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STUDIA MATHEMATICA, T. XCYI (1596)

Quantitative onconditionality of Bamach
spaces E for which (E) is an M-deal in £ (E)

by

DANIEL LI (Paris)

Abstract, Let E be a separable Banach space with AP; if #°(E) is an M-ideal in #{E), then
lor every ¢ > 0, E is isometric to a (1+g)-complemented subspace in a space with a(l +aj-uncon-
ditional shrinking FDD; in particular, E is isometric to a subspace of a space with a {1 + &}-uncon-
ditional basis, and dist{E, I’{0, 1)) 2 max(p—1, 1/{p—1)).

1. Introduction. Since E. Alfsen and E. Effros introduced the notion of an
M-ideal [ 1], many authors have studied for which Banach spaces E, °(E), the
space of compact operators on E, is an M-ideal in #(E), the space of all
continuous operators on E. J. Hennefeld [17] had already proved that if E = ¢,
or %, 1 < p < o0, #(E)is an M-ideal in #(E); actually for E = [? this had been
proved a long time ago by J. Dixmier [8]. This was improved by A. Lima: if
(E Jeea is a family of finite-dimensional spaces and E = (B pes Eir, 1 < p < o0,
of E = (@ e E,)o» then A(E) is an M-ideal in #(E) {[21], p. 31); moreover, if
F is a subspace of E = (@ yeq EJw, 1 < p < 0, C. M. Cho and W. B. Johnson
showed that #°(F) is an M-ideal in % (F) if and only if F has the compact
approximation property [5]. On the other hand, 2#°(E) is not an M-ideal in
P(E) when a) E=1', E =" [31], b) E is a space with a 1-symmetric basis
which is not I? or ¢, [18], ¢) E = ¥(K), K infinite compact [9], d} E = I* (),
dim L (u) = oo [9], [20], ) E is a Lindenstrauss space which is not cy(I),
) E= 1", 1 <p<w,p#2, unot purely atomic [20]. Some authors also
studied when #'(X, Y) is an M-ideal in £(X, ¥} ([2], [9], [12], [20], [26], for
instance).

After this concrete examples, structure theorems were sought for Banach
spaces E for which #'(E) is an M-ideal in & (E); A. Lima proved that E is then
an M-ideal in its bidual E** [21], a result which also yields the previous
examples a), c), d), ¢) {16]. Lately G. Godefroy and P. Saab showed that
E (supposed separable with AP) has got to be isomorphic to a complemented
subspace of a space with a shrinking unconditional finite-dimensional decom-
position [15].
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The present work is a quantitative version of [157; we prove that if E is
a separable Banach space with AP such that #'(E) is an M-ideal in &% (E), then
for every ¢ > 0, E is isometric to a (I + &)-complemented subspace in a space
with a (14 ¢)-unconditionai shrinking FDD; in particular, E is isometric to
a subspace of a space with a (1+ ¢)-unconditional basis and

. 1
dist(E, L#(0, 1)) max(pwl, —-——1)
pm
This answers a question of G. Godefroy.
Let us note, however, that the main argument of [15] {numerical radius)
cannot give this quantitative result and it is replaced by the fundamental
lemma 4.1 of E. Alfsen and E. Effros [1].

2. Notations znd preliminaries. The Banach spaces considered in this
paper are real or complex; all the subspaces are supposed to be closed. If X is
a Banach space, its closed unit ball is denoted by X, and the weak*-topology
on the dual X* by w*; in any case, the notations are standard and are those of
[7] or [23].

Il £ is a Banach space, #'(E) denotes the space of compact operators on E,
2 (E) is the space of all continuous linear eperators on E, and % (F) the space
of finite rank ones. '

A subspace J of a Banach space X is said to be an M-ideal if there is an
L-projection Q of X* with range J, the annmihilator of J in X *, that is,
a projection Q such that |xf = Qx] 4+ lx— Qx| for every xe X*.

