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Type and cotype numbers
of operators on Banach spaces

by
ALBRECHT PIETSCH (Jena)

Abstract. For every operator acting between Banach spaces, we define the sequence of cotype
numbers and the sequence of type numbers. The asymptotic behaviour of these sequences is used to
introduce the scales of associated quasi-Banach operator ideals. The significance of these new
concepls can be illustrated, for example, by the fact that a Banach space has weak cotype g if and
only if the sequence of the cotype numbers of its identity map belongs to the Lorentz space L

Since the fundamental work of B. Maurey and G. Pisier [8] in 1976, the
concepts of type and cotype have proved to be extremely useful within the
structure theory of Banach spaces. A new era began when V. D. Milman and
G. Pisier {9] introduced a class of Banach spaces which are said to have weak
cotype 2. Subsequently, G. Pisier [15, 16] proposed how to define the concepts
of weak type p and weak cotype g with 1 <p<2and 2 < ¢ < co, respectively.
In the present paper we give a different approach to this subject which is based
on operator ideal techmiques.

In order to describe the main idea, we need to recall a well-known
definition.

Let (g,) be any sequence of independent normalized standard gaussian
random variables on a probability space (@, y). An operator T, acting from
a Banach space E into a Banach space F, is called Gauss-summing if there exists
a constant ¢ = 0 such that

(1 i g, (@) Ty ||* dp(e))'? < csup{(i [<xgs @42 Jal < 1}
k=1

2 k=1
for all finite families of elements x,, ..., x,& E. Setting | T|Bgl :=infe, the
class of these operators becomes a Banach ideal, denoted by By
We are now prepared to define the nth cotype number of an operator T by

X (T1Be):= sup{a,(TX): XeBglls, B), 1X|Bsl < 1},

where a,(TX) is the nth approximation number of TX.
Replacing B, by the adjoint Banach operator ideal % and switching the
test operator from the left to the right, we obtain the nth type number

4. (T|B%): = sup{a,(BT): BeB&(F, L), | BB < 1}.
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Next, for 0 <r < w and 0 < w < o0, the quasi-Banach operator ideals
(Bt = {T0 (e, (TIBg) el

(xa
(B = {T: (TIB) LW}
are defined.

Denoting the identity map of a given Banach space E by I, we observe
that E is of weak cotype ¢ with 2 < ¢ < o if and only if I, E(Pe. A similar
characterization holds for Banach spaces of weak type p with 1 < p < 2. In this
case, however, we must pass to the conjugate exponent p’, which means that
LB -

In conclusion, we state that the concepts of type and cotype numbers do
not lead to completely new results; see Theorems 3.11 and 3.13 (Remarks).
However, we get new insights into some interesting phenomena such as the
relationship between eigenvalue distributions and geometry of Banach spaces
[14] and the theory of weak Hilbert spaces [15, 16].

For the standard definitions, the reader is referred to my monographs
Operator Ideals and Eigenvalues and s-Numbers, which are quoted as [OPI]
and [EIG]. The notation is adopted from the latter.

1. Generalized Weyl and Chang numbers

1.1. Let % be any quasi-Banach operator ideal. For TeL(E, F) and
n=1,2,..., we define the nth UA-Weyl number

x,(T|¥):= sup{a,(TX): X eU(l,, B), |X|%A| <1}
and the nth U-Chang number
¥T{¥M):=sup{a,(BT): BeU(F,1,), |B|¥| < 1}.

Remark, Letting % = £, we obtain the criginal Weyl numbers x,(T) and
their dual counterparts y, (T), introduced by A. Pietsch [13].

1L.2. First of all, we list some elementary properties.
PROPOSITION.

M T =% (TIW > x,(T'W=...20 Jor TeQ(E, F).

2) Xpin-(S+TIW < %, (S| W) +x,(T1W) for S, TeL(E, F).

(3) x,(BTX|MW) < ||Bf x,(T|W | X]| for XeQ(E,, E), TeME, F), and
Be £(F, F,).

