

Quantitative unconditionality of Banach spaces E for which $\mathscr{K}(E)$ is an M-ideal in $\mathscr{L}(E)$

by

DANIEL LI (Paris)

Abstract. Let E be a separable Banach space with AP; if $\mathcal{K}(E)$ is an M-ideal in $\mathcal{L}(E)$, then for every $\varepsilon > 0$, E is isometric to a $(1+\varepsilon)$ -complemented subspace in a space with a $(1+\varepsilon)$ -unconditional shrinking FDD; in particular, E is isometric to a subspace of a space with a $(1+\varepsilon)$ -unconditional basis, and dist $(E, L^p(0, 1)) \ge \max(p-1, 1/(p-1))$.

1. Introduction. Since E. Alfsen and E. Effros introduced the notion of an M-ideal [1], many authors have studied for which Banach spaces $E, \mathcal{K}(E)$, the space of compact operators on E, is an M-ideal in $\mathcal{L}(E)$, the space of all continuous operators on E. J. Hennefeld [17] had already proved that if $E = c_0$ or l^p , $1 , <math>\mathcal{K}(E)$ is an M-ideal in $\mathcal{L}(E)$; actually for $E = l^2$ this had been proved a long time ago by J. Dixmier [8]. This was improved by Å. Lima: if $(E_a)_{a \in A}$ is a family of finite-dimensional spaces and $E = (\bigoplus_{a \in A} E_a)_{lp}, 1 ,$ or $E = \bigoplus_{n \in A} E_n|_{C_n}$, then $\mathcal{K}(E)$ is an M-ideal in $\mathcal{L}(E)$ ([21], p. 31); moreover, if F is a subspace of $E = \bigoplus_{n \in A} E_n|_{L^p}$, 1 , C. M. Cho and W. B. Johnsonshowed that $\mathcal{K}(F)$ is an M-ideal in $\mathcal{L}(F)$ if and only if F has the compact approximation property [5]. On the other hand, $\mathcal{K}(E)$ is not an M-ideal in $\mathcal{L}(E)$ when a) $E = l^1$, $E = l^\infty$ [31], b) E is a space with a 1-symmetric basis which is not l^p or c_0 [18], c) $E = \mathscr{C}(K)$, K infinite compact [9], d) $E = L^1(\mu)$, $\dim L^1(\mu) = \infty$ [9], [20], e) E is a Lindenstrauss space which is not $c_0(I)$, f) $E = L^p(\mu)$, $1 , <math>p \ne 2$, μ not purely atomic [20]. Some authors also studied when $\mathcal{X}(X, Y)$ is an M-ideal in $\mathcal{L}(X, Y)$ ([2], [9], [12], [20], [26], for instance).

After this concrete examples, structure theorems were sought for Banach spaces E for which $\mathcal{K}(E)$ is an M-ideal in $\mathcal{L}(E)$; Å. Lima proved that E is then an M-ideal in its bidual E^{**} [21], a result which also yields the previous examples a), c), d), e) [16]. Lately G. Godefroy and P. Saab showed that E (supposed separable with AP) has got to be isomorphic to a complemented subspace of a space with a shrinking unconditional finite-dimensional decomposition [15].

¹⁹⁸⁵ Mathematics Subject Classification 46B20, 47D15, 47D30, 46B15, 46B10.

The present work is a quantitative version of [15]; we prove that if E is a separable Banach space with AP such that $\mathcal{K}(E)$ is an M-ideal in $\mathcal{L}(E)$, then for every $\varepsilon > 0$, E is isometric to a $(1+\varepsilon)$ -complemented subspace in a space with a $(1+\varepsilon)$ -unconditional shrinking FDD; in particular, E is isometric to a subspace of a space with a $(1+\varepsilon)$ -unconditional basis and

$$\operatorname{dist}(E, L^{p}(0, 1)) \geqslant \max\left(p-1, \frac{1}{p-1}\right).$$

This answers a question of G. Godefroy.

Let us note, however, that the main argument of [15] (numerical radius) cannot give this quantitative result and it is replaced by the fundamental lemma 4.1 of E. Alfsen and E. Effros [1].

2. Notations and preliminaries. The Banach spaces considered in this paper are real or complex; all the subspaces are supposed to be closed. If X is a Banach space, its closed unit ball is denoted by X_1 , and the weak*-topology on the dual X^* by ω^* ; in any case, the notations are standard and are those of [7] or [23].

If E is a Banach space, $\mathcal{K}(E)$ denotes the space of compact operators on E, $\mathcal{L}(E)$ is the space of all continuous linear operators on E, and $\mathcal{F}(E)$ the space of finite rank ones.

A subspace J of a Banach space X is said to be an M-ideal if there is an L-projection Q of X^* with range J^{\perp} , the annihilator of J in X^* , that is, a projection Q such that $\|x\| = \|Qx\| + \|x - Qx\|$ for every $x \in X^*$.

A Banach space F is said to have a finite-dimensional Schauder decomposition (FDD) if every $x \in F$ can be uniquely written as $x = \sum_{n=1}^{\infty} x_n$, where $x_n \in F_n$, and each F_n is a finite-dimensional subspace of F; the FDD is said to be unconditional if the series $\sum_{n=1}^{\infty} x_n$ is unconditionally convergent for every $x \in F$, and the number

$$\sup_{\|x\| \leqslant 1} \sup_{N \geqslant 1} \sup_{\|\theta_n| \leqslant 1} \left\| \sum_{n=1}^N \theta_n x_n \right\|$$

is the unconditional constant of the FDD; the FDD is said to be shrinking if it induces by duality an FDD of F^* (see [23], I.1.g).

