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Partial differential operators of infinite order
with constant coefficients
on the space of amalytic functions on the polydise

by

SIEGFRIED MOMM (Diisseldorf)

Abstract. For a componentwise radial -plurisubharmonic function p: €Y= R, satisfying
some. technical conditions we consider the (DFN)-space A, (CY):={fe 4(C")|TkeN: {1,
= SUPgeex | [ {#le T TIMM < oot of analytic functions on CY. If we put AS(CV)= {F|VheN:
Fre d, (€M)} then A, ,(CY) is an AJ(CY-module such that F- A, ((C¥) is a closed subspace of
Ap(C¥) Tor each Fe AJ(CY). We prove that F- 4,(C" is a complemented subspace of A, ,(CY)
for each Fe ApCY) ill the strong dual A, ,(CY), has the linear topological invariant (DN} iff
A, (CY) itsell is 2 complemented subspace of a corresponding weighted (LB)-space L2 (0% of
locally square integrable functions on C¥ Applying this result to the function plz) = 3% |zl
zeC", we deduce that each nonzero linear partial differential operator of infinite order with
constant coefficients on the Fréchet space A(4) of all analytic functions on the unit polydise A in
C¥ admits a continuous linear right inverse. In our approach we use a sequence space
representation of A, ;(C¥), and elementary function theory to give all the projections by explicit
formulas.

For a plurisubharmonic function p on C" denote by A, (C"} the space of
all entire functions f satisfying |/ (z)] < 4€®7 for some A >0, 1 > B> 0
depending on f If we allow arbitranly large B > 0, then we get an algebra
denoted by 4,(CY). Both spaces, endowed with their natural inductive limit
topology, are (DFNj}-spaces, provided that p satisfies some technical con-
ditions. .

Recently Meise and Taylor ([12], [13]) showed for radial weights p that
each principal ideal of A,(C") is complemented if and only if the strong dual
AI,(CN)Q, has the linear topological invariant (DN}

In the present paper we find for componentwise radial weights p
that each subspace F-A4,,(C") of 4,,(CY) is complemented if and only
if the strong dual A4,,(C*), has the linear topological invariant {DN)
(see Wagner {21] and Vogt [19]). Our proof also gives rise to a new
and more elementary proof of the above-mentioned result of Meise and
Taylor.

To state an application of our result, we denote by A(4) the Fréchet space
of all analytic functions on the unit polydisc 4 in ‘C¥. Then each nonzero
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linear partial differential operator

L: A(A)=A(4), L[f]= 2 a, D*f.

aan
of infinite order with constant coefficients admits a continuous lnear
right inverse, since A(4), is isomorphic to A, (CY), p(z) =YX |z, via
Fourier-Borel transform.

To prove the sufficiency of (DN), first we note that —since p is component-
wise radial— 4, ((CY), is in a natural way isomorphic to a Kothe sequence
space A(A4), 4 = (Gpp)entren- We give a characterization of A, (CY), having
(DN) in terims of 4 and p, which says that we may assume u,, = ¢!’ = /KIptad ja
with appropriate r,e RY. Now, for a given nontrivial subspace F- A, ,(C") we
apply . the classmal minimum modulus theorem for analytic functions to
construct sets T, aeN{, close to the distinguished boundary of the polydiscs
{zeC¥|jz)| < rysi=1, ..., N} such that the modulus of F is sufficiently large
on T,. Hence from our description of a,, and by the nuclearity of 1(4) we
conclude that a continuous projection P: 4, ;(CY)— F - 4 #1(CY) is given by the
formula

LYY S .
P[f](z) _F( ) ﬂ;: (27_”) ].‘[“F(O{:m-b] da: z-.

To prove the necessity of (DN} we make a reduction to the case N = 1.
Using our characterization of the property (DN), if 4, ,(C), does not have
(DN}, we construct an entire function F with F- A4, ,(C) = A, ,(C) such that
F-4,,(C) 1s not complemented. To show this we use a sequence space
representation of A, ((C)/F-A4,,(C) and conclude by standard arguments.

T wish to thank Professor Reinhold Meise for encouraging and fruitful
conversations.

1. Preliminaries. We use standard notation from complex analysis and
functional analysis. We write R, := [0, oo and |z[:= SN |z| for zeCY.

1. DEFINITION. A continuous plurisubharmonic function p: CV-+R, is
called a weight function if

(1) log{1+iz) = o(p(z)), |z|~ oo.

(2) p(22) = O(p(&), suppy<plz+w) =

(3) plz) = pllzy]. ..., lzy)), zeCN.