@) x,(T)=0if and only if rank(7T) < n.

The M-Chang numbers have the same properties.

1.3. Next we change the definitions of the generalized Weyl and Chang
numbers into more handy forms.
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Lemma, For Te(E, F), we have
x,(T|20) = sup{a,(TX): Xe (%, B), I1X|A| <1, m>n},
yolTI90) = sup{a,(BT): Be2(F, 1), B < 1, m = n}.
Proof. Let J,e%({3, I,) be the injection defined by

Jo & E =&, L6 0,00,
Note that, by [OPI, 11.5.2], a,(TX) = ¢({TX) for all Xe&(!,, E}. Hence the
maximality of the Gel'fand numbers [OPI, 11.10.12] implies that a,{7X)
= Jim,,a,(TXJ,,).
Analogously, defining the surjection 0, = £(,, i) by
O (O S R (TR R,
and letting Be@(F, [,), we deduce from a,(BT)=a,(T'B) and a,((,BT)
= a(T'BJ,) that a,(BT) = lim,a,(Q,BT). |
1.4. Prorosition. The W-Weyl numbers are injective, and the W-Chang
numbers are surjective.
Proof By [OP], 11,52 and 11.6.2], we have
x,(T12) = sup{c,(TX): Xe¥U(,, £), | XA <1}
y (T|¥) = sup{d (BT): BeA(F, L), |B|A| <1}.
The assertions now follow from the injectivity of the Gef'fand numbers and the
surjectivity of the Kolmogorov numbers, respectively.
1.5. The concepts of Weyl numbers and Chang numbers are dual to each
other. .
PRropOSITION. For TeR(E, F), we have
X (T W) = y(TIW),  yu(T'|H) 2 x,(T|A).
Proof. Let Be9U'(F, 1) and |B|2| < 1. Then B'e¥A(,, F') and 157190
< 1. Hence it follows from
x,(T'|%) = a,(T'B) = a,(BT)
; ab 91
et EZfET lipjuj(}ﬁ('ﬁij{ > and | ¥]9(} < 1. Define B:= Y'K,. Since
B = K,Y" = KiKpY = Y, we see that Be W(F, 1) and 1B]2| < 1. Hence 1t
follows from
a,(T'Y) = a,(T'B) = a,(BT) < y(T|)

that x,(T7|#) < y,(T] ). - _ _ -
ThE.lS ‘Ive h;ve proved the left-hand equality. The right-hand inequality can

be checked by similar arguments.
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Remark. In order to obtain even the equality VT |¥) = x,(T|), we
would need the following principle of local reflexivity.

For every operator 4eR(E, %), every finite-dimensional subspace M
of E' and &> 0, there exists an operator X e &(/%, E) such that

X'a = Aa for all acM and [X)2] < (1+8)]4]2].

This property can easily be verified for every quasi-Banach operator ideal
whose quasi-norm is left-splitting in the sense of S. Simons and T. J. Leih [18].

16 let0<r<oand 0 <w< . An operator Te &(E, F)is said to be
of A-Weyl type |,,, if (x,(T|9)el,.,. The set of these operators is denoted
by ACLE, F). We let

WTIN:= || (T120)| ] for TeUSLE, F.

Operators of WA-Chang type I, , are defined analogously; the components of the
resulting class are denoted by HY,(E, F).

1.7. The following result is obvious.
TreorREM. UL, and AP, are guasi-Banackh operator ideals.
1.8. We now state an immediate consequence of 1.4 and 1.5.

THEGREM. The quasi-Barach operator idedl UL, is injective, and AL, js
surjective. Moreover,

() = (WP, (ALY = (w)es.