3. Acknowledgements. This work was begun while I was visiting the University of Missouri-Columbia in March-April 1988. I thank the Ministère des Affaires Etrangères for partial financial support, and P. and E. Saab for their warm welcome. I am specially glad to thank M. and G. Godefroy for their very enjoyable hospitality, and G. Godefroy for his kind advice and suggestions.

I thank B. Maurey, F. Piquard and J. Saint Raymond for useful conversations, N. Ghoussoub for the reference [3], and D. Werner for useful remarks.

4. The structure theorem

THEOREM. Let E be a separable Banach space. We suppose that

- (H) There exist a subalgebra \mathscr{A} of $\mathscr{L}(E)$, containing $I=\mathrm{Id}_E$, and an ideal \mathscr{B} of \mathscr{A} such that:
 - 1) $\mathcal{B} \subset \overline{\mathcal{F}(E)}$ (norm closure),
 - 2) $(\exists B_n \in \mathcal{B}) \|B_n\| \le 1$, $\|B_n x x\| \to 0$, $\forall x \in E$,
 - 3) \mathcal{B} is an M-ideal in \mathcal{A} .

Then

(C) For every $\varepsilon > 0$, there exists a space F with a $(1+\varepsilon)$ -unconditional FDD such that E is isometric to a $(1+\varepsilon)$ -complemented subspace in F. Moreover, if $E \Rightarrow l^1$ (resp. E is reflexive) we can take F such that its FDD is shrinking (resp. F reflexive).

We will prove this theorem in the next section. Let us now present a few consequences.

COROLLARY 1. Let E be a separable Banach space satisfying (H). Then

(C') For every $\varepsilon > 0$, E is isometric to a subspace of a space G with a $(1+\varepsilon)$ -unconditional basis. Moreover, if $E \Rightarrow l^1$ (resp. E is reflexive), then the basis may be assumed to be shrinking (resp. G may be assumed reflexive).

Proof. This follows from [23], I.1.g.5.: instead of $\|x^* - x_{i,n}^*\| \le 4^{-n}$, we take $\|x^* - x_{i,n}^*\| \le 2^{-n}\alpha$; then $\varphi(Tu) \ge 1 - \alpha$ and $\varphi(M_\theta Tx) \le 1 + \alpha$, so that $\|Tu\| \ge (1-\alpha)/(1+\alpha)$ and $\|T\| \|T^{-1}\| \le (1+\alpha)/(1-\alpha)$.

Hence, if F admits a $(1+\alpha)$ -unconditional FDD, F is isometric to a subspace of G with a $(1+\alpha)^2/(1-\alpha)$ -unconditional basis.

We conclude the proof by using the interpolation technique of [11], Theorem 3.3.

COROLLARY 2. Let E be separable Banach space with the Approximation Property. If $\mathcal{K}(E)$ is an M-ideal in $\mathcal{L}(E)$, then for every $\varepsilon > 0$, E is isometric to a $(1+\varepsilon)$ -complemented subspace in a space F with a $(1+\varepsilon)$ -unconditional shrinking FDD, and F may be assumed reflexive if E is.

Proof. It suffices to remark that condition (H 2) holds ([16], Lemma 5.1), and to use [21], Cor. 2.5, in order to see that $E
ightharpoonup l^1$.

COROLLARY 3. If E is a separable Banach space with the Approximation Property and $\mathcal{K}(E)$ is an M-ideal in $\mathcal{L}(E)$, then

$$dist(E, L^{p}(0, 1)) \ge max(p-1, \frac{1}{p-1}).$$

Proof. This follows from the reproducibility of the Haar basis ([22], Th. 4.1, [23], II.2.c.7, II.2.c.8): whenever $L^p(0, 1)$, $1 , is isometric to a subspace of a space with a basis <math>(u_n)_{n \ge 1}$, then for every $\varepsilon > 0$, there exists a block basis of $(u_n)_{n \ge 1}$ which is $(1+\varepsilon)$ -equivalent to the Haar basis. Hence, the distance from E to $L^p(0, 1)$, $1 , is at least <math>k_p$, the unconditional constant of the Haar basis of $L^p(0, 1)$, and $k_p = \max(p-1, 1/(p-1))$ ([3], Cor. 1, [4]).

Corollary 3 is also true for p=1 and $p=\infty$ since $\mathcal{K}(L^1(0,1))$ and $\mathcal{K}(L^\infty(0,1))$ are isomorphic to no space which is an M-ideal in its bidual ([21], Cor. 2.5).

COROLLARY 4. Let E be a Banach space with a monotone basis $\mathscr{U} = (u_n)_{n \geq 1}$. If $\mathscr{K}_d(E, \mathscr{U})$, the space of compact diagonal operators, is an M-ideal in $\mathscr{L}_d(E, \mathscr{U})$, the space of continuous diagonal operators, then (C) holds for E.

Remark 1. If $E=l^1$ and \mathscr{U} is the canonical basis, $\mathscr{K}_{\mathbf{d}}(l^1)$ is isometric to c_0 and is an M-ideal of $\mathscr{L}_{\mathbf{d}}(l^1)$ which is isometric to l^{∞} ; but l^1 cannot be isomorphic to a subspace of a space with a shrinking FDD. So, the condition $E \Rightarrow l^1$ in the conclusion (C) of the Theorem cannot be removed.