2. Remark. For sach weight function p on C¥ we have

(I+o(M)p(2), |z - .

llm lim sup p(Cr)/p(r) =

H =0

Proof Apply [14], Lemma 1.10, to w(f) = p(rt), teR,, reRY.

icm

Parrial differemtial operators of infinite order 53
! P v,

3. DerINITION. Let p be a weight function on C¥, let ye {1, co} and let
(nJwen T be a strictly increasing sequence of positive numbers. We define the
linear spaces

Ay (CV}y = {fe ACT)| |1 1= sup | f(c)]e ™7™ < oo for some ke N},

zelCN

2 (CY) = { fe L cN)l |f(7)!c' N2 g, )2 < oo for some ke NJ,

where A(CY) denotes the space of all entire functions. A4, ,(C") is a linear
subspace of L2 ,(CV). Endowed with their natural inductive limit topology.
A, ,(C") and L2 (CY) are (LB)-spaces. 4,,(C") is even a (DFN)-space, ic. the
strong dual of a nuclear Fréchet space. Furthermore, we define

AYCYy = [Fe A(CY)|F e A4, ,(C") for each keN}.
Obviously |
AACM A, (CY < A, (CV).
The algebra A, ., (C") is usually called A,(C").

4. DErmNITION. Let A = (ty )yen gen be @ matrix of positive numbers with

Gup S Ggprq  for all keN and aaNY.

Then -

A(A): = {6,y € CN [ 1= Y lxl g < 00 for all keN}

is called the Kdthe sequence space determined by A.

In particular, let #e]0, co] and let (1)wnT#n be a strictly increasing
sequence of positive numbers. If aakm nfe, aeMN¥ keN, for a sequence
B ={Bdseny in Ry, then we put 4,(f) = A(4) and call thns space a power series
space of iype 1. Note that A, (f)= 4,(p) for each ne)0, wf.

5. Provosrrion. For a weight function p on C, for nefl, w} and
(kenTn put
c"ilcl’t‘(ﬂ

dypt= il =, aeRY, keN,
rLllN r

A LR (ﬂﬁl.k):anﬁ.kE.N'
Then the map
Ap.q((:lv) —* /I(A)in .va(J‘l(u)(O)/oc !)txc-:Na'r’

is u (linear topological) isomorphism.
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Proof. n=1: Use Cauchy’s integral formula. On the other hand, note
that by Definition 1 for each keWN there is C > 0 such that

S @t < Cet i for all reRY.
aanN

For = w see [12], 3.2.
For examples of algebras A4,(C") we refer to [8] and [12].
6. Examrres. (1) For the case NV = [: L

ta) If p is a weight function on C such that there LXIsts C =1 with
p(r) < piCr+C for all reR,, then A, (O = A (Fh. B = en, (Heu e

[81, 2.9).
(b) For p(z) =log(l+[z)%, s > I A, (C ; /s)b, B = ) e
(¢) For p(z) = log(l +|z|}loglog (e +|z): = A(A),

= (el txp(mm) ) o

(see [3], Example 5 (5)).
(2) For the case N > 1:

(@) If p;, j=1...., N, are weight functions on C, then

N .
z) = Z piz), z=(z,,.., zy e CY,
j=1
is a weight function on C¥ Furthermore, for ne{l, co} we have
' N
AP,W{CN) = ® Apj.ri(c)
=1

(b) For p(z)} = |z| we get by Examples (1}(a) and (2)(a)
Ap 1 (CY) = A, (o),

IL. Linear topelogical invariants. We make use of the following linear
topological invariants (DN) and (DN) (see [17], 1.1, [21], 1.2, [18], 2.1},

7. DEFINITION. A metrizable locally convex space E with a fundamental
sygtem of seminorms (| ||, )y has property (DN) if the following holds: There
exists /eN such that for each ke there exist nelN, ¢ > 0 and D > 0 with
B < DA IE I

E has property (DN) if E has property (DN) and we can always choose
g =1

(DN) and (DN) are linear topological invariants which dre inherited by
topological subspaces (see [21], 1.2, {171, 1.1, and [18], 2.2)

In the sequel we need the following characterizations of these invariants.
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8. LiomMa. Let p be a weight function on CV and let aeNY be fixed. For
t>0 let r)eRY satisfy

POV p () = dnf PO fre,
reRY

Then the function t—p(r(t)) is increasing.
Proof By the hypothesis we have
£)) - A
exp<ﬁ.(,':£...)w)£mﬂ(ﬂ) < (YE‘)) for all t >0 and reRY.

From this we get for £, >t

Xp< pirts ))iz plri, )))g (iﬁ%—ji) gexp< Pl )tl ((1)))

hence p(r(ty)) = plr(z,)).

9. Lemma. Let p be a weight function on CN. Then the following assertions
are equivalent:
(D) A, (CY)y has property { DN).
(ii) There exists € N such that for each ke N there exist neN, & > 0 and
D >0 with

o 1\ . . .
kg D(ﬂ) for all weRY (a,, as in Proposition 5).
Cyn ey k

(ili) There exists a sequence (1 )uny in RY. such that for each kelN there
exists ne™N and D > O with

eI Tkl < Da,, for all aeNg.
(iv) A, ,(CY), is isomorphic to some A,(B) (see Definition 4).

Proof. (i)=»(ii). By Proposition 5, 4, ({CY}, = A(4) and A = (@ua)eeny, feny
By [21], 1.6, or [18], 4.1, A(4) has property (DN) iff (i) holds for oceNO
Because of Definition l(l) and since w.lLo.g pld =0 on the unit polydisc
A, (i) is valid even for aeRY.