1.9. Let 9 and B be arbitrary quasi-Banach operator ideals. Combining
the definition of N-Weyl numbers with that of B-Chang numbers, for
Tef(E, F), we put

XeU(,, B), |X|u| <1
BeB(F. L), |B|B| <1

I W =2 and B = ¢ then the well-known Hilbert numbers result. The case
A=P; and B=P, is of special interest in the theory of eigenvalye
distributions of nuclear operators; see [14]. To simplify notation, we write

Z”(T):= Z"(T!qyz, iB2)l
L10. Lemma. For Te&(E, F), we have

z,(T|U, B):= Sup{a,,(BTX):

n

nzy, (T) < x,(T1B5) < nllz(n Zk(T))ma

. k=1

m 2221 (T) < 3(T1%y) < w2 ([T 24(T)
k=1
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Proof. Let XeWsil,, E) and Be®,(F, 1) such that | X|B,] < 1 and
1BIB,| < 1. Then, by [EIG, 24.17],
an -3 (BTX) = X303 (BTX) < x,(B)x,(TX) = x,(B)a,(TX).
From [EIG, 2.7.3], we know that n'>x,(B) < [|B|R,| < 1. Hence
'y, (BTX) < x,AT|B5).

This proves that a'/Zzy,. (1) < x,(T]PY). ' _
Let Xe¥a(l,, B) and [X|B:| < 1. Given &> 0, by [EIG, 2.10.3],
we find Uin -rea “HE[Z and bl’ cevs bnEF[ such that ”uz“ <1, t;b_;“ <1,

w4 (TX) = (TX) < (1+6)[{TXuy, byl
{TXuy, b3 =0

Define Be £(F, L,) by B:= } - b;®e;. Then | B|B,|| < n'? and b; = B'e;. We
now obtain

ift i > j.

a(TX) < (f] a(TXN < (1+6)|det({ T Xu,, Bled)"
=1
£ (1 +b)( f[ LIk(BTX))lfn <(1 +S)n1/2(kl_[1 Zk(T))lln.
k=1 -

Taking the supremum over X and letting e—+0 yields
L o
x,(T|95) < n (] z(T)M™
k=1
Thus we have proved the first series of inequalities. The second one can

be obtained by passing to the dual operator.
1.11. The following result is now obvious; see [EIG, 2.1.8 and 2.1.9}.
TuroreM. Let 0 <r <2 and 0 <s < oo such that 1/r = 1/s+1/2, Then
28, = (R, = (o)
1.12. We conclude this chapter with two multiplication formulas which

will not be used in the present paper, Hlowever, they may become of interest for
future research, We first generalize [EIG, 2.4.17].

LimMa. Let TeR(E, F) and SeL(F, G). Then
xFﬂ-'!"H "I(ST|9[) &3 xm(S)xn(Tlg[)

Proof. Assume that X 21(l,, E) and | X ||} < 1. Given ¢ > 0, we choose
Ue&(l,, F) such that ‘
ITX —U| < (1+6a,(TX} and rank(U) <n.



26 A. Pictsch

Next we choose Vel(l,, G) such that
IS(TX -~ —V| < (1+8)a,(S(TX~U)) and rank(V)<m.
Then
A4 n-1(STX) < |STX ~SU V|| < (1 +9)a,(S(TX —U))
S (1 +e)x, (I TX =U| < (1 +6/x,,(S)a,(TX),
which in turn implies that
Xmtn— 1 (STTU) < (1482 x,(S)x, (T|90).
Letting £—0 yields the required inequality.

1.13. In order to state the second multiplication formula, we need to recall
a well-known concept.

Given any quasi-Banach operator ideal 9, the nth U-approximation -

number of TeW(E, F) is defined by
a{T{M}:=inf{|T—L|A|: LeL(E, F), rank(L) < n};
see [EIG, 2.8.1].
LemMma, Let TeW(E, F) and SeL(F, G). Then
Xmn=1(ST) < X, (%), (T|2X).