Remark 2. If $E = L^p(T)$, $1 , and <math>\mathscr{U} = \mathscr{T}$ is the trigonometrical basis ([23], II.2.c.16), then $\mathscr{L}_d(L^p(T), \mathscr{T}) = \mathrm{CV}(L^p(T))$ (resp. $\mathscr{K}_d(L^p(T), \mathscr{T}) = \mathrm{CV}_c(L^p(T))$) is the space of convolution operators (resp. compact convolution operators) on $L^p(T)$; as in Cor. 3, $\mathrm{CV}_c(L^p(T))$ is not an M-ideal in its bidual $\mathrm{CV}(L^p(T))$ (another proof of this which was indicated to me by F. Lust-Piquard adapts the one of Å. Lima, [20], Th. 11).

5. Proof of the Theorem. First, we show

Proposition. Let E, ${\mathcal A}$ and ${\mathcal B}$ be as in the Theorem, and assume the condition:

(H1') $\mathscr{B} \subset \mathscr{K}(E)$, and \mathscr{B} is separable,

instead of (H1). Let Q be the L-projection of \mathscr{A}^* with kernel \mathscr{B}^\perp . Then, for every $\varepsilon > 0$, there exists $S_n \in \mathscr{B}$, $n \geqslant 1$, such that

$$Q^*I = \sum_{n=1}^{\infty} S_n \qquad (\sigma(\mathscr{A}^{**}, \mathscr{A}^*)),$$

$$\sup_{|\alpha_k| \le 1} \left\| \sum_{k=1}^{n} \theta_k S_k \right\| \le 1 + \varepsilon.$$

We need the following lemma, which is essentially known ([30], Th. 2.5).

LEMMA 1. With the hypothesis of the Proposition, for every $A \in \mathcal{A}$,

$$Q^*A = \lim_{n \to \infty} B_n A \quad (\sigma(\mathscr{A}^{**}, \mathscr{A}^*)).$$

Proof. We use the argument of J. Johnson ([19], Lemma 1). For every ultrafilter \mathscr{V} , $\lim_{\mathscr{V}} \psi(B_n)$ exists for every $\psi \in \mathscr{B}^*$. \mathscr{B} being an ideal of \mathscr{A} , the map $\psi \colon S \in \mathscr{B} \mapsto \varphi(SA)$ is an element of \mathscr{B}^* for every $A \in \mathscr{A}$ and every $\varphi \in \mathscr{B}^*$; hence, we can define $\hat{\varphi}(A) = \lim_{\mathscr{V}} \varphi(B_n A)$; then $\hat{\varphi} \in \mathscr{A}^*$, $\|\hat{\varphi}\| \leq \|\varphi\|$.

Since $B_n \xrightarrow{\|\cdot\|} I$ as $n \to \infty$ uniformly on compact subsets of E, we have $\|B_n B - B\| \to 0$ as $n \to \infty$ for $B \in \mathcal{B}$, and so $\hat{\varphi}(B) = \varphi(B)$ for $B \in \mathcal{B}$; hence $\|\hat{\varphi}\| = \|\varphi\|$.

If we denote by $R: \mathscr{A}^* \to \mathscr{B}^*$ the restriction map and by $\Lambda_{\mathscr{Y}}: \mathscr{B}^* \to \mathscr{A}^*$ the map $\varphi \mapsto \hat{\varphi}$, $\Lambda_{\mathscr{Y}} R$ is a contractive projection of \mathscr{A}^* with kernel \mathscr{B}^{\perp} ; hence $\Lambda_{\mathscr{Y}} R = Q$ ([16], Prop. 2.1.b).

Therefore, for $A \in \mathcal{A}$ and $\varphi \in \mathcal{A}^*$,

$$\langle Q^*A, \varphi \rangle = \langle A, A_{\varphi}R\varphi \rangle = \lim_{\varphi} (R\varphi)(B_nA) = \lim_{\varphi} \varphi(B_nA),$$

that is,
$$Q^*A = \lim_{n\to\infty} B_n A$$
 $(\sigma(\mathscr{A}^{**}, \mathscr{A}^*))$.

Proof of the Proposition. Let us consider \mathscr{A} with its real Banach space structure. By Lemma 1, $Q^*I = \lim_{n\to\infty} B_n$ $(\sigma(\mathscr{A}^{**}, \mathscr{A}^*))$.

Let K be the compact space $(\mathscr{A}_1^*, \omega^*)$, and let us consider elements of \mathscr{A}^{**} as functions on K. Denoting by χ_L the characteristic function of the set $L \subset K$, we set

$$h = (I\chi_{\mathscr{B}^{\perp} \cap K}) \vee 0 = (I\chi_{\mathscr{B}^{\perp} \cap K})^{+}$$

and let \hat{h} be the smallest concave upper-semicontinuous (u.s.c.) function which is greater than h on K; then ([1], Lemma 4.1)

$$(\forall t \in K) \qquad (I - Q^*I)(t) = \hat{h}(t) - \hat{h}(-t).$$

Therefore, setting

$$(\forall t \in K)$$
 $g(t) = \frac{1}{2} [I(t) + 1] - \hat{h}(t),$

we have

$$(\forall t \in K)$$
 $I(Qt) = (Q^*I)(t) = g(t) - g(-t),$

and g is a positive, lower-semicontinuous (l.s.c.) function on K such that

$$(\forall t \in K)$$
 $g(t) + g(-t) \leq 1$.

