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and

Il 4 < ”g”A(.s;m 5 C.'s',A ||9'~“A(s)

for all functions g on © with je L{ (R") and for all s> 0.
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Weighted inequalities for
the Hilbert transform and the adjoint operator
in the continuous case

by
MARISELA DOMINGUEZ (Caracas)

Abstract. We prove two-weight norm inequal.ities in I? for the Hilbert transform in R, of the
Helson, Szegd and Sarason type. _

L Introduction. Arocena, Cotlar and Sadosky (see [3]} proved that the
theory of generalized Toeplitz kernels can be used to obtain the theorems of
Helson, Szegd and Sarason type (see {9, 10, 13]), with refinements.

Nevertheless in the case of two measures they do not obtain the Helson,
Szeg6 and Sarason formula and in the case of R they consider, as Adams does
(see [1]), functions with vanishicg moments. In this paper, we consider two
tempered measures, functions with vanishing Fourier transform in an interval,
and use the theory of generalized Toeplitz kernels to give a -constructive
exponential characterization of Helson, Szegd and Sarason type for the Hilbert
transform; and we do the same for finite measures, but with the adjoint
operator.

The problems considered here arose in a natural way when we studied the
following prediction theory problem proposed by Professor Ibragimov (private
communication): characterize the continuous parameter weakly stationary
completely linearly regular process such that the maximal correlation coef-
ficient g, 15 O(e~*) (see also [11]). In the previous papers (cf. [6-8]) this theory
and an analogue of Theorem 1 were considered to obtain results about the rate
of convergence of the maximal correlation coefficient in the continuous case
including a solution to the problem stated by Professor Ibragimov.

An extension, to matrix-valued measures, of the results presented here is
given in [5].

IL. Basic problems

DEFINITION. A measure y is tempered of order < 2 if u/(x*+1) is a finite
measure.
Set

M({(R) == the positive finite Borel measures in R,
M?*(R) = the positive Borel tempered measures of order <2 in R.
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We use the following notation:
g,(x) = e"*,
E =span{e: teR}, E' =span{e,;: t # 0},
E, =span{e;: t > 0},
F, ={¢x)(x+i} dpcE,},

E(t) == e,El +E2,

E, =span{e;: t <0},

Fy = {$0)/(x—D): deE,),
Foy=eF +F,,
F={fecC?R): (1+|x[)f(x) is bounded}.

We have F, < F, F,c F, F, «c H** < [*(R, dx), F, < H>™ < L*(R, dx)
and F < I*(R, p} if pe M?(R).
We shall study the following problems:

1} Characterization of the pairs of measures (i, v)e M*(R} x M2(R) such
that :

o0

( HRdu<a [ If12dv

-0

for every function f € F,, asociated to a function ¢ & E, with vanishing Fourier
transform in an interval via

b,
e

¢ = l¢’1+¢2'

Here a > 1 and H is the Hilbert transform.
2} Characterization of the pairs of measures (4, v)e M(R) x M (R) such that

[} o

JIANPdu<a | |fI*dv

- . ~c)

for every ft_mctior_l S &F related to a function ¢ € E,,, with vanishing Fourier

transfonn. in an 1ntcrya1 via f (x) = ¢(x)/(x—i), with a > 1 and A the adjoint

operator in I* (R), which associates to a function f its adjoint function A(f) = f.
For the Hilbert transform H (see [4]) we have '

¢ ¢ .
(x+i =i ek,
¢ ¢
H-E )= +i-2
(xmi Hi— Jf ek,
Therefore if [ =e-?1—+~(mé%— with ¢, 6E d E
fx_l__[' X -] 1 1 an d)ZE 20 then H(f}
_ P P
R TR
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For a> 1, we set
R,,(a) = {(u, Ve M*(R)x M*(R):

o0

[ IH P dp<a _T |f2dv for all feF,}.

Now we shall explain wl;at we understand by the adjoint of a bounded
function. If ¢eI®(R, dx) and f(x) = ¢{x)f{x—1i) then
A(D) (x) = (x—DH(f)(x)  (see [12], p. 193).
As EycL®, if ¢=ed,+¢,, with ¢,eE;,, ek,
= (e, b, + ) (¥)/(x—1) then A($)(x) = (x—i) H(f){x).

For a = 1, we set

and f(x)

0,(@) = {{u, )& M(R) x M(R): _Df |A(¢)Pdu < a _of |62 dv for all peF,}.

Using this notation we specify problems 1) and 2}

1) Characterization of R, (a) for a> 1.

2) Characterization of Q,(a) for a> 1.

For solving problems 1) and 2) we shall make use of the lifting theorem for
weakly positive matrices of measures in R.

TIL Lifting theorem. We generally follow the notation of [2, 3]. Let
M = (pgplap=1,2 bE 2 matrix of measures in R.