Proof. Assume that X e2(l,, £} and |X|| < 1. Then it follows from

an(STX) < x,,(S| M TX|A| that x,(ST) < x,(S|) | T|U|. Let Le(E, F)
such that rank(L) < n. Then

Xm+n—1(ST) < x,(S(T- L)) +x,(STL) < x,(S| W | T—L2).
Passing to the infimum over L on the right-hand side completes the proof.
2, Gauss-summing operators
2.1. The gaussian measure y is defined by
1
P(BYi= —=fe " dL,
NG

where B_ denotes any Borel subset of the real line. In the complex case, we let
1 2
y(B):i=—[ e @74z an,
Ty

where the variable ¢ is split into its real and imaginary parts, { = ¢4y, In

bath cases the normalization is chosen such that the second absolute moment
takes the value 1.
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2.2. Let {g,) be any sequence of independent standard gaussian random
pariahles defined on a probability space (R, p). This means, among other
things, that plweQ: g (w)e B} = p(B) for every Borel subset B.

2.3. An operator Te R(E, F) is said to be Gauss-éumming if there exists
a constant ¢ = 0 such that

IS o) Te 2 duleo) ™ < esup{( . 1<, adP): Yal < 1}
2 k=1 hel

for all finite families of elements x,, ..., x,e E. Setting | T|P;l:=infec, the
class of these operators becomes an injective Banach ideal, denoted by B;; see
[6, Theorem 17.

Remark. For Xef(5, E) the norm || X|B,l is usually denoted by I(X),
and we have

1) = (5115, QX ). dy @)™

see [2] and [6, Lemma 3].

2.4. In the following we collect some elementary but important in-
equalities.

LeMMA. || B|B,[l < [ BIBE| for all Bel(F, ).

Proof As is well known from [6, Theorem 6], Te®B,(E, F) implies
TeP(E, F)and | T| Pl < | TIP,|. Passing to the adjoint Banach operator
ideals and taking into account that %, is self-adjoint, we conclude that
TeB4(F, E) implies TeB,(F, E) and |[T|H, | < [ T|PE|. This is much more
than the desired result.

2.5. The next inequality is due to T. Figiel and N. Tomczak-Jaegermann
[2]; see also [19, p. 921

LemMa. | B|P%l < | BiBsl for all BeL(F, ).
2.6. We now combine the preceding statements.
LemmA. [ X92] < [ X1Bg] for all XeR(E, B).
Proof. Applying 2.4 and 2.5 to the operator X'e £(£', I7) and using the
injectivity of ¥3,. we obtain
T X {8, < XTI < IX7 Bl = 1 X7 |Bell = 1XTPsll-

A more direct proof can be obtained as follows. Given a4, ..., a,cE, we
define AeE, I3) by A:=)1-a,®e¢. Then

141 = sup{(3" [¢x, apl)®: il < 1}.
I
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Since AX acts between Hilbert spaces, we know that |[AX|S, || = ||AX|B,].
Hence

(31X @)1 = (3 1% e

i=1

<X AB,| = | X A|S,] = |AX|G,| = | 4X | Bl

< IX Bl sup (3 1¢x, a2 x] < 1.
=1

This proves that §X|By|| < | X]B,l.

2.7. Finally, we state an inequality which can be cbtained by adapting the
proof of Lemma 3.in [3]; see also [6, Lemmas 5 and 6],

ProPOSITION. There exists a constant ¢ > 0 such that
(I+logm)'Pa,(Xy < c|X|Bgl  Jfor all XeRy(l,, E).

Remark. In the setting of Weyl numbers the preceding result reads as
follows:

{1+logn)?x(T) < | T|Bgll  for all TeP,(E, F).
3. Type and cotype numbers

3.0, Let 2< g < 0. An operator Te(E, F) is said to be of (gaussian)
cotype g if there exists a constant ¢ > 0 such that

(2 1Bl < el X gl duw))
k=1 a k=1

for all finite families of elements x,, ..., x, € E. The set of these operators is
denoted by G,(E, F). For TeQ(E, F), we let |T|€,[:=infc, where the
infimum is taken over all possible constants c. Note that €, is an injective
Banach operator ideal.