I am indebted to J. Saint Raymond for the next lemma.

LEMMA 2. Let K be a compact space and $F: K \to \mathbb{R}$ such that $F = G_1 - G_2$, with G_1 , G_2 positive l.s.c. functions on K. If there exist a metrizable compact space H, a continuous surjection R: $K \to H$ and a function $F': H \to \mathbb{R}$ such that

 $F = F' \circ R$, then there exist continuous functions $f_n(t)$ on K, n = 1, 2, ..., such that

$$(\forall t \in K)$$
 $F(t) = \sum_{n=1}^{\infty} f_n(t),$

$$\sup_{|\theta_n| \leqslant 1} \left\| \sum_{n=1}^N \theta_n f_n \right\|_{\infty} \leqslant \sup_{t \in K} \left[G_1(t) + G_2(t) \right].$$

Sketch of proof (see [14], Lemma 3). We set

$$(\forall u \in H)$$
 $\tilde{G}_i(u) = \inf\{G_i(t)|R(t) = u\};$

then \tilde{G}_1 , \tilde{G}_2 are positive and l.s.c. on H, and

$$(\forall u \in H)$$
 $F'(u) = \tilde{G}_1(u) - \tilde{G}_2(u)$.

Since H is a metrizable space we have

$$\widetilde{G}_{i}(u) = \lim_{n \to \infty} \uparrow g_{i,n}(u) = \sum_{n=1}^{\infty} \left[g_{i,n+1}(u) - g_{i,n}(u) \right],$$

with $g_{1,1} = g_{2,1} = 0$, $g_{1,n}$, $g_{2,n}$, $n \ge 1$, continuous on H; setting, for $n \ge 1$,

$$(\forall u \in H) \quad f'_n(u) = [g_{1,n+1}(u) - g_{1,n}(u)] - [g_{2,n+1}(u) - g_{2,n}(u)],$$

we have

$$(\forall u \in H)$$
 $F'_n(u) = \sum_{n=1}^{\infty} f'_n(u)$

and, for $|\theta_n| \leq 1$, $u \in H$,

$$\begin{split} \left| \sum_{n=1}^{N} \theta_{n} f_{n}'(u) \right| &\leq \sum_{n=1}^{\infty} \left[g_{1,n+1}(u) - g_{1,n}(u) \right] + \sum_{n=1}^{\infty} \left[g_{2,n+1}(u) - g_{2,n}(u) \right] \\ &= \widetilde{G}_{1}(u) + \widetilde{G}_{2}(u) \leq \sup_{t \in K} \left[G_{1}(t) + G_{2}(t) \right]. \end{split}$$

This gives the lemma with $f_n = f_n' \circ R$.

We use Lemma 2 with $K = (\mathscr{A}_1^*, \omega^*)$, $H = (\mathscr{B}_1^*, \omega^*)$, $F = Q^*I$, and R the restriction map. Since $Q^*I = F' \circ R$, where

$$F'(u) = \hat{u}(I) = \lim_{r \to \infty} u(B_n) = \lim_{k \to \infty} u(B_{n_k}),$$

we get by Lemma 2 functions $f_n \in \mathcal{C}(K)$ such that

$$(\forall t \in K)$$
 $(Q^*I)(t) = \sum_{n=1}^{\infty} f_n(t),$

$$\sup_{\|\theta_n\| \leq 1} \left\| \sum_{n=1}^N \theta_n f_n \right\|_{\infty} \leq \sup_{t \in K} \left[g(t) + g(-t) \right] \leq 1.$$

In order to conclude the proof of the Proposition, it suffices to apply the following quantitative version of a classical result of A. Pełczyński (a similar result can be found in [10], Lemma 1), with $Y = \mathcal{B}$, $X = \mathcal{C}(K)$.

Lemma 3. Let X be a Banach space and let Y be a subspace of X. If $f \in Y^{\perp \perp}$ is such that

$$f = \sum_{n=1}^{\infty} \omega^* x_n, \quad x_n \in X,$$

$$\sup_{\|\theta_n\| \le 1} \left\| \sum_{n=1}^{N} \theta_n x_n \right\| \le C \|f\|,$$

then, for every $\varepsilon > 0$, there are $y_n \in Y$, $n \ge 1$, such that

$$f = \sum_{n=1}^{\infty} \omega^* y_n, \quad \sup_{|\theta_n| \leqslant 1} \left\| \sum_{n=1}^N \theta_n y_n \right\| \leqslant (C + \varepsilon) \|f\|.$$

Sketch of proof (see [29], Lemma 15.7, p. 446). There exist $z_n \in Y$, $n \ge 1$, such that $f = \omega^*$ - $\lim_{n \to \infty} z_n$. Setting $v_n = z_n - \sum_{i=1}^n x_i$, $n \ge 1$, we can define a strictly increasing sequence of integers $0 = p_0 < p_1 < \dots$, a sequence of real numbers $\lambda_n \ge 0$, such that $\sum_{i=p_{n-1}+1}^{p_n} \lambda_i = 1$ and

$$u_n = \sum_{i=p_{n-1}+1}^{p_n} \lambda_i v_i, \quad ||u_n|| \leqslant \varepsilon ||f||/2^{n+1}.$$