(tiy=>(iii). Put 7,:= 1—1/k, k= 1. For a&RY we choose r,eRY with

(1) el fp¥ e jnf @M =iay, .
reRY

For leN as in (ii) choose meN with #2 = n,. Put C:=n,/n,. Applying (i) to

k=m we get ¢>0 and D >0 with
(2) G/ Oy S DAt/ for all aeRY.
Now, for k= 1 given, put n:=(C/e}k and &:= sm/{Ck).
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With the abbreviation s,:=ryc,,, we get for all aeRY

Pl
(3 gL mIplr) e lyg, g |0 (L IP)
[’

1
_ (aoef(h;m,ooj " . f"*:sz‘m

1

arc, o i€, 00

since Cy, = | and hence p(s,) < p{r,) by Lemma 8&.
Because of C?y, 2 | we get for all xeRY

. .
[N (aCa,'C?m.m)c "= (“mmm.w)cﬂm = (ant.m){-s
Acam = (aCaIﬂm,ou)nm = (az/q,,oo)cm = (am,,)“‘,
hence

(4) (aﬁ,l/aa,m)c S aCa,m/aCa:,m

Since 5, = 1 —8+4y,, we have for all r, xeRY

for all aeRY.

21 =OP) Himptr)  Hapir)
<

r—-4_4
Uy o BT T R R
hence
(5) o, oo (Bt Oy o)’ < 0z for all weRY.

Put B:= D’ Combining (2)-(5) we get for all xeRY
1~ 1/Rplra)

= (1~ 4m)(C/E)8 ajc,m s
=g, e < g m

L daic, 0
Cé §
Uy, a
= Ba,,W,( € Ba, | == | < Ba,,.
aac,’C.m aa,no

(iii)=>(iv). Because of the trivial estimate

gt~ Limplra)
for all aeNJ and neN,

a
an = m

L

and the hypothesis (iii) we have

Apa (€, = A} = E((

e(L“lfk)P("n)) \
S I

where f§ = (p(r;))aENzﬂv.
(iv}==(i). By [21], 1.8, or [18], 2.3, the spaces A 1(B) have property {DN).

Remark. The proof of Lemma 9 makes use of ideas from {217, 1.22, and
(3], 7. Furthermore, the proof shows that sup, fc/(1+ B.) < oo for some C > 1.
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10. Limma. Let p be a weight function on C¥. Then the following assertions
are equivalent:

(i) 4,(C"), has property (DN).

(ii) There exists 1e N such that for each ke N there exist neN and D > 0
with

ali € Dagydg,  Jor all xeN§ {a,, as in Proposition 5).

(lii) There exists a sequence (F )y in RY such that for each keN there
exist neN amd D > 0 with

el ft & Da,,,  for all aeNY.

(iv) A,(CYN) is isomorphic to some A, (B) (see Definition 4),

Proof. (i)=-{ii). Proposition 5 and [17], 2.3.
(if) =(iit). Let leN be as in (i) For «eN) we choose r,eRY with
e DR = Gpf I =g
rERﬂf
Following an idea from [20], 2.7, we iterate the hypothesis and get: For each
keN there exist ne N and D > 0 with ;.. < Dat7'a,, for all xeNY. From
this we conclude that for each keN there exist reN and D > 0 with
G(E~\-klp(ra) (3” + L))

gWe ntre)

B L
u
< aq,t.,.1<-—“¢'j~l> < Da,, for all xeN§.

(iii)=>(iv). The same argument as in Lemma 9.
(iv)==(i). By [17], 2.4, the spaces A.(f) have property (DN).

For other characterizations of the property (DN) for A(,(C“')i, we refer to
[12], 2.12, 3.1, and [9], 2.11.

ITT. Complemented subspaces. We need the following application of the
classical minimum modulus theorem for entire functions of one variable ({167,
Lehrsatz 11);

11, LimMa, Let o1 [V, vo[=10, co[ be continuous, and let te->{t)/t be
decreasing. We define an unbounded sequence (R e, by

Ro:m 1, R!H"] L= R,,"l‘(P(R"),
Let X be a locally compact and a-compact Hausdorff space and let f1 X x C—C
be a continuous function with f(x,)e A(C) for all xeX and with (-, 0) = L,

Then there is u constant D= 1 depending only on (1), and for each ne N there
vxists a measurable function S, X —~]R,..1, R,[ such that for all xe X

neNy.
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and all ze C with {z| = §,(x)

L sup loglf (e Wil

log| f(x, 2} > =D @20 |w1= iz

Proof For nelN we put

x.)-1 R -1
C:=¢(l), &= jmm{ , 81 +C)supe” x)7}, = eexp ——Ff;(ﬁ»—
" 1

x>0

For xeX and r =0 we define

M(x, r):= sup |f(x, w)|.

|wl=r

By [6], Lehrsatz 11, for each neN and all xe X there are discs with sum of
radii less than or equal to 44, R, such that for all ze C with |z| € R, and for
z outside these discs we have the estimate

3
0 log|f (x, 2)| > —H,log M(x, 2¢R)), H,=2+log 53.