DEFINITION. M is positive if for every Borel set 4 < R, (t,5(A)ap=1,2 18
a positive-definite numerical matrix.

That is equivalent to the following three conditions:

(1) Hiy =0, Uy 2 0.
(i) fo = oy
(1) |pago (A < gy, (A)itg,(4) for every Borel set 4 < R.
Let M be such that (i) and (i) hold. It can be seen that M is positive if and
only if

(iv) i i T boBpditgg 2 0 for all (¢, pr)e ExE.

a=1f=1~w
A weaker condition is the following ‘
DEFINITION. M is weakly positive if M satisfies (i), (i) and

2 2w
@ LY [ ¢uPpdisy >0 for all {$y, ¢2)eEy X Es.
a=1f=1—m .
Tasorem (Lifting property for weakly positive matrices of measures in R)
[2]. Let M = (ftpgup=1,2 b€ a matrix of finite Borel measures in R. Then the

following conditions are equivalent.
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{(a) M is weakly positive.

0 hdx | . »
(b} There exists he HY(R) such that M +[h_ 1 0 ] Is positive.

ProOPOSITION. Let u, ve M2(R), a > 1,

av— i

_ (av+ e,
X241

Ry = Hyp = Hig = Hay = tip

M is weakly positive if and only if (u, v)e R, ,(a). In this case, u is an absolutely
continuous measure.

Proof. Let feF,, f--e-—g‘il-»k ik w1th ¢,€E, and ¢,cE,. Then

x+i o x—
e 2d(av 1) e, d{av+p)
_‘Ll('bl x*+1 ‘[ o (x+1)?
d(av+p) d(av—p)

2+1
=a ]? (|¢1‘2 et¢l(}-2+ —!¢2$l+ ¢ * )dv

+ I ﬁbz‘}—l“""_l)z—‘f' j d)z|2

*+1 0 x4+ x—)?  x241

-

z ]9?51|2 ez(fl)].(z)-z e~z¢z$1 Iﬁbzlz
h_jm<x2+1 (x+i)2+(x—i)2 xz—l—l)d'u

=a | |fPdv— | |Hfdu.

From this calculation we obtain the first result,
For the second part notice that

|1“12(A)+ £h(x)dx|2 € Dy (4) and 4] =0

implies |(av+p)e(4)] < (av--uw)(4) and then p(d) = 0.

IV. Characterization of R, (a) and Q,(a) for a = 1. We obtain a charac-
terization of a class of weakly positive matrix measures, which is the crucial
tool for solving our problems.

PROPOSITION. Let W = (w Weplep=1,2 be a hermitian Tmatrix of densities of
tempered measures of order <2 in R, that is, Junctions w,; with
Wolx*+1)e LX(R), such that (i) Wy (X} =wy,{x) >0 for almost all xeR,
() there exists t > 0 such that w,(x) = [wya(x)e,(x) for almost ail xeR, and
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(i) wy,(x) < |wiy(x)| for almost all xeR. Let q = wy,/w;,. Then the following
conditions are equivalent:
Wi Wiz
2 V)
(a) Z = X+l (x+d) -is weakly positive.
Way  Wia
(x—i)* x2+1
(b) There exists he H'(R) such that if v(x} = —arg((x+)*e_,(x)h(x)) then
(x> + 1) (x)] e
Wiy = TN
NAC{E el
lq(x)lcosv(x))

Ju(x)] < arcosh( i)

TE
x)| < arcsin
oot e )I)
Proof Z is weakly positive if and only if there exists he H*(R) such that

le(x)__ h(x) W11( )
(x41)? S
Let ¢ = (x+i)’e_,h and v(x) = —argd(x). We have

Wiz —h(x)2 wiy (|¢1|2—1)W11—2|Q|(Re¢)w11+|¢|2
e+ 1) T 2+ 1)

Then z, € w,, < z,, where for k=1, 2 we have set

d ( " ( lglcosv ))
= ———exp| (- 1)*arcosh| —=——
= T\ N
because (—1)*arcosh(x) = log(x+(—1)* \ /x*—1).
Finally, z, < w,, < 2, if and only if
log(w.L.m.__ W) g arcosh (M)
i VlaF -1
Let u(x) = log(w;,+/lg(x)|*—1/|$]). Then
(2 + Dih() e ™

Ml = -1

and we have the first inequality. o
Now, |w,,/(x+1)2—h| < wy /x*+1) implies

b £ (x +1)h ’1 |- x+1) e»th‘
}qle:(x_H Wi,

2
for ‘almost all xeR.

