

w(x) dx
fx1 M f(x) > 4}

for all 4> 0, f eI®(E", w(x)dx). We prove that By, can be characterized by
a natural analogue of the A4, condition, and prove a theorem generalizing
Muckenhoupt’s result that weA implies we 4,-.. However, this last result
requires a hypothesis ruling out cho1ces of @ such as &(t) = ct?(1 +log.. &) with
k > 0. In fact, our characterization of By, shows that these are distinct proper
subclasses of 4, containing A4, for all ¢ > p.

Our characterization of By is sitaple enough that for a given weight w, we
may by able to find a nearly optimal & for which weB,. By using the
techniques of J. D. Parsons and the author [1], we can then obtain extrerely
delicate weightied bounds for the maximal function. For example, we B,, with
P(t) = t2(log, t)? does not imply we A,, but it does imply that the Har-
dy-Littlewood maximal function is bounded from I? (lo g L)} (wdx) to L (wdx).
Such results were not previcusly obtainable.

2. Preliminaries. Let w be a fixed nonnegative, measurable function on E”.
For A < E" Lebesgue measurable, we shall write |A| for the Lebesgue measure
of A and

wd = [ w(x)dx.
4

We shall generally use the letter Q for a cube in E", by which we mean the
product of » intervals [a;, a,+ 5] with 0 < s < oo. For @ such a cube, we write
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Q* for the cube having the same center as Q, but edges three times as long. We
then say that w defines a doubling measure if there is a constant ¢ such that

wO* < cwQ  for all cubes Q.

We use the version of the Hardy-Littlewood maximal function on E"
defined by

Mf () = sup{|Q|™' [ f (W) dy: xeQ}.
Q

The simple result below allows us to bound the distribution function of Mf
with respect to doubling Borel measures. The proof is quite well known.

(2.1) PROPOSITION. For K an arbitrary compact subset of {x: Mf(x) > A}, it
is possible to choose cubes Q,..., Q,, with pairwise disjoint interiors such that

[1fG)lde > AQy), for each Q,, and
Ok

K)ot

Proof For each yeK, there is a cube Q having x in its interior and
fol f(x)Idx > A|Q|; by compactness we can choose finitely many such cubes
covering K. We may then order this finite collection so that their measures
form a nonincreasing sequence.

Let @, be the first cube in this sequence, and let 0, be the next cube with
interior digjoint from that of Q,. Having selected Q,,..., 0, with pairwise
disjoint interiors, choose Q,,, to be the next cube in the cover with this
disjointness property.

If O is not selected, then |@n Q)| > 0 for some selected @, with |Q, > 10].
Consequently, 0 = QF and the proof is complete.

We shall call a function & on [0, w) a Young function if @ is continuous,
convex, nondecreasing, and satisfies

B(0) = 0,
The comjugate Young function ®” may be defined by
P7 (1) = sup{st— &(s): 5 > 0};

it is the minimal Young function which satisfies st < &(s)+ &~ (1).

For ¢ a Young function, the Orlicz space L®(dy) consists of all p-meas-
urable functions f such that ®(¢|f |} is p-integrable for some £ > Q. It can be
normed by

$(t)/t—~o00 as t—o0.

1fle = inf{i > 0: f&(f|/})du < 1}.

The Orlicz space version of Holder's inequality is then

§lfaldn <201 flalglle-
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Basic facts about Orlicz spaces may be found in Zygmund [7]; an extensive
treatment is given by Krasnosel'skii and Rutickii [5].
Note that monotone convergence implies that

[B(flNdp<1  for A=|f e

inequality is possible unless &( f|/A) is p-integrable for some 1 < || f|,.
For functions on E" which are locally in I®(wdx), the norms

[ f oo = inf{d > 0: jcb(|fg/,1) di < wQ}

are quite useful. For 0 < wQ < o, this is the usual norm in I®*(dy) w1th dp the
restriction to @ of (w/wQ)dx.