L

By the assumption we get

2) sup@(r)fr = @(1) = C

rzl
and hence
(3) R, £(1+C)R,~;y forall neN,
By the choice of #,, ¢ and R,, we see from (3) that for all neN
2-4n,R, < 8,1+ C)R, -,
R, R, .
B 88(1 * C)exp(_(foug-njl)) CP(Ign—lO (p(Rﬂ‘l)
< p{R,-1)=R,—R,.,.

Hence, we deduce from (1) that for each xe X there is a sequence (S, (x)),en in
11, oo such that R,_; < S,(x} < R, for all neN and

loglf{x, z)| > — H,log M{x, 2eR} if |z = S,(x)
y (2), for all neN, we have
3¢ R,- R,-
H, —._+10g . ((Z—I-log )C+ ) kI
' P(R,- 1) @(Ry-1)

Since t—t/{t) and H—M(x, 1) are 1ncreasmg, and since we have (3), this
implies the desired estimate.
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By the assumption, for cach Se]l, co[ the function

Hy: X Ry, x> Hy(x)= inf (1 (e, 2)( sup [f(x, wy)Pi=liod=D),
|z]=5&

[w|=Bjzt

is continuous. Hence, for neN and fixed x,€ X we may assume that on
a neighborhood of x, the number S,(x) does not depend on x. So we can
achieve that locally the functions §,, neN, are measurable simple functions.

12. MaIN LuMMA. Let p be weu/h( Junction on CV and let (e be
a sequence in RY. Then for each Fe AY(CY), resp. Fe A,(CY), with F(0) = 1,
there are open sets U' in €' (U 1= {0)) and measurable Junctions ol
Uil o, ae NN, | i€ N, such that the sets

'1;:'-:‘" {ZG(:N“L"ll s in:': |32| = Qvﬁ(zl)" RS ] |:'N1 e QQ(ZL, LR ZN‘—I)}u OLEN‘(N;,
have the following propertivs.
In the case Fe AS(CY):
(a) For each ¢ > 0 there exists A > O such that for all e N§
F(2)™' € Ae"®  for all zeT..
(b For each ¢ > 0 there exists a > 0 such that for all ceNJ and 1 i < N
Poi % 2| € Q42 +a for all ze T,
where ry= (P iy ooy Fan)
In the case Fed,(CY):
(a) There exist keN and A >0 such that for all xeN§
|F(z)| "1 < AeP®  for all zeT,.
(b There exist B >0 and a > 0 such that for all xeNY and 1 <i<N
Fou % |zl € Brog+a  for all zeT,.
Proof. The case FedAMNCY): For reRY we put
M(eyoes sup i@ ||z = r | S TN

Since 1 ¢ ANCY), we have log M(r) == o{p(r)), |r| = v, Therefore we can choose
a coutinuous decreasing function ¢ R, -0, 1] such that

N N
(1) (l-‘""g M -‘-’-)) =o(fr) and () = o(1),
pir) '

We defline
lt) == (1)t te;«‘["‘l, aol.
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Let (R )N, be as in Lemma 11, and let 1 i< N be fixed, We put
U= {zeCYF(z(, ..., -1, 0,...,0) # 0}
and apply Lemma 11 to the function f: U'xC—C,
Flzye o zimg )= Fizy, oo, 2 0, 0, OF (2, .y 232100, ., 0),
We find that there is D = | and a sequence of measurable functions
(2) S U'sR,.1, R,[, neNlN,

such that for all meN, all (zy,..., z-,)eU" and all z,eC with |z| =
Si(zy, .5 Zi—1) We have

() loglF(z,s..., 2,0, ..., 0)~logiF(z,, ..., Z—1, O, ... B3k

ot | |
fP(IZ )] log(|w|831£)lz.-| L (ess ones 2i-33 W)

z{
@(z)

We put Sh:=0 and for xaeNJ}

> D

(10gM(|zlj, v 2ol Dzl 0, 0, OV =log Fz, o 2y 2i-1, 0, .00y O)|).

Unlrag) = {zeU'|8,-1(2) <1y < S(2)},  meN.

Since lim, ., R, = oo, (U,(roi))en is a partition of U™
Now, for each xeNJ and 1 <i < N we can define

Z S?' 1Uf,(l'u.i)’

neN

0 U=T1, wf,  oki=

ie. gi{z) = Si(z), where neN is the smallest index with Si(z) > r,,.