Setting now

$$w_{n} = \sum_{i=p_{n-1}+1}^{p_{n}} \lambda_{i} z_{i},$$

$$y_{1} = w_{1}, \quad y_{n+1} = w_{n+1} - w_{n},$$

$$n \geqslant 1,$$

we have

$$y_1 = \sum_{j=1}^{p_1} \mu_j^0 x_j + u_1,$$

$$y_{n+1} = \sum_{j=p_{n-1}+1}^{p_{n+1}} \mu_j^n x_j + u_{n+1} - u_n, \quad n \ge 1,$$

with

$$\mu_j^0 = \sum_{i=j}^{p_1} \lambda_i.$$

$$\mu_j^n = \begin{cases} 1 - \sum_{i=j}^{p_n} \lambda_i, & p_{n-1} + 1 \leq j \leq p_n, \\ \sum_{i=j}^{p_{n+1}} \lambda_i, & p_n + 1 \leq j \leq p_{n+1}, \end{cases} \quad n \geq 1.$$

Since $0 \le \mu_i^n \le 1$, $\forall j$, $\forall n \ge 0$, we obtain

$$\left\| \sum_{n=1}^{N} \theta_{n} y_{n} \right\|$$

$$\leq \left\| \sum_{n=1}^{N-1} \sum_{j=p_{N-1}+1}^{p_{n}} (\theta_{n} \mu_{j}^{n-1} + \theta_{n+1} \mu_{j}^{n}) x_{j} + \sum_{j=p_{N-1}+1}^{p_{N}} \theta_{N} \mu_{j}^{N-1} x_{j} \right\| + \varepsilon \|f\|$$

$$\leq C \|f\| + \varepsilon \|f\|$$

because $\mu_j^{n-1} + \mu_j^n = 1$ for $p_{n-1} + 1 \le j \le p_n$, and hence $|\theta_n \mu_j^{n-1} + \theta_{n+1} \mu_j^n| \le 1$.

The conclusion of the proof of the Theorem is along the lines of [15]. We begin by noting that, for $x \in E$, $x^* \in E^*$, $x \otimes x^*$ induces an element of \mathscr{A}^* :

$$(\forall A \in \mathscr{A}) \qquad \langle x \otimes x^*, A \rangle = \langle x^*, Ax \rangle;$$

we have $\|x \otimes x^*\|_{\mathscr{A}^*} \ge \|R(x \otimes x^*)\|_{\mathscr{A}^*}$, on the other hand, for every $A \in \mathscr{A}$, $B_n A \in \mathscr{B}$ and condition (H2) gives

$$\langle x^*, Ax \rangle = \lim_{n \to \infty} \langle x^*, B_n Ax \rangle;$$

hence $\|x \otimes x^*\|_{\mathscr{A}^*} = \|R(x \otimes x^*)\|_{\mathscr{A}^*}$.

Therefore, since $\mathscr{A}^* = \mathscr{B}^{\perp} \oplus_1 N$ with N isometrically isomorphic to \mathscr{B}^* , we have $Q(x \otimes x^*) = x \otimes x^*$, and the Proposition allows us to write

$$\langle x^*, x \rangle = \sum_{n=1}^{\infty} \langle x^*, S_n x \rangle.$$

By condition (H1), we can find a sequence $(R_n)_{n\geq 1}$ of finite rank operators such that $||S_n - R_n|| \leq \varepsilon/2^n$, $n \geq 1$; setting (as in [27], proof of Prop. 3, or [15], proof of Cor. 6)

$$(\forall x \in E)$$
 $S(x) = \sum_{n=1}^{\infty} \omega^* R_n(x),$

we obtain an operator from E into E^{**} ; S is actually an operator from E into E because for every $x \in E$ and $n \ge 1$ we have

$$\operatorname{dist}(S(x), E) \leq \|S(x) - \sum_{k=1}^{n} R_{k}(x) - x + \sum_{k=1}^{n} S_{k}(x)\|$$

$$\leq \sum_{k=n+1}^{\infty} \|R_{k} - S_{k}\| \|x\| \leq \varepsilon \|x\|/2^{n};$$

moreover, since $||I-S|| \le \varepsilon$, S is an invertible operator and $||S^{-1}|| \le 1/(1-\varepsilon)$.

Now, the finite rank operators $U_n = S^{-1}R_n$ satisfy the conditions

$$x = \sum_{n=1}^{\infty} U_n(x), \quad \sup_{|\theta_n| \le 1} \left\| \sum_{n=1}^{N} \theta_n U_n(x) \right\| \le \frac{1+2\varepsilon}{1-\varepsilon} \|x\|, \quad \forall x \in E.$$

It follows that $(U_n)_{n \ge 1}$ is a $\left(\frac{1+2\varepsilon}{1-\varepsilon}\right)$ -unconditional finite-dimensional expansion of identity of E.

Now, by [24], Lemma 1.2, there is a Banach space F with a 1-unconditional FDD such that E is $\left(\frac{1+2\varepsilon}{1-\varepsilon}\right)$ -isomorphic to a $\left(\frac{1+2\varepsilon}{1-\varepsilon}\right)$ -complemented subspace in F. By renorming F, we deduce that F has a $\left(\frac{1+2\varepsilon}{1-\varepsilon}\right)$ -unconditional

FDD and that E is isometric to a $\left(\frac{1+2\varepsilon}{1-\varepsilon}\right)^2$ -complemented subspace of F.