A Banach space F is said to have a finite-dimensional Schauder decom-
position (FDD) if every xe F can be uniquely written as x = 3%, x,, where
x,€F,, and each F, is a finite-dimensional subspace of F ; the FDD is said to be

unconditional if the series 3 e x,is unconditionally convergent for every xe F,
and the number :

N
sup sup sup ||} 0,x,||
x| SLNZL|Ba]€1 n=t
is the unconditional constant of the FDD; the FDD is said to be shrinking if it
induces by duality an FDD of F* {see [23], L1.g).
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4. The structure theorem

THEOREM. Let E be @ separable Banach space. We suppose that

(H)  There exist a subalgebra o« of ¥(E). containing I = 1d,, and an ideal
R of of such that: :

1) B = #(E) (norm closure),
2) (HB"E.@) ”'Bn” = I: i|an_"x” ‘"+Oa Vers
3) #is an M-ideal in .

Then

(C) For every e > 0, there exists a space F with a (1 +é&-unconditional FDD
such that E is isomemric to a (1+e)-complemented subspace in F.
Moreover, if E 2 1* (resp. E is reflexive) we can take F such that its
FDD is shrinking (resp. F reflexive).

We will prove this theorem in the next section. Let us now present a few
CONSEqUENCes.

CoROLLARY 1. Let E be a separable Banach space satisfying (H). Then

(C) For every £¢>0, E is isometric to a subspace of a space G with
@ (1+e)-unconditional basis. Moreover, if E 5 1* {resp. E is reflexive),
then the basis may be assumed to be shrinking (resp. G may be assumed
reflexive).

Proof. This follows from [23], 1.1.g.5. instead of [x*—x¥,| <477, we
take {x*—x%| <2 "% then o(Ti)=1—a and @(M,Tx)< 140, so that
1Tul 2 (1-a)/(1+e) and [THITH < (1 +2)/(1-a). .

Hence, if F admits a (1+a)unconditional FDD, F is isometric to
a subspace of G with a (1 +#)*/1 —«)-unconditional basis.

We conclude the proof by using the interpolation technique of [117,
Theorem 3.3. =

CoroLLARY 2. Let E be separable Banach space with the Approximation
Property. If #°(E) is an M-ideal in £ (L), then for every ¢ > 0, E is isometric to
a (1+sg)}-complemented subspace in a space F with a (1+s)-unconditional
shrinking FDD, and F may be assumed reflexive if E is.

Proof. It suffices to remark that condition (H 2) holds ([16], Lemma 5.1},
and to use [21], Cor. 2.5, in order to see that E [*. =

CoroLLARY 3. If E is a separable Banach space with the Approximation
Property and A(E) is an M-ideal in Z(E), then

L
dist(E, IF(0, 1)) max(pml, Im)
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Proof. This follows from the reproducibility of the Haar basis ([22],
Th. 4.1, {23], I1.2c.7, 1.2.c.8): whenever L#(0, 1), 1 <p < o0, is isometric
to a subspace of a space with a basis (u,),> ,, then for every & > 0, there exists
a block basis of (i}, which is (I +gl-equivalent to the Haar basis. Hence, the
distance from E to IP(0, 1), 1 < p < oo, is at least k,. the unconditional
constant of the Haar basis of L7(0, 1), and k, = max(p~1, 1/(p—1)) ({31, Cor.
1, £4)).

Corollary 3 is also true for p=1 and p= oo since # (L'(0, 1)) and
A°(L”(0, 1)) are isomorphic to no space which is an M-ideal in its bidual ([217,
Cor. 2.5). w

COROLLARY 4. Let E be a Banach space with a monotone basis U = (u,),5 .
If AYE, %), the space of compact diagonal operators, is an M-ideal in #,(E, %),
the space of continuous diagonal operators, then (C) holds for E.

Remark 1. If E=1" and % is the canonical basis, Ay (1) is isometric to
¢y and is an M-ideal of %, (I') which is isometric to I*; but I' cannot be
isomorphic to a subspace of a space with a shrinking FDD, So, the condition
E 3 [* in the conclusion (C) of the Theorem cannot be removed,

Remark 2. f E=[?(T), | < p< o0, and % = 7 is the trigonometrical
basis ([23], [1.2.c.16), then Z(L7(T), )= CV(L?(T)) (resp. Ay (LX), T)
= CV,(L?(T))) is the space of convolution operators (resp. compact con-
volution operators) on LP(T); as in Cor. 3, CV,(L*(T)) is not an M-ideal
In its bidual CV(L*(T)) (another proof of this which was indicated to me
by F. Lust-Piquard adapts the one of A. Lima, [20], Th. 11).