= 1-‘

Wi
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Then v = —arg($/w,,) and [lgl~ ¢/wy 4} <

THEOREM 1. Let i, ve M*(R), a > 1, t = 0, Then the following properties are
equivalent:

1. Thus [v| < %/2 and sinjv| < 1/|q].

El) Hy ¥ ERz t( )
(b) dy = wix)dx, dv = y(x}dx+dv, (where v, is the singular part of v with
respect to Lebesgue measure) and there exists he H'(R) such that

VW) = (x* + 1 (x)]

where v(x) = —arg((x+ i e (x) h(x)) and r,(x) = %%ﬁgg satisfy

cosv(x) )
& h| = |,
lu(x)| < arcos ( N

i n
g o -,
[o(x)| 5 arccosr,(x) < 5

Proof let (4, veR,,(a). Then

=i (@+n)e
41 (x+i)?

(av+pre_, av—u
(x—i)*  x*+1

is weakly positive.

We know that u is absolutely continuous. Let du = w(x)dx and let y be the
density of the nonsingular part of v. From Lemma 4 of [3] we see that

ay—w  (ay+we,

X+
(ay+w)e_, ay—w

(x—D)? x2+1

is weakly positive.
Using the last proposition we deduce that there exists he H? (R) such that

ay(x)—w(x) = o mjﬂ_)lffi

JaE—1

and if

B TG R »e ()

v(x) = —arg((x +i)*e_ (x)h(x)), &
ay(xy—

3
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then
Gl < amsh(w>
lg(x)f* —
[v(x)] s‘arcsin (ﬁ) < _;_ .
Since

| S

ay(x)—wix)

g~

ral) = |q(x)|

it follows that
lga)l 1

- = 2 u(x)
JawPE-1  JT=( YOIw(x) = (% + DA(x) €.

For the converse, we just notice that at all steps of the proof we have
equivalences.

This theorem is a generalization to the continuous case and to tempered
measures of order < 2 of the theorem of Helson and Sarason. In the case ¢t = 0,
it is a generalization of the theorem of Helson and Szegd (see [9, 10, 13]). The
theorems study the boundedness of the Hilbert transform in spaces with
weights in the discrete case.

THEOREM 2. Let i, ve M{R), a > 1, t = 0. Then the following propertzes are
equivalent;

@ (1, vye@(a)
(b) du = wix}dx and dv = y(x)dx+dv, and there exists he H'(R) such”
that /y(x)w(x) = |h(x)|e"™ where v(x) = —arg((x+i’e_,(x)h(x)) and 7,(x)
ay(x)—w{x)

" w1

Ju(x)| < arcosh (M),

1—-r2(x)

a

T
fo(x)| < - arccosr,(x) < 3

2

Proof. Consider dy = (x*>+1)dp and dv' = (x* + 1)dv, and apply Theorem
| to the measures ' and v'.

Let us finally observe that this theorem also generalizes the theorems
of Helson-Sarason and Helson-Szegd to finite measures in the continuous
case.
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Absolutely p-summing operators
and Banach spaces
containing all I, uniformly complemented

by
ANDREAS DEFANT (Oldenburg)

Abstract. Tt is proved that for p=1, 2 and oo a Banach space G contains uniformly
complemented all /s if (and only if} each operator T: E~F such thatid;®T: G®,E—~G®, Fis
continuous splits into a product T= RS of an absolutely p-summing operator § and an cperator
R with an absolutely p'-summing dual.

0. Introduction. In [4] Jarchow conjectured that for a fixed real number
1 < p < o a Banach space G contains alf ¥, uniformly complemented if (and
only if) it satisfies the following condition (): Every operator T'e #(E, F} such
that

id,®T: G®,E-G®,F

is continuous can be written as a product RS of two appropriate operators
R and S where R’ is absolutely p'-summing and § is absolutely p-summing. We
give an affirmative answer for p =1, 2 and . For arbitrary 1 < p< 0 it is
proved as a by-product that -G satisfies (*) if and only if there is a constant
4 = 1 such that for every natural number » there are finitely many operators
L, I,e ¥, G)and Py, ..., P,eZ(G, I) (where m depends on n} with

m m .
idp =Y PuJi, X IPAILE< A
k=1 k=1

Standard notions and notations from Banach space theory are used, as
presented in [5]. For the general theory of Banach operator ideals we refer the
reader to [8].

1. S,-spaces and T;épaces. As usual & stands for the space R" equipped
with the /,-norm. A real Banach space G is said to be an §,-space if it contains
all Y uniformly complemented, i.e., there is a sequence (G,) of n-dimensional
subspaces of G and projections P,e #(G, G} onto G, such that

supd(G,, I})) <o, sup Pl <o

(here as usual d(-, ) denotes the Banach-Mazur distar'lce).. Clearly, G is an
Sy-space if and only if there is a 4 > 1 such that for every »n there are operators