In order to complete the proof let F be a Banach space with a $(1+\varepsilon)$ -unconditional FDD, $(P_n)_{n\geq 1}$ the associated projections, J an isometry from the Banach space E into F, and P a projection of F with range J(E) and $||P|| \leq 1+\varepsilon$.

As in [15], adapting the proof of [11], Th. 3.3, we set

$$W = \overline{\operatorname{conv}} \Big(\bigcup_{N \ge 1} \{ (\sum_{n=1}^{N} \theta_n P_n) (JE_1); |\theta_n| \le 1 \} \Big).$$

The set W is weakly conditionally compact (w.c.c.) if $E \Rightarrow l^1$ (resp. W is weakly compact (w.c.) if E is reflexive) ([11], Lemma 3.2); in particular, every sequence in W has a weakly Cauchy subsequence. Define ([6], Lemma 1)

$$W_n = \frac{1}{2}(2^n W + 2^{-n} F_1), \quad n \geqslant 0,$$

and $|||x||| = \left(\sum_{n=0}^{\infty} ||x||_n^2\right)^{1/2}$, where $||\cdot||_n$ is the gauge of W_n ; then $F_0 = \{x \in F\}$ $|||x||| < \infty\}$ is a Banach space and the canonical injection $j: F_0 \to F$ is continuous ([6], Lemma 1(ii)). Since $W \subset (1+\varepsilon)F_1$, it follows that $||j|| \le 1 + \varepsilon$ because $|||x||| \le 1 \Rightarrow ||x||_0 \le 1 \Rightarrow x \in \frac{1}{2}(W+F_1) \subset (1+\varepsilon)F_1$.

Since $JE_1 \subset W$, we have $J = j \circ A$, where $A: E \to F_0$ is an isomorphic embedding, with $||A|| \le 1$, $||A^{-1}|| \le 1 + \varepsilon$.

Since $P_n(W) \subset W$, $n \ge 1$, F_0 has a $(1+\varepsilon)$ -unconditional FDD ([6], Lemma 1 (viii), (ix)) which is shrinking (resp. F_0 is reflexive) since $(F_0)_1 = \bigcap_{n \ge 0} \frac{1}{2} (2^n W + 2^{-n} F_1)$ is w.c.c. (resp. w.c.) by a classical lemma of Grothen-dieck ([7], pp. 227, 237).

Renorming F_0 concludes the proof.

6. Concluding remarks and questions

6.1. The Lorentz sequence spaces d(w, p), $1 , are reflexive Banach spaces with 1-symmetric basis such that <math>\mathcal{K}(d(w, p))$ is not an M-ideal in $\mathcal{L}(d(w, p))$ [18]; therefore the Theorem of this paper gives a necessary

condition on E for $\mathcal{K}(E)$ to be an M-ideal in $\mathcal{L}(E)$ but it is not a sufficient condition. This leads to

QUESTION 1. Is it possible to find a necessary and sufficient condition on E for $\mathcal{K}(E)$ to be an M-ideal in $\mathcal{L}(E)$?

- **6.2.** QUESTION 2. Can $\mathcal{K}(L^p(0, 1))$, $1 , <math>p \neq 2$, be isomorphic to a space which is an M-ideal in its bidual? (see [14], Question III.4).
- **6.3.** Let E be a Banach space with a monotone basis $\mathscr{U}=(u_n)_{n\geq 1}$, and let $\bar{u}_n\in\mathscr{K}_d(E,\mathscr{U})$ be defined by $\bar{u}_n(u_k)=u_n$ if k=n, and 0 if $k\neq n$; $(\bar{u}_n)_{n\geq 1}$ is a basis of $\mathscr{K}_d(E,\mathscr{U})$ ([28], Lemma 5), and it is easy to see that it is equivalent to the canonical basis of c_0 if and only if \mathscr{U} is unconditional. A. Sersouri ([28], Problème 15) asked if \mathscr{U} is unconditional whenever $\mathscr{K}_d(E,\mathscr{U})$ is isomorphic to c_0 . We may ask: is \mathscr{U} unconditional whenever $\mathscr{K}_d(E,\mathscr{U})$ is an M-ideal in $\mathscr{L}_d(E,\mathscr{U})$ (resp. $\mathscr{K}_d(E,\mathscr{U})$ is isomorphic to a space which is an M-ideal in its bidual)? (Let us remark that $\mathscr{K}_d(E,\mathscr{U})^{**}=\mathscr{L}_d(E,\mathscr{U})$ if $(\bar{u}_n)_{n\geq 1}$ is shrinking, and, in particular, if \mathscr{U} is shrinking or boundedly complete ([28], Th. 8).) The answer is negative: if \mathscr{U} is a conditional basis of l^p , $1 ([23], I.2.b.11, II, p. 162), then <math>\mathscr{K}_d(l^p,\mathscr{U})$ is an M-ideal in $\mathscr{L}_d(l^p,\mathscr{U})=\mathscr{K}_d(l^p,\mathscr{U})^{**}$ since $\mathscr{K}(l^p)$ is an M-ideal in its bidual. A weaker question can be asked (a partial answer is given in [28], Prop. 16):

QUESTION 3. If $\mathcal{K}_d(E, \mathcal{U})$ is an M-ideal in $\mathcal{L}_d(E, \mathcal{U})$ (resp. $\mathcal{K}_d(E, \mathcal{U})$ is isomorphic to a space which is an M-ideal in its bidual), does \mathcal{U} have an unconditional basic subsequence?