We conclude this section with & technical lemma relating conjugate Young
functions.

(2.2) LEMMA. For @ and ®~ conjugate Young functions, there is a continuous,
monotone function g on [0, oo} such that

Pg(t) < tg(t) < P(29(2)),
207(1/2) < tg(r) < 7(21).
Proof If we define
h(t) = sup{s: ®{s) < st},
then h is monotone and satisfies $(h(r)) = th(t). Moreover,
&”(t) = sup {St——di(s)' &B(s) < st} < th(1),

while th(t) = 2th{t)— ®(h(t)) < $7(2¢). However, h has a discontinuity if ¢(1)/t
is a nonzerc constant near t = 0.

Let us define
i
[{1+35)®'(s)ds, t<1,
Dy (1) = {0

t
So(D+2 [P (s)ds, t>1.
1
Then ¢, is a Young function with @) < @,(t) <2
297 (t/2) < () € D7 (). We then take

glt) = sup{s: P,(s) € st}

3. The weight class B, Throughout this section, we assume that w is
a nonnegative measurable function on E" and & is a Young function.
We call w a nontrivial weight if there is at least one cube @ with

0 < wQ < co. We then define B, to consist of the nontrivial weights w for
which there is a constant ¢ with

(3.1) w{xeE" Mf(x)> i}

@(¢). Consequently,

< Dl f AW dx
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for all 4> 0 and all fe I®(wdx). If ¢, is any value of ¢ for which (3.1) is
valid, we say we B, with constant ¢,.

Note that if f is the characteristic function of an arbitrary cube Q, then
Mf>2"" on Q* Consequently, whenever weB, we must have

wQ* < #(2"c)w@. Thus w must be a doubling measure which is finite and
positive on all cubes.

(3.2) Lemma. If we By with constant c,, then for every &> 0 we have
(w+e)e By, with constant 2-3"c,.

Proof. First note that ¥(cy) > 1 since the maximal function of the
characteristic function of any cube @ is 1 on Q.
Next note that

fx: Mf() >4 <23

(xxtr(x)| > A/2}

1f/Aldx.

This is quite standard; it can be proved by using (2.1) and the observation
{x: Mf(x)> A} = {x: Mg(x)> 4/2},
where g is the restriction of f to {x: |f{x)| > 4/2}. On this set,.we have
2:3° £ (/A < (23" £ A Bleg) < B(2-3"col F(N/A).
Consequently,
(we){x: Mf(x) > A} < [Dleol fI/Awdx+e[B(2-3col f (x))/4) dx
< (P2 3co) /Ay W+ 2) dx.

Now we are ready to characterize the weight class By by means of
a condition analagous to the 4, condition in the form used by Chung, Hunt,
and Kurtz [2].

(3.3) THEOREM. For w a nontrivial weight, we By, if and only if w defnes
a doubling measure and there is a constant ¢ suc‘h -;that

11/ Wlla-we < clQl/w@
Jor all cubes Q.
Proof. If Q is any cube such that (4| f(x)|dx > 4|Q], then
12 1| fx)] wix)dx
WS le® a W
< ¢,|0l/wQ, then || f/ilswg > 1/2¢, so that

[ @2 | f1/A)wdx > wQ.
1]

<2(t/wlemw.all falowe-

If also [|1/wHowe <



200 _ R.J. Bagby

Consequently, for any compact K < {x: Mf(x) > 1}, we can apply (2.1) to
choose a sequence of cubes @, with pairwise disjoint interiors such that both
wK <Yy wQ} and

wQ, < j' ®(2c,|A)wdx.

1f also w defines a doubling measure, then

wK € ¥Ye,wQ, <Y, j O2e, | [ ywdx < [S(2¢, 65| f [/Awdx.

Taking the supremum over all compact subsets of {x: Mf(x) > A} then gives
we B, with constant 2c,c,.

Now suppose that we B, with constant ¢,. With the additional assumption
that 1/w is bounded, we prove that

[~ (1/iwywdx < wQ  for A= cc,iQl/w@.
0

We then use (3.2) to remove the extra assumption.