The following criterion holds (see [19, p. 83]): An operator Te Q(E, F)is
of cotype g if and only if TX e, ,(l,, F) for all X e B(l,, E). In this case,

[ TIC, | = sup{I TX |B,2l: X eBglly, E), |X|Bel < 1},
3.2. We now state a fundamental result.
THEOREM. Let 2 < q < 0. Then
("BG)E;); sl = (B -

In the limiting case g =2 we have

(P = €, (P
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Proof. The inclusions follows immediately from the preceding criterion
and the fact that
Ll F) € Boally, ) & (0. F),
L8, 1) & Baoll, F) = 840, 0,, F);
see [BIG, 2.74 and 2.7.5].
Remark. As trivial consequences we obtain the inequalities
|TIE,, | < entfo b 7€ | whenever rank(T) < n
and 2 < gy < gy < o0 as well as
ITIE, | < (1 +logm) M TI(B) | whenever rank(T) <n

and 2 < ¢ < oo see [4, po 117], {19, p. 193] and {16, p. 123]. .
We conjecture that all inclusions, stated in this subsection, are strict.

3.3. In view of the above theorem, we refer to x,(T|P,) as the nth cotype
number of the operator’ T The nth cotype number of the identity map of
a Banach space E is simply denoted by x,(E|%Bg).

34. For the sake of completeness, we state the following consequence of
Proposition 1.4.

Prorosimion. The cotype numbers are injective,
35. Let 1 < p < 2. An operator Te£2(E, F) is said to be of (gauvssian) type
p if there exists a constant ¢ 0 such that

(1S vl T du(@)' < o 3, 15,
0 k=1 it

for all finite families of elements x,, ..., x,€ E. The set of thfase operators is
denoted by T, (E, F). For TeT (£, F), we let ||T|Ep||:f1nfc_, -wht.are the
infimum is taken over all possible constants ¢. Note that ', i an mjective and
surjeclive Banach operator ideal. N

The following criterion holds (see [19, p. 83_]): An operator Tei!(}"z',‘, F)is
of type p if and only if BT e, ,(E, F) for all BeBE(F, I,). In this case,

IT)%,] = sup{| BT1B,2): BeBE(F. L), | BBzl < 1}
3,6, The following counterpart of Theorem 3.2 is valid.
THroreM, Let 1< p <2. Then _
By €T, S (PP

In the limiting case p =2, we have

(PHY, € T, = (PO
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Proof. Passing to the dual operators, we may use the same argument
as in 3.2

3.7. In view of the above theorem, we refer to y,(T|P%) as the nth type
rumber of the operator T. The nth type number of the identity map of a Banach
space E is simply denoted by y,(E]B%).

3.8. ProrosiTioN, The type numbers are injective and surjective,

Proof. The surjectivity follows immediately from Proposition 1.4, and
the injectivity can easily be deduced from the extension property stated in
Lemma 3.15.

3.9. Next we describe the duality between the type and cotype numbers.

Lemma. x (T PBg) < y,(T|BE) for all TeL(E, F).

Proof. By 15, we have x,(T'|'Bg) = y,(T|R5) for all TeE,F).
The conclusion now follows from the fact that |B|BE| < | BIBg| for all
Be £(F, I5); see Lemmas 1.3 and 2.5.

Remark. If the Banach space F is K-convex, then there exists a constant

¢ 2 1 such that | B|Bg| < c||B|DF|| for all Be &(F, . This implies a reverse
inequality, namely

YulTIPE) < ex,(T'|B)
3.10. LEmMa. Let Te &(E, F). Then
%(TI1We) < %,(T1B2), 3, (TIBE) < y,(TIB,).

Proof. The inequalities follow immediately from the facts that X85

€ | X 1B for all Xe (1%, E) and 1B, || < |B|PE| for all Be Q(F, I7); see
Lemmas 1.3, 2.6 and 2.4.

for all TeQ(E, F).

3.11. We now state an important consequence of Theorem 1.11 and the
preceding lemma.

THEOREM. Let0<r<2,0<s<0,0< w< o0 and Ur=1/5+1/2. Then
25 S (B N (PED,.