For $E = L^p(T)$, $\mathcal{U} = \mathcal{T}$ the trigonometric basis, the existence of $\Lambda(r)$ -sets $(r \ge \max(p, p^*))$ implies the existence of an unconditional basic subsequence without the *M*-ideal hypothesis ([25], Th. 2.11).

- 6.4. Let us mention that every separable \mathscr{L}^{∞} -space which is isomorphic to a space which is an M-ideal in its bidual is isomorphic to c_0 [13].
- 6.5. If we replace condition (H1) in the Theorem by the stronger condition:
- (H1") $\mathscr{F}(E) \cap \mathscr{B}$ is norm dense in \mathscr{B}

(which holds if $\mathscr{B} = \mathscr{K}_{d}(E, \mathscr{U})$), we can take in the proof $R_{n} \in \mathscr{F}(E) \cap \mathscr{B}$, and if \mathscr{A} is closed in the strong operator topology, then $S \in \mathscr{A}$; hence if \mathscr{A} is also a full subalgebra $\mathscr{L}(E)$, then $S^{-1} \in \mathscr{A}$ (these two conditions hold when $\mathscr{A} = \mathscr{L}_{d}(E, \mathscr{U})$); therefore $U_{n} \in \mathscr{F}(E) \cap \mathscr{B}$: E has a $(1+\varepsilon)$ -unconditional finite-dimensional expansion of its identity, $(U_{n})_{n \geq 1}$, with the U_{n} in \mathscr{B} .

References

- [1] E. Alfsen and E. Effros, Structure in real Banach spaces, I, Ann. of Math. 96 (1972), 98-128.
- [2] E. Behrends, Sur les M-idéaux des espaces d'opérateurs compacts, Publ. Math. Univ. Paris VII, Sémin. d'Anal. Fonct. Paris VI-VII, 1984-85, 11-18.
- [3] D. L. Burkholder, A nonlinear partial differential equation and the unconditional constant of the Haar system in L^p, Bull. Amer. Math. Soc. 7 (3) (1982), 591-595.
- [4] -, A proof of Pelczyński's conjecture for the Haar system, Studia Math. 91 (1) (1988), 79-83.
- [5] C.-M. Cho and W. B. Johnson, A characterization of subspaces X of l_p for which K(X) is an M-ideal in L(X), Proc. Amer. Math. Soc. 93 (3) (1985), 466-470.
- [6] J. Davis, T. Figiel, W. B. Johnson and A. Pełczyński, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-317.
- [7] J. Diestel, Sequences and Series in Banach Spaces, Springer, 1984.
- [8] J. Dixmier, Les fonctionnelles linéaires sur l'ensemble des opérateurs bornés d'un espace de Hilbert, Ann. of Math. 51 (1950), 387-408.
- [9] H. Fakhoury, Sur les M-idéaux dans certains espaces d'opérateurs et l'approximation par des opérateurs compacts, Canad. Math. Bull. 23 (4) (1980), 401-411.
- [10] M. Feder, On subspaces of spaces with an unconditional basis and spaces of operators, Illinois J. Math. 24 (2) (1980), 196-205.
- [11] T. Figiel, W. B. Johnson and L. Tzafriri, On Banach lattices and spaces having local unconditional structure, with applications to Lorentz function spaces, J. Approx. Theory 13 (1975), 395-412.
- [12] D. J. Fleming and D. M. Giarrusso, M-ideals in $L(l_1, E)$, Canad. Math. Bull. 29 (1) (1986), 3-10.
- [13] G. Godefroy, \mathcal{L}^{∞} -Spaces which are isomorphic to M-ideals, preprint.
- [14] G. Godefroy and D. Li, Banach spaces which are M-ideals in their bidual have property (u), Ann. Inst. Fourier (Grenoble) 39 (2) (1989), 361-371.
- [15] G. Godefroy and P. Saab, Weakly unconditionally convergent series in M-ideals, Math. Scand., to appear.
- [16] P. Harmand and A. Lima, Banach spaces which are M-ideals in their biduals, Trans. Amer. Math. Soc. 283 (1984), 253-264.
- [17] J. Hennefeld, A decomposition for B(X)* and unique Hahn-Banach extensions, Pacific J. Math. 46 (1) (1973), 197-199.
- [18] -, M-ideals, HB-subspaces, and compact operators, Indiana Univ. Math. J. 28 (6) (1979), 927-934.
- [19] J. Johnson, Remarks on Banach spaces of compact operators, J. Funct. Anal. 32 (1979), 304-311.
- [20] Å. Lima, M-ideals of compact operators in classical Banach spaces, Math. Scand. 44 (1979), 207-217.
- [21] -, On M-ideals and best approximation, Indiana Univ. Math. J. 31 (1982), 27-36.
- [22] J. Lindenstrauss and A. Pełczyński, Contributions to the theory of the classical Banach spaces, J. Funct. Anal. 8 (1971), 225-249.
- [23] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, II, Springer, 1977, 1979.
- [24] A. Petczyński and P. Wojtaszczyk, Banach spaces with finite dimensional expansions of identity and universal bases of finite dimensional subspaces, Studia Math. 40 (1971), 91-108.
- [25] H. P. Rosenthal, Projections onto translation-invariant subspaces of L^p(G), Mem. Amer. Math. Soc. 63 (1966).
- [26] K. Saatkamp, M-ideals of compact operators, Math. Z. 158 (1978), 253-263.
- [27] A. Sersouri, Propriété (u) dans les espaces d'opérateurs, Bull. Polish Acad. Sci., to appear,
- [28] -, Opérateurs diagonaux dans les espaces à bases, Math. Z., to appear.
- [29] I. Singer, Bases in Banach Spaces I, Springer, 1970.