For g the function given by (2.2), continuity and monotonicity aflow us to
choose s > 0 (depending on Q) such that

fg(1/swydx = swQ.
Q .
Since tg(t) = 297 (t/2), we then have

2[(15 (1/2swswdx < jg(i/sw <sw@, or

wQ/2.

For f(x) = ¢g{1/sw(x}) on Q and 0 elsewhere, we have Mf(x) =
"Thus for we B, with constant ¢,

j' i (1/23w)w dx <

swQ/IQ| on Q.

0 < j@(CO!ng(l/sw)/st)w dx.

But [, P(g(l/swhwdx < l/s fgg(l/sw)ydx =wQ, so we
1 < ¢yl0l/sw(. Thus for A = 2¢,|0l/wQ we have

ftﬁ (L/Awyw dx < ij (1/2sw)w dx < wQ.

must  have

For general we B, with constant ¢, (3.2) guarantees that (w+£)e B, with

constant 2-3"¢, for each & > 0, and of conrse 1/(w +5) is bounded. Censequent-
Iy, for

A= 223", |0l/w@ > 22-3"c,iQl/(wQ +£|Ql),
we have

[ 7 (1/A(w + &)} (w+e) dx
2

< wQ+elQ).
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Letting £—0 gives fo®"(1/Aw)wdx < wQ by monotone convergence.

Now we consider inclusion relations among B, classes. As we noted in the
proof of (3.2), w{x: Mf(x)> A} is controlled by the restriction of f to
{x: | f(x)| > 4/2}. Consequently, we B, means & has sufficiently rapid growth

at infinity; we always have By < By 1f ®(1) < P(ct) for all sufficiently large 1.
On the other hand, Muckenhoupt [61 proved that for we 4, we must have
we A, for some g <p, which reverses the natural inclusion. In the remainder of
this sectmn, we develop a generalization of Muckenhoupt’s result by adapting
the proof given by Chung, Hunt, and Kurtz [2] to a restricted class of Orlicz
spaces.

(3.4) LEMMA, If we B, with constant c,, then for each cube Q we have
wQ < B2ewixeQ: wix) < 2wQ/IQl}-

Proof. Let = {xeQ: wx)<2w@/0l} and F=Q-E Then
2|F|wR/1Q] < hwdx < wQ, so that |F| < |Q|/2 and |E| > |Qi/2. Take f = xg;
then Mf = 1/2 on Q. Hence

< wix: Mf(x) = 1/2} < [@2¢,l f)wdx = ®(2co)wE.

(3.5) LEMMA. Suppose $~(st) < AP~ ()P (¢} for all 5,t >0, and we By wu:h
constant ¢,. Set E(A, t, Q) = {xeQ: ®"(1/Aw) > t}. Then there are constants ¢,
and ¢ (depending only on ¢, and A) such that

[ & (1/iw)wdx < c;wE(4, et, Q)
E(A.6,0)

whenever
jdb (1/Aiwywdx < twQ.
Proof Since w is a doublmg measure, the Calderén-Zygmund decom-
position shows that we can select nonoverlapping subcubes @, of § such that
twQ; < j' &~ (1/Aw)wdx < P(2cohtwl;

for each i and @~ (1/iw) < ¢ ae. in Q—{)Q;. Hence

{ @ (t/Aw)wdx <):(b(2"co)th
E(1,1,0)
and

wQ, < P2c)wixeQ; w< 2wQ,/10.}
by (3.4). VWe complete the proof by finding &> 0 such that
{xeQ: w<2wQ,/1Ql} < E@, #t, Qs)
"(1Qd/2wQ,) = at.

or equivalently, @
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By (3.3), we can choose a constant ¢ with
§ @7 (wQ,/clQdw)wdx < wQ,.
Qi
Since

w0, < [ 07 (1/iwwdx < A [ @7 (c|Q)AwQ) ™ (wQ,/cIQiw)w dx
Qi : &

< AP”(C|QN/AWQIWQ; < A2 @7 (20) 97 (1Q4/2AwQ w0,
we may take 1/e = A*®~(2c).