5. Proof of the Theorem. First, we show

PROPOSITION. Let E, of and % be as in the Theorem, and assume the
condition: '

HY) B < H(E), and B is separable,

instead of (H1). Let Q be the L-projection of <« * with kernel 2*. Then, for every
&> 0, there exists S, e®, nz 1, such that

0 1= 5, (ol %),
=1

I

sup || ¥ 8,85, < 1+e.

[8xl<1 k=1
We need the following lemma, which is essentially known ([307, Th. 2.5).
Lemma 1. With the hypothesis of the Proposition, Jor every A,
0*A4 = lim B, 4 {g(sf**, &™)
n—r o
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Proof We use the argument of J. Johnson ([19], Lemma 1). For
every ultrafilter ¥, lim, (B, exists for every Y e#* # being an ideal
of «, the map ¥: Se&r—p(SA4) is an element of #* for every Ade.of
and every ¢ed* hence, we can define @(A4) = lim, (B, 4); then ¢e.o/*,
el < llel -

Since B,~—I as n— oo uniformly on compact subsets of E, we have
|B,B—B| =0 as n—oc for Bed, and so ¢(B) = @(B) for Be; hence
161 = llol.

If we denote by R: ./* — #* the restriction map and by A.,: #B* — o7* the
map p—@, A,R is a contractive projection of &7* with kernel #*; hence
A R =Q ([16], Prop. 2.1.b).

Therefore, for Aew/ and gpeod*,

(Q* A4, 0> = (A, A Ro) = im(Rg)(B, A) = lim (B, 4),
h kd

that is, Q*A4 =lim,.. B, A (o{a/**, &%) &

Proof of the Proposition Let us consider &/ with its real Banach
space structure. By Lemma -1, @*I == lim,_ ., B, (6(a/**, o/*)).

Let K be the compact space («/T, o*), and let us consider elements of
&7** as functions on K. Denoting by yx, the characteristic function of the set
Lo K, we set

h= (IXBBJ-HK) vh= (IXQJ'HK)+

and let / be the smallest concave upper-semicontinuous (us.c.) function which
is greater than » on K; then {[1], Lemma 4.1)

(VteK) (I—0*D{)=ht)~h(—1).
Therefore, setting
(VteK) g =3[I@-+11-h0),
we have _
(VeeK) 101 = (Q* D)) = g()—g(—),
and g is a positive, lower-semicontinuous (1.s.c.) functicn on K such that

(VieK) gt)+g(-t)<1.

I am indebted to J. Saint Raymond for the next lemma.

Levma 2. Let K be a compact space and F: K - R such that F = G, — G,,
with G, G, positive l.s.c. functions on K. If there exist a metrizable compact
space H, a continuous surjection R: K~ H and a function F: H—R such that
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F =FoR, then there exist continuous functions f,(t) on K, n=1,2,...,

such that

(VteK) F(t)=

"

1M~s

ﬁ’(r)’

1

sup IIZ O, flles < SUDLG, () + G, (1))
&nl

[Bal€1 n=1 ek

Sketch of proof (see [14], Lemma 3). We set
(VueH) G(u)=inf{G0)|R({) = u};
then &,, G, are positive and ls.c. on H, and
(VueH) Fu =G, ()~ G, ().
Since H is a metrizable space we have

G ('M) = lim ng n(u

R—+m

Z Egz n+1(u gi,n(u)]a

with gy1 = g2.1 =0, ¢1,., g2.., # = 1, continuous on H; setting, for n > 1,

(VueH) fi) = [g1n+10)— g1~ [g2ns1(0)—ga ()],
we have

(VucH) Fiu)= E Fliw

and, for |0,[< 1, ueH,

. ’ o
|2, OS] < T unesfe)= gmu>1+2[gz..+1(u) 92.4(1)]

=G, (u )+G2(u? é_su}:[Gl(t)—l-Gz(t)].