Let z=1(z;,...,zy)eC” and I i N I[fi=1 let |z/ =& for some
neN. If 1L <i<N let (z,,...,z-,) be in U and let |z} = Si(z,, ..., zi-,)
for some neN. Since ¥ and M are increasing, we get from (3) (log™ x
:= min{0, logx})

log7 |F(z4,-.., 22 0, ..., O)]

l(lll) log=|F(z,, ..., -1, 0,...,0)|~D ~I-L10g M({Diz,|, ..., Dizy)),

¢(2])
in particular (z,,...,z)eU" ' if 1 €i < N,
By induction on i we get for '111 2eNf, all ze T, and all i=1,..., N

||
(Iz])

> 20

log ™ 1F(zys -.0s 2,0, ..., 0) > —E; ( ) log M(Dlzy), ..., Dlzy),

~ From (4) and (5) we get log|F{z)| »

Partial differential operators of infinite order Gl

whero £y =D and E;y = E-2D+D for i=1,.... N—1, hence

log M(D[z,], ..., D|zy))
4 DEZ[)N

(4) log|F(z)] > —E -

We prove the properties (a) and (by
(a) By (1) and Definition I(2) for cach £ > 0 there is C(s) > 0 such that

, log M (Dr)

3 sy ey g ap(r)+ Cle all reRy
®) LI geplr+Cl)  for all reRY.

—ep{z)— C (s ) for all @eNJ and zeT,
(by For zeT, and aeN§ we have |z,| = ol > 1y, and |z] = gllz,, ...
coa Zq) > rgy Tor 2.0 N, by the definition of gl.

To prove the upper bounds let &> (O be fixed and choose K(g) > 0
according to (1) such that

(6) plt) € ( t+Kig) for all te[l, wof.

(1})

Let ae N, 1 <7< N and ze T, be given, From (2), (6), the definition of of and
(Rww, We get wilh an appropriate n=n(i; 2; z,,..., 2. )eN

lz)) = 0hlzys coon 2 ) = Sz s 2 )8 (B ey B )
S sE s i)

SR, —Ryatrui= @Ryo1)+o(Ry—z)+ry;
< et
Tl e(1)
K oR, -y 0, +-2K(8)

S a8k (20 s B ) Fay + 2K ()
& By b P+ 2K (8)
o (1b ), 42K @) i nz2,

Rn 1|"2“R" 2+r,“ |—2K{l‘

and
lzf s Sz, )< R i nss L

Henee, we get the assertion wilh a = 2K (a)4+ R,.

The proof of the case Fed ,,((,‘N) is analogous. However, in this case the
choice of the function ¢ is simpler; Put always p():= 21, te[l, cof.

13, Provosrrion, Let p be a weight function on CV, let 5 = 1 (resp. n = o0),
and let Fe Aj(CN) (resp. Fe A,,(CN)) Then F- A, (CN) is a closed subspace of

I’..H((1 .)
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Proof The case = 1. Fix a sequence ()en T 1. Lot FE AL (CYN{0}. We
may assume that F(0) = 1, since otherwise we choose weCV, |wl <1 with
F{w)# 0 and consider the entire function F(2):= F(z+w)/F{w), zeC". For
ge A, (CY) with h=g/FeA(C"} we have to prove that hed, (CY).

To this end we apply Lemma 12 to r, =«, aeN}. For fixed zeCV we
choose o such that o, < |z} < o;+1, 1 < i € N. By Cauchy’s integral formula
we have

AN h{{)
") (2m'> CET-va ({2 -
where 1=(1,...,1) and 2=12,...,2)eNf. Since ge 4, (C"), we get by
Definition 1(1) and by Lemma 12(a) and (b)

1)
F(l)

for some ke N and C = 1, not depending on z. By Remark 2 and Lemma 12(b),
we obtain from this

|h(z2)] < sup [A{OIT] = sup

LeTut2 feTa+2

|C1| < C sup Erum(C)

feTeyr2

|h(z)| < Cetrs 1P,

for some € > C, not depending on z.
The proof of the case # = o is analogous.

Remark. In the case n=1, N =1, for some particolar weights the
assertion of Proposition 13 can be found in [5] or [16]. The result concerning
the case 5 = oo is essentially contained I [2], Thm. 7.1.

4. TueOREM. Let p be a weight function on CV such that A, (CV), hus
property (DN). Then F-A,,(CY) is complemented in A,,(CY) for each
Fe A%C).

Proof. Fix a sequence (fenT1. Lot FeAJ(CYN\{0}. Applying a trans-
lation if necessary, we may assume that F({0): 0, wlog F{0)= 1, By the
hypothesis and Lemma 9(ii) we get a sequence (r,),y in RY. Applying

Lemma 12 to this family we get sets T, N5, We claim that the map

P: Apll(CN)—>F‘AP’1(CN),
e (AN D
P f1(z) = F(2) ag,av (27&) ge"fr, F@TT dt- =%,

is a continuous linear projection ounto F-A,,(CY) (1 =(1,..., DeN". To
show this let fe A, (CY) with ||f [, < oo be given. For each ae N} put

' Iy fO
b(f)i={ LS g
(f) ( ) (ejT“ F C

oni RGE
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By Lemma 12 and Remark 2 there are 4, = 4, = 1 such that for all aeN¥

SO S e

b, ()] € sup —riinh < gup HLIRCT
NS R PO S oy TR
i it + 10(L) o gtirr2plry)
<A L llgsup e < AL S,
Lel e Lp" 3

By Lemma 9(iii) there exist m 2z k+2 and 4, = A, such that we get
b U < Ay [ 1l
As in the proof of Proposition 5 we get for some 4, 2 A4,, not depending of f,

ZN“JQ(]')”Z(!I “‘<- A:-} ”f”k Z a’oc.m|za|

aeMy aEN;

& A4 H'}"”keﬂm +1piz)

for all aeNJ.

for all zeCN.
From this we conclude easily that P is continuous.