(3.6) THEOREM. Suppose w & B, with constant cg. If @7 (st) < AP~ (s)P" (1) for
all 5, t > 0, then there is a 8 > 0 (depending only on ¢q and A), such that we By
for Y7 ()= @~ ().

Proof By {3.3) it suffices to find a constant ¢ for which
[P/ iwwdx <w@  when A = ¢|Q|/wQ;
g

as in the proof of (3.3) it suffices to prove this under the additional assumption
that 1/w is bounded.

Let us define a measure u by du = ®"(1/iw)wdx; then

o
where E(4, 1, Q) is the set defined in (3.5). For t <1 we may bound

HE(A, t, Q) < pQ = [ &~ (1/Aw)wdx,
Q

[ (1awwdx = [ &(1/dw) dy = 5?16-1;:15(,1, t, Q)dt
0 . 0

while for t > 1 and A = || 1/wl|g-,0 We have {,@7(1/Aiw)w dx < 1wQ, and hence
HE, t, Q) < ctw{d, &, Q) by (3.5). Thus

[P (1/Awwdx < p@+8 [ 271 uEQ, t, Q)dt < uQ+c,8 § PwE(A, e, Q)dr
[¢] 1 1

K pQ+cide 8§ PwEA, ¢, Q)di
]
= pQ+¢, 87101+ 8)7H [ @7 (1/AwH How dx.
Q

Choosing & small enough that ¢,d67* "%(1+8)7! < 1/2 gives
§E (/AW wdx < 200 = 2] &~ (1/2whwdx < wQ  for = 2|1/W]g-mg
Q Q
The condition @7 (st) < AP~ (s)P~(t) excludes quite a few of the standard

Young functions. If @(t) = tP(logt)** for large z, then @~ (1) ~ t*(log ) ~* for large
t, where p and ¢ are Hélder conjugates. Consequently, (3.6) applies when o < 0
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but not for & > 0. In the next section we show that the conclusion of (3.6) fails
when &(t) = t*(1 +log . 1), so that the condition on @~ cannot be eliminated
from the hypotheses of (3.6).

In calculations using a given weight, the best possible weighted estimates
for Mf would be obtained by finding an optimal Young function @ for which
we By, In such cases, (3.6) says that its conjugate @~ should not satisfy the
condition @~ (st) < AP"(5)P(2). ‘

4. Applications and examples. By using (5.3) of [1], we can obtain a variety
of weighted Orlicz space bounds for the Hardy-Littlewood maximal function

. when the weight is in B, We summarize them in (4.1) below.

(4.1) TrrorREM. For weB,, the Hardy-Littlewood maximal Junction is
bounded from L®(wdx) to LY (wdx) provided

i P'(s)@(t/s) ds < B(ct) .
0

for some constant ¢.

While there are cases (including ®(t) = #, 1 < p < o0) where (3.6) and 4.0
can be used to prove that Mf is bounded in L®(wdx) for all weB,, this
conclusion is generally false. We give two simple examples where By, contains
weights not in Ag.

(4.2) ExampLE. Take

B0 = 2 fori<l,
0= 3 for t> 1.

Then I? = I? I3, so that I%" = I?+ I3, It follows easily that By = A, while

Ap=A4,.
¢ 2
24t/

{(4.3) ExamrLE. Let
2
(_j_m) >l
3+logt

One may verify that &(1) = (tlogt)® for large t, so that we B, means

[ wdxs (@j('f ("))2(1+1og+“"—"%’ﬂ) w() dx.

ML > 2) A
Let us take n = 1 and w{x) = |x]; then to prove we By it is enough to check that

- OSE-‘-:.:,I,
" (1) =

}é"(l/lx)xdx <a?2 for A=cfa, a>0.
0
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Choosing ¢ =1 gives
4 a a’dx
[ @ = | Toga

On the other hand, for any §, e > 0 we have

a*/3.