This gives the lemma with fi=HoR =

We use Lemma 2 with K = (&%, ©*), H = (#%, w*), F
restriction map. Since Q*I = F'oR, where

F'lu) = 4(I) = limu(B,) = klim u(B, ),
¥ o :

= Q*] and R the

we get by Lemma 2 functions f,e#(K) such that

weeR) @00 = § £

sup HZ B, fol| 0 < sup[a(r)Jrg(—t)]

[Bnl<1 r=1 ek
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In order to conclude the proof of the Proposition, it suffices to apply the
following quantitative version of a classical result of A. Pelczyfiski (a similar
result can be found in [10], Lemma 1), with ¥ = #, X = €(K).

LemMA 3. Let X be a Banach space and let Y be a subspace of X. If

feY*t is such that

o
*
= Zw X anX,

sup || > 0, A< Cifl,
[8aisl n=1
then, for every s> 0, there are y, ¥, n= 1, such that
f= 3 sup nz 0,3, < (C+8)IF1.
n=1 ] €1 m=1

Sketch of proof (see [29], Lemma 15.7, p. 446). There exist z, ¢ ¥,

> 1, such that f = w*lim,.,z,. Setting v, =z,—Y7-yx, n=1, we can

define a strictly increasing sequence of integers 0 = py < p; < , & sequence
of real numbers 1, > 0, such that ¥72, ., 4, =1 and

Pn

u,= 3 Ay, wl<el S22
i=pp-1+1
Setting now
Pn
wﬂ = Z j‘lzl’
=g 1
i=pn-tt . 15
V1= Wy Va1 = Wpai— Wy,
we have
P
= Z #?xj+u1>
i=1
Pn+i )
Yan+1 = Z ,Ll;!xj+un+1—un, 1"[2 1:
J=tm-1+1
with

P+l << puses
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Since 0 < = 0, we obtain

N
I3 0

<1, vj, va

PN
O+ Oy iDx+ Y, O x| +elif]

j=pun-1t1

N—1 Pn
o DYDY

n=1 j=pp-1+t1

ClfI+ehsl

because ;i "+ = 1for p,—1 +1 <j < p,, and hence (0,07 + 0,0 ] €1

The conclusion of the proof of the Theorem is along the lines of [15].
We begin by noting that, for xe E, x*e E*, x®x* induces an element
of «*:

(VAest) (xQ@x* A> = {x* Ax);

we have [x@x*{ = |[R(x®@x*)|4: on the other hand, for every Ae.d,
B, Ac# and condition (H2) gives

{x*, Ax) = lim {x*, B, Ax);
n—+o
hence [x@®x*|| = = [ R(x@x*)| g
Therefore, since #/* = #*@®, N with N isometrically isomorphic to &%,
we have Q(x®x*) = x®x* and the Proposition allows us to write

{x*, x> = i {x*, §,x5.
a=1

By condition (H1), we can find a sequence (R,),»; of finite rank operators
such that {|5,— R,|| < &/2", n = L setting (as in [27], proof of Prop. 3, or [15],
proof of Cor. 6)

(VxeE) S{x)= Y“R,(x)
=1

we obtain an operator from E inte E**; S is actually an operator from E into

E because for every xeE and n 1 we have
dist(S(x), E) < [|S(x)— Z ~x+ 3, S|
k= k=1
< Y IR Sillxl < & xl/27
k=n-+1

moreover, since |[I—S| < ¢, S is an invertible operator and |§7!|| <

1/(1—¢).
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Now, the finite rank operators U, =S~ 'R, satisfy the conditions

=Y U 1+ d
n=1

sup || 3 6,UL)| <

€1 n=1

II <, VxekE.