Remark. This is a generalization as well as a strengthening of an earlier

result due to H. Kénig, J. R. Retherford and N. Tomczak-Jaegermann [4, pp.
116-1177; see 3.14. :

3.12. LemmMa. Let TeR(E, F) and Sef(F, G). Then
Zan-3(5T) < 4x,(S|Ba) T BE).

Proof. Write m:= 4n—3, and assume that 2,(8T) > 0. Given & = 0, we
choose Xe£(1%, E) and Cel(G, I’ such that

Zn(ST) < (1+6)a,(CSTX),  IXIPal <1, |C)B,)] < 1.
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Then M:= M(TX) is an m-dimensional subspace of F. We now apply
a powerful lemma due to D. R. Lewis [5]; see also [19, p. 115].- This yields
operators B, e (M, M and Y,e (I3, M)} such that

YoBy =TI, |IBoBEE < m'2, | %Pl < m'2

Let Y= JY,, where J denotes the embedding map from M into F. Recall that

the Banach ideal %, is injective. Thus, using the extension property stated in
Lemma 3.15, we can find Bef(F,[$) such that BJ =B, and ||B|'Bf|
= 1B,/ B2l < w2 o
The preceding construction gives the following diagram:
csTX: gt phpLipd g
Therefore ,
a, (CSTX) = tan-3(CSYBTX) & a3, (CS V)23, (BTX).
Next both factors are treated separately, To this end, we use some results about
generalized approximation numbers, which can be found in [14, 6.3]; see also
1.13. We conclude first that
120y, (CSY) € a,(CSY|B,) < | T8, a,(SY)
< x, (S|P 1 V1Bl < mt2x (S|Be).
Hence @z,-1(CSY) <€ 2x,(S] D).
Secondly, it follows from
n*?ay, 1 (BTX) < ,(BTX|P2) < a,(BT) [ X 92|
< |BIBE] p,(TIBE) < m' 2y, (T|BE)
that az,-1(BTX) < 2y,(T1BE). .
Combining the previous results, we obtain .
2,(ST) < (1 +8)a,(CSTX) < 4(1 +48)x,(S|B5) yo(TIBE)-

Remark. Note that the above proof uses only the fact that B, is an
injective Banach operator ideal.

313. As an immediate consequence of the preceding lemma we now
obtain an important multiplication formula.‘

Tiorim. Let 0 < p, g, r<oo and 0<u, v, w< 0. If 1/p+1/g = L/r
and 1/u+1/v = 1/w, then

(B o (BB = &3,

Remark. It follows from an example given b;_r J. Bourgain that th;c1
exponent r defined by 1/r:= 1/p+1/q is the best po.s31ble; see [1, p. Il’(] an
[19, p. 212]. For the translation of Bourgain’s resulf into the present setting we
refer to the next subsection,
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3.14. To explain the interplay of our (idealistic) approach wiih the
structure theory of Banach spaces, we use the following notation (1 < p <2
and 2 € g < w).

T, : the class of Banach spaces with type p,

T, the class of Banach spaces with weak type p,

. - the class of Banach spaces with cotype g,

Cow: the class of Banach spaces with weak cotype q.

For the original definitions of the “weak” concepls we refer the reader o the
recent book of G. Pisier [16, p. 1307 and to the thesis of V. Mascioni {7].

Furthermore, for 1 € r <2, we denote by H. .. the class of all Banach
spaces E such that (4,(S)) !, , for all nuclear operators S e 2(E). Here (4,(8)) is
the eigenvalue sequence of §.

