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A density theorem for F-spaces

by
W. ZELAZK O (Warszawa)

Abstract. The main result of this paper expressed in tetms of representation theory states that
any algebraically irreducible representation T of an algebra A4 in the algebra of 4ll continuous
endomorphisms of an F-space is Lotally irreducible provided the oaly intertwining operators for
Tare the scalar multiples of the identity operator. We apply this rosult for characterizing strongly
generating sets for the algebra of all continuous endomorphisms of a By-space.

§ 1. Definitions and potation. An F-space, or a space of type F, is
a completely metrizable topological linear space. The topology of an F-space
X can be given by means of an F-norm, ie. a functional |-| satisfying the
following conditions (sec [1] or [S]) '

@ |x| =0 and [|x|| =0 if and only if x=0,

i) fx-+yil < lxl+ 18

(iii) lim|x,] = O implies lim |4x,[| = 0 for all 4,

(iv) lim|4,| = 0 implies lim|4,x| =0 for all x.

Here x, x,, y denote arbitrary elements of X and A, A, arbitrary (real or
complex) scalars. The distance in X is given by fix—y| and the space X is
complete in this metric. For F-spaces the closed graph theorem holds true; If
T is a linear map of one F-space into another and its graph is closed in the
product of these spaces, then T'is continucus (see [17). A locally convex space
of type F is called a By-space, For an F-space X denote by L(X) the algebra of
all its continvous endomorphisms. While for By-spaces this algebra always has
a rich structure, for some F-spaces it can be very poor. There are (infinite-
dimensional) so-called rigid spaces of type F in which the only continuous
endomorphisms are the scalar multiples of the identity operator (sec [4], [8], or
[5], p. 210). In particular, a rigid space cannot have a nontrivial continuous
jinear functional, while for By-spaces there always exists a separating family of
such functionals.

The present paper is a by-product of our efforts at characterizing strongly
generating sets for L{X). Tt turned out (many thanks to Pavla Vrbova for
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calling my attention to this fact) that such a characterization is intimately
related to the so-called density theorems in representation theory, and that it
immediately follows from the known facts at least in the case when X ig
a complex Banach space (see § 3). However, the method we use woerks as well in
a more general setting when X is an F-space. In § 2 we prove our density
theorem, in § 3 we interpret it as a result in representation theory and in § 4 we
use it for characterizing strongly generating sets for L(X) when X is a B,-space.

§ 2. The density theorem. Let X be a real or complex space of type F and

let S be a subset of L(X). The commutant § of § is defined as
§ ={TeL(X): TR=RT for all R in §}.

We say that § has a trivial commutant if ' consists of scalar multiples of the
identity operator on X. A subalgebra 4 < L{X)} is said to be transitive if for
each nonzero element x& X the orbit @(A4, x) = {Txe X: Te A} coincides with
X. Note that if X 1s rigid then there is no transitive subalgebra in L(X), For
Xi,..s X, in X define the multiple orbit of A as

A, xq, o, x) = {{Txy, .., T e X Ted)

Observe that X” is also an F-space under the norm [|(x,, ...,
l€ign}
We now formulate our main result.

X )| = max {]x,]:

Tueorem 1. Let X be a real or complex space of type F and let A be
a transitive subalgebra of L(X) with trivial commutant. Then for any n-tuple
(X1, ...s X1 of linearly independent elements in X the ovbit O(A, x,, ..., x,) is
dense In X" '

For the proof of this theorem we shall need the following

LrmMma. Let X be a real or complex space of type F and let A be a nonvoid
subset of L(X). Let M = (m;j} be an nx n matrix with scalar entries and nonzero
determinant. Suppose that x,, ..., x, are linearly inedpendent in X and put
¥i=Yj=1mix;. Then O(A, x,,...,x,) is dense in X" if and only if so is
O(A, V1r e o)

The proof is straightforward and is left to the reader,

Proof of Theorem 1. We proceed by induction on n. For n=1 the
conclusion follows {rom the definition of a transitive algebra. Suppose now that
for all k, 1 <k < n, and for each choice of % linearly independent elements
Xqs ...y X 0 X the orbit @(4, x,, ..., x;) is dense in X*. We have to show that
for every linearly independent (n+ 1)-tuple (x,, ..., X, 1) the orbit &(4, Xi, .nn

o> Xpt1) is dense in X"*!. We shall be done if we show that for each
Ip, | €1y < n-+1, and for each z in X there is a sequence T of operators in
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A such that
(1) ltm Hlo® x, <= 0 for i # i, and lim T %, = 2,
k k

Indeed, for a given (n-1)-tuple (zy,...,2,,,) in X""' we define
T, = 421 T and we see that lim, Tyx, ==z, i = 1, ..., a-+1, which proves
that ¢(A, X;, ... %0 y) 18 dense in X"*' since z,, .. were chosen
arbitrarily.