. 142¢ L e . .
It follows that (U)), 5, isa (—lj—u)—uncondmonal finite-dimensional expansion

of identity of E.
Now, by [24], Lemma 1.2, there is a Banach space F with a 1-uncon-

iy . 1+ 2e . .
ditional FDD such that E is ( 1+ 8)-]801’1101’];)1’110 to & (llJrzg)—complememed
- —s

. . 1+2 ..
subspace in F. By renorming F, we deduce that F has a ( 1+ E)—un_conch’uonﬂ]

1—e
In order to complete the proof let F be a Banach space with a (1+2)-
unconditional FDD, (P,),= the associated projections, J an isometry from the
Banach space E into F, and P a projection of F with range J(E) and
1P <1+te
As in [15], adapting the proof of [11], Th. 3.3, we set

N
W= conv( {] {(Y 0,PJVE); 16,1 <1}).
Nz21 n=1
The set W is weakly conditionally compact (w.c.c.) if E :p I' (resp. W is weakly
compact {w.c.) if E is reflexive) ([11], Lemma 3.2); in particular, every sequence
in W has a weakly Cauchy subsequence. Define ([6], Lemma 1)

W, =42"W+2""F,)), nz0,

and |||x]] = (¥x=o |x|2)*/2, where |||, is the gauge of W,; then F, = {xeF|
lixl] << 0} is a Banach space and the canonical injection j: F,—F
is continuous ([6], Lemma 1(ii)). Since W = (1 +&)F, it follows that ||[jj < 1 +=&
because |[|x]|| € 1= [xll; < 1=xed(W+F)) < (1 +¢F,.

Since JE, « W, we have J = jod, where A: E—F, is an isomorphic
embedding, with Al <1, A7 < 1+e

Since P, (W) W, n=1, F, has a (I+¢)-unconditional ¥DD ([6],
Lemma 1 (viil), (ix)} which is shrinking (resp. F, is reflexive) since (Fy),
= ﬂ,,zg-%»(?f W427"F,|) is w.cc. (resp. w.c.) by a classical lemma of Grothen-
dieck ([7], pp. 227, 237).

Renorming F; concludes the proof: m

.. . 1+ 2e\?
FDD and that E is isometric to a ( ks E) -complemented subspace of F.

6. Concluding remarks and guestions

6.1. The Lorentz sequence spaces d(w,p), 1< p< oo, are reflexive
Banach spaces with 1-symmetric basis such that 2 (d(w, p)) is not an M-ideal
in Z(d(w, p)) [18]; therefore the Theorem of this paper gives a necessary
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condition on E for A#(E) to be an M-ideal in Z(E) but it is not a sufficient
condition. This leads to

QuesTion 1. Is it possible to find a necessary and sufficient condition on
E for A#'(E) to be an M-ideal in Z(E)?

6.2. QuesTiON 2. Can X (LP(0, 1)), 1 < p < o0, p # 2, be isomorphic to
a space which is an M-ideal in its bidual? (see [14], Question I¥1.4)

6.3. Let E be a Banach space with a monotone basis % = (u,),5.,
and let 4, e #(E, %) be defined by @, (u,) = u, if k=n, and O if k s n (11,),2,
is a basis of #(E, %) ([28], Lemma 5), and it is easy to see that it
is equivalent to the canonical basis of ¢, if and only if % is unconditional.
A. Sersouri ({287, Probleme 15) asked if % is unconditional whenever %7 (E, %)
is isomorphic to c¢,. We may ask: is % unconditional whenever XJ(E, %)
is an M-ideal in Z{E, %) (resp. A4(E, %) is isomorphic to a space which
is an M-ideal in its bidual)? (Let us remark that X (E, #)** = L,(E, %)
if (#t,)n»: is shrinking, and, in particular, if % is shrinking or boundedly
complete ([28], Th. 8)) The answer is negative: if % is a conditional
basis of I#, 1 <p<oo ([23], 1.2.b.11, II, p. 162}, then Ay (7, %) is an
M-ideal in £,(/%, %) = S,()°, %)** since A (IP) is an M-ideal in its bidual,
A weaker question can be asked (a partial answer is given in [28],
Prop. 16}

QuesTioN 3. If X (E, %) is an M-ideal in %, (E, %) (resp. S, (E, %) is
isomorphic to a space which is an M-ideal in its bidual), does % have an
unconditional basic subsequence?