Remark, The formula for the projection P is motivated by the formula
for a continuwous linear right inverse of a nonzero convolution operator on
A(C), which has been communicated to the author by Prof. B. A. Taylor, This
formula is closely related to [4], (43).

15, TusoruM. Let p be a weight function on CN such that AP(C"'){, has
property ( DN). Then each principal ideal is u complemented subspace of A (CV).

Proof. Analogous to the proof of Theorem 14.

Remark. Let p be a radial weight function on CV, ie. p(z) =
p((3.X.11z{%)"2), z& CV. Then by Definition 1(2), p is equivalent to the weight
function f,

N

Az = 3 pl,

I=1

z= (7 e, 2 CY,

ie. A, (CN) = AL(CY). Hence, Theorem 15 gives an extension of [13], Cor, 15,
where an abstract splitting theorem of Vogt and Wagner (see [207) has been
applied. In the situation of Theorem 14 a corresponding general result s not
available, However, in the case N == | one knows more details on the structure
of the spaces involved, hence, we can apply a result of Vogt (see [19]} to get
a second proof for the one-dimensional part of Theorem 14,

16, PrOPOSITION. Let p be a weight function on C, and let (mhenT 1. If
Fe AY(C) hus precisely the zeros (a)en (Counted with respect to multiplicities),
then

(Apa (CYF - Ap (O = M) en)-
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Prooi. Analogous to the proof of [8], 3.7, using the estimates of
Lemma 12,

17. Remark. In the case N = 1 we give a second proof of Theorem 14
Since 4, ;(C) is a (DFN}-space, we have to show for given Fe AHCN {0} that
the following short exact sequence splits:

0= (4,1 (CVF - Ay 1 (Clfo = A1 [Ch— (F - A, (C))y > 0.

W.lo.g F has infinitely many zeros. To apply [19]. in Definition 3 we fix
1, = 1 —1/k, k = 1. Using the notions from [19] it suffices to prove that all the
three spaces involved are isomorphic to power series spaces A{(e ~U/™%), ) of
type 1 in a linear tame way. The proof of Proposition 16 shows that this is true
for the first one. The proof of Proposition 13 shows that the second and the
third one are tamely isomorphic. Now, by the proof of Proposition 5, 4, ,(C),
is tamely isomorphic to A(A4). By the proof of Lemma 9 (i) =-(iii), A(A) is linear
tamely isomorphic to some space of the prescribed type. Hence by [19] the
sequence splits.

By Examples 6(1)}(c) and (2)(a) there are weight functions p on C¥ for
which 4, , (C¥;, fails to have property {DN). We will now prove that for weight
functions as in Example 6(2)(a} the hypothesis that 4,,(C");, has property
(DN} is even necessary for all subspaces F-A4,,(CY), FeAYCY), to be
complemented.

We first consider the case N = 1.

18. LemMA. Let p be a weight function on C and let (n,)wnT1. Fork, neN
and 5 >0 we put

1 2(8)—1,p(r) . mp() 7,P(r)
gl > el = T

Let Fe A)(C) and assume that F has only simple zeros (a j)jeN and that (¥) holds:

Prals):= sup

O<r<s

(*}  There are meN and C =0 such that
[F'(a)l ™! < Cerrei)  for alf jeN.

If F-A,.(C)is complemented in A, 1(C), then for each keN there exists neN
such that for each keN there exist #eN and j,eN with

fPK.n(“J) d:)k.n(aj) f()r J .]() .

Proof Put Bi=(e™)),, . and define ¢ A4, (C)—A(B), by
glf1:=(f (e ))JeN Then a suitable variation of the arguments in [17, Thm. 4,
shows that ¢ is onto and that kerg = F- 4, (C). Since F- Ap1(CY is comp-
lemented by hypothesis, there is a continuous linear right inverse R for ¢. Since
R is continuous, the subharmonic functions

u;(z):= sup logIR[ (i dien] (W),
|wl=z|

zeC, jeN,
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satisfy the following estimates (sce [12], 2.13): For each keN there exist ne N
and j,eN such that

M uy(r) < 7, plr) —ny play)
(2) u}(aj) =0

By the subharmonicity of u;, jeN, and by (2) there is a sequence (d));o in R,
such that d;log(r/la))) < uj(r ) for alf r >0 and jeN. From this and (1) we
deduce that for each keMN there exist neN and j, eN such that

d;log(rfla) <

for all r >0 and j = j,,
for all jeN.

()= pla)  for all r>0 and j 2 j,

hence
NP ) —1,p(r) <d < inf BPE)MrE)
10g(u1/’ j r>aj log(a,/)

19. LemmA, Let p be a weight function on C and (en?1. Let @y, and
Dy o k, nelN, be as in Lemma 18. If for each ke N there exists ne N such that for
each keN there exists AeN such that

Prals) < Gy (s}
then 4,(C), has property (DN).