50 D. Li

[30] R. R. Smith and J. D. Ward, Applications of convexity and M-ideal theory to quotient Banach algebras, Quart. J. Math. Oxford (2) 30 (1979), 365-384.

[31] -, -, M-ideal structure in Banach algebras, J. Funct. Anal. 27 (1978), 337-349.

ÉQUIPE D'ANALYSE U.A. No. 754 au C.N.R.S. UNIVERSITÉ PARIS VI Tour 46, 4ème étage 4, Pl. Jussieu, 75252 Paris Cedex 05, France DÉPARTEMENT DE MATHÉMATIQUES UNIVERSITÉ PARIS-SUD Bât. 425 91405 Orsay Cedex, France

Received October 10, 1988 Revised version February 22, 1989 (2486)

Added in proof (January 1990). D. Werner (Remarks on M-ideals of compact operators, to appear in Quart. J. Math. Oxford) proved that the result of C.-M. Cho and W. B. Johnson also holds for subspaces of c_0 -sums of finite-dimensional spaces. A similar result is given by E. Oja (C. R. Acad. Sci. Paris 309 (1989), 983-968).

Very recently, P. G. Casazza and N. J. Kalton (Notes on approximation properties in separable Banach spaces, preprint) have introduced the notion of μ -ideal which is more general than that of M-ideal and have given a characterization of separable reflexive Banach spaces X with AP for which $\mathcal{K}(X)$ is a μ -ideal in $\mathcal{L}(X)$.

STUDIA MATHEMATICA, T. XCVI (1990)

Partial differential operators of infinite order with constant coefficients on the space of analytic functions on the polydisc

by

SIEGFRIED MOMM (Düsseldorf)

Abstract. For a componentwise radial plurisubharmonic function $p: \mathbb{C}^N \to \mathbb{R}_+$ satisfying some technical conditions we consider the (DFN)-space $A_{p,1}(\mathbb{C}^N) := \{f \in A(\mathbb{C}^N) | \exists k \in \mathbb{N}: \|f\|_k = \sup_{z \in \mathbb{C}^N} |f(z)| e^{-(1-1/k)p(z)} < \infty \}$ of analytic functions on \mathbb{C}^N . If we put $A_p^0(\mathbb{C}^N) := \{F | \forall k \in \mathbb{N}: F^k \in A_{p,1}(\mathbb{C}^N)\}$ then $A_{p,1}(\mathbb{C}^N)$ is an $A_p^0(\mathbb{C}^N)$ -module such that $F \cdot A_{p,1}(\mathbb{C}^N)$ is a closed subspace of $A_{p,1}(\mathbb{C}^N)$ for each $F \in A_p^0(\mathbb{C}^N)$. We prove that $F \cdot A_{p,1}(\mathbb{C}^N)$ is a complemented subspace of $A_{p,1}(\mathbb{C}^N)$ for each $F \in A_p^0(\mathbb{C}^N)$ iff the strong dual $A_{p,1}(\mathbb{C}^N)$ has the linear topological invariant (DN) iff $A_{p,1}(\mathbb{C}^N)$ itself is a complemented subspace of a corresponding weighted (LB)-space $L_{p,1}^2(\mathbb{C}^N)$ of locally square integrable functions on \mathbb{C}^N . Applying this result to the function $p(z) = \sum_{i=1}^N |z_i| z_i \in \mathbb{C}^N$, we deduce that each nonzero linear partial differential operator of infinite order with constant coefficients on the Fréchet space A(A) of all analytic functions on the unit polydisc A in \mathbb{C}^N admits a continuous linear right inverse. In our approach we use a sequence space representation of $A_{p,1}(\mathbb{C}^N)$ and elementary function theory to give all the projections by explicit formulas.

For a plurisubharmonic function p on \mathbb{C}^N denote by $A_{p,1}(\mathbb{C}^N)$ the space of all entire functions f satisfying $|f(z)| \leq Ae^{Bp(z)}$ for some A > 0, 1 > B > 0 depending on f. If we allow arbitrarily large B > 0, then we get an algebra denoted by $A_p(\mathbb{C}^N)$. Both spaces, endowed with their natural inductive limit topology, are (DFN)-spaces, provided that p satisfies some technical conditions.

Recently Meise and Taylor ([12], [13]) showed for radial weights p that each principal ideal of $A_p(\mathbb{C}^N)$ is complemented if and only if the strong dual $A_p(\mathbb{C}^N)_b'$ has the linear topological invariant (DN).

In the present paper we find for componentwise radial weights p that each subspace $F \cdot A_{p,1}(\mathbb{C}^N)$ of $A_{p,1}(\mathbb{C}^N)$ is complemented if and only if the strong dual $A_{p,1}(\mathbb{C}^N)_b$ has the linear topological invariant (<u>DN</u>) (see Wagner [21] and Vogt [19]). Our proof also gives rise to a new and more elementary proof of the above-mentioned result of Meise and Taylor.

To state an application of our result, we denote by $A(\Delta)$ the Fréchet space of all analytic functions on the unit polydisc Δ in \mathbb{C}^N . Then each nonzero