For E = [#{T), % = & the trigonometric basis, the existence of A(r)-sets
(r 2 max(p, p*)) implies the existence of an unconditional basic subséquence
without the M-ideal hypothesis ([25], Th. 2.11).

6.4. Let us mention that every separable #®-space which is isomorphic to
a space which is an M-ideal in its bidual is isomorphic to ¢, [13].

6.5. It we replace condition (H1) in the Theorem by the stronger
condition:

(H1M)  F(E)n# is norm dense in &

(which holds if # = o, (E, %)), we can take in the proof R, &% (E)n%,
and if &/ is closed in the strong operator topology, then Se.#; hence
iff o7 is also a full subalgebra .#(E), then §™'e.s (these two conditions hold
when o = %(E, %)), therefore U, e F(E)n4: E has a (1 +¢)-unconditional
finite-dimensional expansion of its identity, (U, )z, with the U, in &.
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Added in proof (Japuary 1990). D. Werner (Remarks on M-ideals of compuact operators,
to appear in Quart. J. Math. Oxford) proved that the result of C.-M. Cho and W. B. Johnson also
holds for subspaces of ¢cg-sums of {inite-dimensional spaces. A similar gesuit is given by E. Oja
(C. R. Acad. Sci. Paris 309 (1989}, 983-968).

Very recently, P. G. Casazza and N. I. Kalton (Notes on approximation properties in
separable Banach spaces, preprint) have introduced the notion of p-ideal which is mere general
than that of M-ideal and have piven a characterization of separable reflexive Banach spaces X with
AP for which #(X) is a p-ideal in (X)),
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Partial differential operators of infinite order
with constant coefficients
on the space of amalytic functions on the polydise

by

SIEGFRIED MOMM (Diisseldorf)

Abstract. For a componentwise radial -plurisubharmonic function p: €Y= R, satisfying
some. technical conditions we consider the (DFN)-space A, (CY):={fe 4(C")|TkeN: {1,
= SUPgeex | [ {#le T TIMM < oot of analytic functions on CY. If we put AS(CV)= {F|VheN:
Fre d, (€M)} then A, ,(CY) is an AJ(CY-module such that F- A, ((C¥) is a closed subspace of
Ap(C¥) Tor each Fe AJ(CY). We prove that F- 4,(C" is a complemented subspace of A, ,(CY)
for each Fe ApCY) ill the strong dual A, ,(CY), has the linear topological invariant (DN} iff
A, (CY) itsell is 2 complemented subspace of a corresponding weighted (LB)-space L2 (0% of
locally square integrable functions on C¥ Applying this result to the function plz) = 3% |zl
zeC", we deduce that each nonzero linear partial differential operator of infinite order with
constant coefficients on the Fréchet space A(4) of all analytic functions on the unit polydise A in
C¥ admits a continuous linear right inverse. In our approach we use a sequence space
representation of A, ;(C¥), and elementary function theory to give all the projections by explicit
formulas.

For a plurisubharmonic function p on C" denote by A, (C"} the space of
all entire functions f satisfying |/ (z)] < 4€®7 for some A >0, 1 > B> 0
depending on f If we allow arbitranly large B > 0, then we get an algebra
denoted by 4,(CY). Both spaces, endowed with their natural inductive limit
topology, are (DFNj}-spaces, provided that p satisfies some technical con-
ditions. .

Recently Meise and Taylor ([12], [13]) showed for radial weights p that
each principal ideal of A,(C") is complemented if and only if the strong dual
AI,(CN)Q, has the linear topological invariant (DN}

In the present paper we find for componentwise radial weights p
that each subspace F-A4,,(C") of 4,,(CY) is complemented if and only
if the strong dual A4,,(C*), has the linear topological invariant {DN)
(see Wagner {21] and Vogt [19]). Our proof also gives rise to a new
and more elementary proof of the above-mentioned result of Meise and
Taylor.

To state an application of our result, we denote by A(4) the Fréchet space
of all analytic functions on the unit polydisc 4 in ‘C¥. Then each nonzero