Proof For ke™ choose by induction nombers n{k)e N, a(k+ 1) n(k),
My 2 Mtk 1, such that for each keIN there exists s, >0 with

for all j = j,.

O=r<ay

for large seR_;

min @, (5} =:144s) for all s 5.

15k

(1) Pronir (3) <

We may assume yn(s,)To0. We put ¥(sh:=0 For jeN -with
Wilsy) <J <o 1(8e44) we can choose r; = s, (since v, is unbounded) with

J=t(r;). From (1) we get for ‘/"k(sk) £ < Prs i)

e n(k)(r NE R AU
£ J < Wt 2l 2)

P s 1 nget ) S J =

and for Weas(Se+ 1)

Protio(15) Y 1 (1} < ‘I’h.nm(" x

since

! n )I’(ﬁ - ()
P (5) = Mucty sup (/1 ](:))g(s/r Py

i U Mnge- 1y By induction we get for all keN
Dy i 1) (50
i (s,). By Lemma 9, 4,,(C), has property

and #,/Mugy <
Py r)) =/ < for all j =

hence e™PCD /1) < Cj gy for all j 2

(DN).

§ ~ Stidin Mathematicn 94.1
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20. Lemma. Let p be a weight function on C such that F- A, {C) is (i={ii). Choose (v, ),y according to Lemma 9(ii). Then we get
complemented in A, ((C) for each Fe AJ(C) that satisfies the condition (x) of the desired projection P: L% (C*)— A, ,(C"} by the following formula:
Lemma 18. Then A, (C), has property (DN).

| | . 0, .

Proof. We show that the hypothesis of Lemma 19 is fulfilled. Assume L7z} = 2\ b e Moy~ 2
not; then there exists k<N such that for each meN there exists kel “=Na 4
such that for each AieN there is an unbounded sequence (x )jen = (x ARy Aen where
in R, with A= {eC¥ <t <ratl, ., ray <ly<ron+1),

1 Ppalx) > Py ulx)  for all jeN.

o . _ ] m((re+ 12 =r2)} 21", aeN§.
Now choose a strictly increasing sequence () in ]0, co[ having infinitely =1
many members in common with (x;(n, A));n for all n, Ae N and such that for

imils . i sonclude th: is 1 defi
each &> 0 there is C > 0 with Similarly to the proof of Thecrem 14 we conclude that P is well defined and

continuous.
10 —z/a) (itf)==(i). Let 1 <IN be fixed. From (iii} we see that A, ((C} is
7 < Ce"™  for all zeC and jeN. a complemented subspace of L2, (C). Let P, be a projection onto Ay, ,(C).
ﬂ“ “/‘1) From [1], Thm. 1, we conclude that
iFf

This is possible, since log(1+r} = o(p(r)) by Definition 1(1) (see e.g. [6], Kap. I, R[f1=g—P[lg], where gel2 (C) with 0g = f,

Hilfssatz 3). Put is a continuous linear right inverse for the J-operator
F(z):= H(l-z/a) zeC. 8 {f e L3, (O e 3,1 (C)} = 15,1 (C).
) As indicated in [15], § 1, from this we find that for each Fe A5 (C) satisfying
Then F fulﬁ]is (x) of Len?ma 18, and hence, F'4,,(C) is complemented the hypothesis () of Lemma 18, F- 4,, ,(C) is complemented. Hence, as in the
by hypothesis. By the choice of (a)jen, We get a contradiction to (1) from previous part of the proof we get (i). '
Lemma 18. '
) ) 22. THEOREM. Ler p, L=1,..., N, be weight functions on C. For the
21, TueoReM. Let p,, I=1,..., N, be weight functions on C. For the weight fimction p(z) = Y1 p, z,) p __( 2y, .er 2)€C, on CY the following
weight function p(z) =3 piz), z=(z,,...,2,)eCY, on C¥ the following assertions are equwalent

assertions are equivalent: '
_ N (i) A,(C™)}, has property (DN).

@) A4,4(C )bNha? property (DN). ; (ii) Lach principal ideal of A,(C") is complemented.

(i) F-4,,(C") is complemented in A4, ,(CY) for each Fe AS(CY). (iii} 4,(CY) is a comple’mcntc-d subspace of 14(CF).

({iii) A4, ,(C) is a complemented subspace of L2 ,(C).