The previous results of this chapter (3.2, 3.6, 3.11 and 3.13) combined with
Theorems 3.9 and 4.7 of [14] yield the following:

Hy o< T aT,, for 1/p=1/r—1/2 and ¢ > 0,
H ,cCocCh for ljg= Ifr—1/2 and ¢ > 0;
see [7, Theorem 4.5]. Conversely, we have
TpwnChwcH, ., with Ir=1/p'+1/q.
This inclusion is meaningful oﬁly for 1/p—1/q < 172,
Let EeC; , and 1/p' = 1/r—-1/2. Then
EcH,, if and only if EeT,,.
Let EeT,,,, and 1/g = 1/r—1/2. Then
EeH, . if and only if EeC,,;

see [7, Theorem 2.10].
In the limiting case p = ¢ = 2 we obtain T3, Cy =H, . This is just
G. Pisier’s definition of the class of weak Hilbert spaces; see [15, 16].

3.15. For the convenience of the reader, we add a well-known auxiliary
result; see 2, p. 157] and [10, 15.5].

LeMMA. Suppose that the Banach operator ideal 9 is infective. Let M be
a subspace of the Banach space E, and denote the associated embedding map by
J. Let F be a finite-dimensional Banach space. Then every operator T, e (M, F)
admits an W-norm preserving extension Te B(E, F). This means that TJ = T,
and || T|A| = |1, '

Proof. Apply the Hahn-Banach theorem via trace duality.
4. Examples

4.1. We begin with an immediate consequence of Dvoretzky’s theorem on
almost spherical sections; see [10, 5.8] or [16, Theorem 4.37.
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ProOPOSITION. If the Banach space E is infinite-dimensional, then
xn{Ell‘B(;‘) B nHUZH yn(El%g) ; n"lfz'

Proof. It is well known that, for every operator between finite-dimen-
sional Hilbert spaces, we have [T, = | T|BE| = [T|S,|, where 1718,
denotes the Hilbert-Schmidt norm of T Using this fact, it can easily be seen
that

X, (1) = p, (7% | PE) = n~172,
which implies the required estimate,
4.2, Limma. Let 2 € p-< a0, Then
Pul B IBE) 2 %, (57 Be) = en™ Ve,
where the vonstant ¢ > 0 depends only on p.
Proof 1t follows from
a (s B2 S a (I B P B2r— 2|

and [OPI, 11.11.¥]

N2
a f: [ 15) = (rﬁ~£—t1) forn=1,...,m

that a,(I: 3" — ") > \/ 1/2. On the other hand, we have
12 BY =MWl < (12 B~ 1B, = 2n)t.
This implies the desired lower estimate for the cotype numbers. An application
of Lemma 3.9 completes the proof.
43. Luomma. y, (13" B%) = ¢ >0,

Proof Since I, is of cotype 2, we have B,(l;, ) = “BG(J_E, 1), b3f (6,
Theorem 77, Pussing to the adjoint Banach operator ideals yields
Pully, L) = W&, 1), Using the well-known fact that the identity map from [,
into [, is Z-summing, we obtain

112 0 - BB < ci= |1 T L] B8
Recall that

- 12 :
a,([: 1§~ 15) = (ﬁ-——-m{l»ﬂ) for n=1,...,m.

Hence y,(13"|'BF) = ¢ > 0.
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4.4, We now establish the main result of this chapter,
ExaMPLE. Let 1< p < co. If the Banach function space L, is infinite-
dimensional, then
no 12 for 1<p<2,
EROME ONES S Jor 2€p <o,
(1+lognm)™%*  for p = o0,

ntr o 1€ p <2,
VulLp|BE) =4 n7 for 2<p < o0,
1 Jor p=cu.

Proof First, we consider the case 1 <p < co. Since L, is of type p for
1<p<2 and of type 2 for 2< p < o0, it follows from Theorem 3.6 and
Lemma 3.9 that

n~H for 1< p<2,
x,,(Lp-msG)sy,,(L,,mséH{n_m for 2 <5< o,
Recalling the trivial fact that L, contains the spaces [ uniformly, for
1 < p<2, the lower estimate can be deduced from Lemma 4.2. The case
2 < p < oo is obvious, by Proposition 4.1. _

Next we conclude from Lemma 4.3 that the sequence (y, (L, |*B¥)) does not
converge to zero. The same holds for (y,,(Lm]‘iBﬁ)), gince L, can be embedded
into L.