Conversely, if ¢(A4, x;, ..., %0 1) 1% dense in X747 then there exisi in
A operators T0% satisfying (1) for every z in X and iy, 1 =iy € n+ 1. Thus, by
the inductive assumption, we have (1) with an arbitrary k-tuple (y, ..., ) of
linearly independent elements, | <k <n, in place of the (n+1)-luple
(x11...,.>c,,|.1). .

Observe that (1) is equivalent to the following.

For each iy, I < i, < n 1, there is a sequence (T} of eleraents of A and
an element v in X, v 0, such that

() lim T x, = 0 for i % iy, and lim T X, = v,
k k

s Ak

Indeed, (1) implies (2), and if we have (2) and we arc given an element z in
X, then by transitivity there is an operator R¥ in A with R*¥p = z, Setting
T = RETI we obtain operators satisfying (1).

For the (n- -tuple (x,,.... x,. ) there are two possibilities:

(a,) There is an element R, in A such that for some i, i, with
Py, iy S a1 Ryxy, = 0 and Ryx,, # 0.

(a;) For any R in A either Rx;=0 for all i, or Rx, # 0 for all i,
Ig<ign+l. ' .

Consider first the case (a,). We deline an operator @ from X to X" by
QR"‘:I m(R.?Cz, ) I{xnxp.[), REA.

This is a well-defined linear operator, since Rx, = Sx,, Se 4, implies Rx, = Sx,
for all remaining indices i, Moreover, by transitivity of 4, Q is defined on the
whole of X. Consider again two cuses:

(b)) @ is closed, and so continuous (1], p. 54)

(by) Q is not closed,
In the case (b} all operators @, given by Q,Rx| = Rx; ., are continuous for
P=1,..., n as compositions of ¢ and the continuovs projections of X” onto
the coordinate spaces. Take for example Q,. For T'in 4 we have TQ, Rx,
= TRx; = QTRx,, and so @, is in 4. By the assumption ¢, == Al for some
scalar J, where I is the identity operator on X. Thus ARx, = Rx,, or
R{Ax|~x,) = 0 for all R in 4. This is impossible because Ax, —x, # 0 and A is
transitive. This excludes the case (b,), In the case (b,) there is a sequence (R,) of
operators in A such that limRux, = p,, the limits UmR,x, =y, exist,
P=2,..., 041, but Qp, # (¥, ..., ¥us,). Since y, can be written as 0%, for
some R, in 4, we have QR x, = (Ryx,, ..., R X,y 1). Setting S, = R, ~ R, we
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pbtain the following situation:
nt 1

(3) hmS,x, =z exists, | <i<n+1,z, =0 for some i, and > |z,/ #0,
k =1

provided (a,) holds true. (3) is also true in the case (a,) because we can use as

(S,) the constant sequence §, = R,. Thus (3) is true in cases (a,) and (a,).
The limits in (3) exist for many sequences (S;) and among these, there are

ones with the maximal possible number of the elements z; in (3) equal to zero,

After a suitable renumbering of indices we have the followmg gituation. Thue

is a sequence (T} in 4 such that the following limits exist:

4 lImTx=z.2=0for 1<i<s and z;#0 for s+1<ign+1.
k
Here 1 <
A the 11n11ts hmi}‘xE = zj exist, I =
to zero then they are all zeroes.
From now on we fix a sequence (7;) as above, so the (n+1)-tuple
(z1-.-+s Zp+1) is also fixed. Consider again two cases:

< 7 and s is maximal in the sense that if for some sequence (T}) in
i€ n+1, and more than s of the z; are equal

(Cl) § = n:
(c,) s <n.

The case (c¢,) umplies (2) and hence (1) with i = n+1. Take now an
arbitrary i,, 1 < i, < n. By the inductive assumption the formula (1) holds true
for the n-tuple (x,, ..., x,) and for a given y, in X there is a sequence (S,) in
A with lim, S,x; =0 for i #i,, 1 <i<n, and im, S, x,, = y,. By passing to
a subsequence if necessary, we can assume

1

1 .. ,
[IS,.x; | gﬁ foristig, l<isn, |S,x,—y < o

Put yui1 = Yur1(m) = §,,%,+ 1. Because we have (1) for i, =n+1 we can find
an operator R, in A such that
1 . 1
”Rmxin gﬁ for 1$1£n, ||Rmxn+1+yn+1” S«Eﬁ

Settng U, = §,,+R,, we have U, e A, |U, x| < 1/mforistiy, | <ign+],
and |U,x;, ~poll € 1/m. Thus we have (1) for the (n+ 1)-tuple (x4, ..., X, () 5O
that in the case (c,) the conclusion follows.