]{ P~ (5/x) TPxdx = o0,
)

The characterization of A, given by Kerman and Torchinsky [4] shows that
Ay = A,; in this case wed, for all p>2 but w is not in 4,.
Let us now apply (4.1) with this choice of &. Take Y(f) = t*—1fort> 1

and 0 otherwise. Then L* consists of the functions whose restriction to every set
of finite measure is in I2. Since

i (25) (e/s)*(1 +logt/s)* ds = (2/3)¢*(1 +logt)®,
1

we see that the Hardy-Littlewood maximal function is bounded from °
I*(logL)*(wdx) to Li.(wdx) for all weB,,.

For the case w{x) = |x| on E', slightly better weighted bounds for M can be
obtained by using the fact that w is in the weight class A(2, 1) of Chung, Hunt,
and Kurtz [2]. However, if we modify w by redefining w(x) = |x|/(log2/x)* for
[xt <1, then w¢ A(2,1) for e >0 but weB, for ¢ > 1.
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H” spaces over open subsets of R"
by
AKIHIKO MIYACHI (Tokyo)

Abstruct, Part of the theory ol H? spaces ovet R", originated by C. Fellerman and E. M. Stein
{47, is generalized to the case of arbitrary open subsets of R”. The lollowing subjects are treated: (1)

“Definition of H*(53), where £ is an open subset of R", by means of maximal functions; (2) Atomic

decomposition for H*(Q); (3) Identification of the duals of H#(£2) with certain functicu.l spaces over
£ (4) The complex method of interpolation for HP(Q) and LP(); (5) Ex‘tenslon of a distribution in
HP(6) to a distribution in H"(R"). All the results are given in the situation that R* has a parabolic
metric.

1. ¥ntroduction. In this paper, we introduce H* spaces over arbitrary open
subsets of R* by means of certain maximal functions and show that they have
some properties similar to the H” spaces over R” (for the H” spaces over R", see
Calderon-Torchinsky [1], [2] or Torchinsky’s book [10; Chapt. XIV]).

We briefly review our results. _ ]

Let ¢ be a function in C§ (R") such that suppg < {xeR"||x| <1} (f xeR",
then Ix| denotes the usual Euclidean norm of x) anfl ) cp(?c) dx = 1 For t > 0, wc’j
define (), by (@),(x) = t™"o(t™'x) (we shall_ modify this definition afterwards;

see the next to the last paragraph in this section). Let Q be an open subset of R".
For f € @'(Q), we define the radial maximal function fiax), xef2, by

FEax) = sup{l(f (@) (x—WHI0 <1 < dislx, @)},

where O° denotes the complement of £2 (throughout this paper, &' (£2) denotes
the set of distributions on @ and {f, >, where f e.."Z’(Q)_and. e C_f," (), means
f(y); we use the same notation {f, Yy if fis a dis.tubutlon with com;}act
support and ¥ is a smooth function on R"). For p with 0 <pp <1, we de‘:ine
HP(R) as the set of those f € 2'(€) for which f 7.0 belongs to I (). Wep consi I:e:r
H?(®) 2 quasinormed linear space by defining the quasinorm of f € H _(Q_) to be
equal to the IF(Q)}norm of f4.a- (By a quasinorm we mean a_fupchon o 01;
a linear space X which has the following properties: (i) &(x) > 0 if x#0 an

o(0) = 0; (it) o(Ax) = |Alo(x) for all scalars A and all xeX; (iii) there extllsts
a positive constant k such that o(x+ E k(a(x)+a(y)) for all x, ye X)) T en
the maximal inequality given by the anthor [8] shows that the above dgﬁmtmn

i i fication: Primar : Secondary 46F05.
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Key words and phrases: H” spaces, maximal function, atomic decomposition, Lipschitz spaces,
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