. Prool Analogous to the proof of Theorem 21, Instead of Lemma 20 use

Iiroo.f. (l.}“:"’(")- Theorem.l4. . . o Lemma 10 and [12], Prep. 2.15. :

({)=>(i). Since p has this particular form, it is casy 1o see that
for each 1 < [< N and each F e 47 (C) the subspace F- 4, {(C) is complemen-

. ication:
ted in A, ,(C). Hence, for 1 </< N the space Ap1(C)y, has (DN) by iV. Applications

Lemma 20, Since 23, Dumntrion and ReMark. Let 4 be the polydisc {zeCV|[z)] <1
' N J=1,..., N} and let (a,),eny be a sequence of complex numbers satisfying the
Ap iCY) = @ A4,,,(0), ‘ estimates
=1
el - P 1o 1
A,1(CY, has (DN), too. (1) ;ligf lajule < oo for all keN, le. (a,0)aye A0,
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Then some calculation shows that we get a continuous linear operator on the
space of all analytic functions on 4 by setting

L: A(d)-A(4), L[f1= % a7,

asNY

where D*:= d1*/327 ... 8z%, aeN§. L is called a linear partial differential
operator of infinite order with constant coefficients. By the continuity of L, we
get for the associated function
(2) Ledfy(c®, L= Y g2 zeCV.

mENf;'

Conversely, (2) implies (1). Now, by the Fourier-Borel transform

B AL~ 4aa (€, Flp1E = o) = T P
asNy  X:

we identify the strong dual of A(4) with A, ,(C"). By this identification the
adjoint operator is the operator M of multiplication with the associated
fanction, ie.

L =My Aiz],].(CN)—"Alzl,l(CN)’ Mi[f]1= I:f

24. THrOREM. Each nonzero linear partial differential operator L of infinite
order with constant coefficients on A(A4) admits a continuous linear right inverse.

Proof. Since LeAR(C"\{0} and Ap 1 (CY), =~ A,(lal), by Example
6(2)(b), we find from Theorem 14 that im L' = L- 4, ,(C") is complemented,
ie. L' admits a continuous linear left inverse. Since 4(4) is a nuclear Fréchet
space, L admits a continuous linear right inverse.

Remark. In the case N = 1 we get a description of ker L as in [7], Thm.
3.4, from Proposition 16.

25. DeFINITION and. REMaRK. Let p be a weight function on C and let
4 = (@;4)ienpken and B = (b; 1 jenoren Where

el —1/kw(r) C o elumpeny 1
» k- inf ) jENO, keN.

r>0

aj,k:= ln.f

r>0 rj
Let p = (t,)neno €A(B). For the associated function we get (see [11], 1.12)
fAedp(C), jA@):= Y ws" zeC,
: n=0

and vice versa. According to Proposition 5 we identify A, ,(C), with A(A).
Then for the adjoint T,:= M; of the multiplication operator M pon A, (C)we
get (see [107, 3.4(1)

T WA= A, TL0 e = (X %ot st

n=0

icm
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The continuous linear operator 7, is called a Toeplitz operator. Since M,
has closed range (Proposition 13), T, is onto for p# 0. If fi has the zeros
{a)en (counted with respect to multiplicities), we get from Proposition 16

ker T, o A((e! ~1/Weed), o).
Since A(4) is nuclear, dualizing Theorem 21 we get:

26. TureoreM., Let p be a weight function on C. Let 1{(4) and A(B) be as in

Lemma 9) if and only if each Toeplitz operator T, on A(A), ue2(B), u # 0, admits
a continuous linear right inverse.

27. COROLLARY. Let 1 <5< oo and let pe A, (), u# 0. Then for each
0 <p <1 the Toeplitz operator

o0

T_u [(xj)jENn] = ( Z xn"f'jnuu)jENm

n=0

T, A,(7) = 4,0,

admits a continuous linear right inverse.

Proof. Let 1 <5< oo be fixed. For 0 < ¢ < 1 we consider the weight
function

plz)y = a(log(1 +|z)f, zeC,
where ‘
5 tl—s__t-—s 1i(s— 1}
= = = 0.
t: e 1, a:=logR(p) ( “Togg ) >
Since

inf e?losn fpl = exp(—(t* T — £~} (1/BYLF)

rz1
for jeN and b > 0, in Theorem 26 we get A(4) = A,(") and A(B) = A, (/).
Hence the assertion follows from Theorem 26,

Let us compare this result with earlier results (see [8], (10] and
[117):

28. Remark. We use the notation of the proof of Corollary 27.
Let 1 <s< oo and let ped, (M, p 5 0. Let us assume that the asso-
ciated function f (in AJ(C)) has the zeros ()~ (counted with respect to
multiplicities). Then by [107, 3.9 and 3.6, and by Corollary 27 the Toeplitz
operator

o)
T;;[(x j)jENo] = ( 2(; Xy +ﬂ'~"-..) jaNo
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acts continuously and surjectively on the spaces A (7}, = U0<a< 1 A4,(f%) and
A3 () = No<e<1 4,(F) as well as on the steps 4,(), 0 < ¢ < 1. By [10], 3.9
and 3.6, by the proof of Corollary 27 and by Definition 25, we get

U Aro(B) ker T=A (B = () Arylh)

o<g<l D<= 1
ker T, = Ap(y(B),

respectively, where ff = ((10g(1 +|aj|))‘)jeN. By [11], 3.7(2}, and [&], 4.12(1), T,
does not admit a continuous linear right inverse on the limit spaces A, (7*}, and
A, () respectively, even though it does on each step A,(/), 0 < ¢ < 1, as we
proved in Corollary 27.

ker T, = A, (B, =

0<g<1,
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