Since L, is of cotype 2, we have x,(L;|Bs) < en~ 2. The lower estimate
follows from Proposition 4.1.

Finally, we observe that the asymptotic behaviour of the sequence
{x4{Lo,|Bg)) can be derived from Proposition 2.7 and 6, .emma 6].

Remark. The preceding results show that the type and cotype numbers
cannot be used to distinguish Banach spaces of the ordinary type or cotype
from those of weak type or weak cotype, respectively.

4.5. At first glance, the next result is quite surprising.
ProrosiTioN. The space ideals
Cowi={E: Iie(BFLt with 2<g<
and
Towi={E: Lie(PEP.} with 1 <p<2
do not depend on the finite parameter w for 0 < w < c0.

Proof. Assume that therc exists a Banach space E such that Ee
Con\Camo With 0 < wy < w < 00, Then we have q = inf{s: E is of cotype s}.
Hence, by the famous Maurey-Pisier theorem, E contains the spaces [

Type and coiype numbers 3s

uniformly; see [10, Chap. 13]. Thus we deduce from Lemma 42 that
%, (E|Bs) = cn™ '™, which in turn yields E¢C, . This contradiction proves the
assertion in the “cotype™ case. The “type” case can be treated analogously.

Remark For 2<g< o and 1 <p< 2, we even have

Cov= U C and T,.= |J T.

2<r<y per<

provided that 0 < w < oo,

4.6. The preceding proposition implies that there does not exist any
Banach space E such that

1
*ulB| %)= nta(1 4-log ny*’

where 2 < g < o and « > 0. Thus one could expect that, for every Banach
space E not containing the spaces I, uniformly, the sequence (x,(E|Pg)}
behaves like (n™ 1) for some exponent g with 2 < g < oo. The next example
shows that this is not se.

Let (E,) be any sequence of Banach spaces. We denote by (D%, E,),, the
Banach space of ail sequences (x,} with x, € E, for which the expression

1l = () Ix 1?7
k=1

1s finite.

In what follows we use logarithms to the base 2.

ExampLE. Let 2 < g < w. Put

x 1+logk
), with /g, = 1/q-a—i~1§-%-—
1

@8

E:=( and « > 0.

k

Then

(1 +logn)*
xu(_Ej mG) :—_ﬂ.l—/q—_ N

Proof. We may proceed in the same way as in the proof of Example 7.3
in [14]. There it 1s shown that

(L+logny

Zn(E)X il

with 1/r = 1/g+1/2.
Since E is of type 2, we have y,(E|B% < cn” /2, Hence, by means of Lemmas
1.10,3.10 and 3.12, the asymptotic behaviour of (x,(E|B¢)) can be derived from
that of (z,(E}), and conversely.
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5. Appendix. Let x,(E|%%) and y,(E|%B,) denote the nth P4-Weyl number
and the n-th 9,-Chang number of the identity map of a Banach space E,
respectively. We stress the fact that y,(E|9,) was already introduced (as an
auxiliary quantity) by G. Pisler [17]. Taking into account his famous
K-convexity theorem [16, Theorem 24], it is possible to rephrase {17,
Théoreme 7 and Remargue 8] in our terminology; see also Lemmas 1.10 and
3.10 as well as [14, Lemmas 1.13 and 2.11]. Concerning the definitions of I (E)
and z,(E) we refer the reader to [14, 1.1 and 2.1].

THEOREM. For every Banach space E, the following properties are equiva-
lent:

(1) E is K-convex. (2) lim, x, (E|%B5) = 0.
(3) lim, y,(E|P,) = 0.  (4) lim, y,(E]B,) = 0.

{5) lim,n'z,(E) =0.  (6) km,n~ 2T (E) = 0.

Remark. Note that lim,x,(E|{Bz) =0 for all Banach spaces E; see
Prop. 2.7.
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