Consider now the case (c,) and define p = dimspan(z,,
sider again two cases:

(dl) p > 1:
(d?) p=1.
In the case {d,) choose, among z,,.4, ...,
Zygs ey 2y <€ n+1 Since 1 < p

ey Z".|. 1). C()ll-

Zy+ 1. P linearly independent elements
< n, by the inductive assumption and (2)
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there is a sequence (V) in A such that lim, Wiz, = v,, v; =0for 1 <[ < p and
v, # 0. Because all remaining z, are linear comblndtlom of z;,..., 7, the
limits lim, Wz, =10, 1 S i< n1, all exist, and v, =0 for 1 €i< s and for
i =1 with 1 € { < p, in particular v, = 0. As before, passing to a subsequence if
necessary, we can assuine

[Vuzi— vl < Um,

i=1,...,n4+1,

Consider now the operators T, of (4). For any natural » we have
3) V.

for 1 < i< n+1. Since ¥, is a continuous operator and lim, T, x, = z,, there is
a nataral number r, such that

rxi'-"'uiH & ”VmT‘x m‘“l'||+” mE vi“ 8 ”/;"TJC m ‘||+1/?Tl,

m

6) WV, T x—Voz < 1m, 1<i<n+l.

m A

Setting T = V,,,Tr we have T\VeA for m= 1, 2, ..., and by (5) and (6) we
obtain lim,, TX"x; = v, 1 <i<n+1, and v, =0 for 1 i< s and for i = i,.
Since i; > s and v, #: () we have the situation as in (4), but with more than
s limit elements z; equal to zero, This contradicts the definition of 5 and shows
that the case (d,} cannot happen.

Thus we have (d,), which means that there are scalars 4,, s <i < n, such
that z; = 4,2, ;. In this case we replace (X, ..., X,51) bY (1, -.+s Yus 1), Where
yp=xfor 1<i<sand for i=n+1, and y,=x,~A,x,., for s<i<gn The
elements y,, ..., y,4 are linearly independent and the matrix M which sends
(%95 ey Xpgg) t0 (Bysoeny Yury) has a nonzero determinant. We also have
lim, Ty, = 0 for 1 € i< nand lim, T, y,+1 # 0. Thus we have the situation as
oy Xp4y teplaced by yy, ..., ¥u4: and in that case we have
shown that @(A4, y,, ..., ¥,.q) is dense in X"**. Applying the lemma we see -
that @(d4, x,, ..., x,+,) is dense in X"*! The conclusion of the theorem
follows.

The above theorem fails without the assumption that the commutant A’ is
trivial. In [7] Waelbroeck constructed an infinite-dimensional F-algebra (an
F-algebra being an F-space with a jointly continvous multiplication) which is
a field, i.e. each its nonzero element is invertible ., If X is such an algebra and 7T,
ae X, is the operator given by T, x = ax, then 7, € L{X), and the algebra A of all
such operators is transitive, On the other hand, for any two elements x,, x,e X
the orbit 0(4, x,, x,) cannot be dense in X?. Indeed, if T, x, —v, ie. a,x, — 1,
and x; # 0 then a,—vx{", and so T, x,=a,x,—vx;'x, and the limit
limT, x, is uniquely determined by v. Also the assumption that the considered
space X is complete was essential in our proof. We do not know whether the

~ theorem is true without assuming the completeness of X or without assuming

its metrizability. We do not know either whether a stronger conclusion is
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possible, namely that the orbits 0(4, x4, ..., x,) are equal to X" for x,, ..., x,
linearly independent. Nor do we know whether the condition of transitivity can
be replaced by the weaker assumption of density of the single orbits @(A, x),
x %= Q.

§ 3. The density theorem in representation theory. For a real or complex
linear space X denote by .%°(X) the algebra of all its endomorphisms. Let A be
an algebra over the same field of scalars as X. A representation of A is
a homomorphism T, a— 7T, of 4 into #(X). A representation T'is said to be
{algebraically) irreducible if the only invariant subspaces for T'(i.e. subspaces
X, c X such that T, X, = X, for all a in 4) are (0} and X. For an irreducible
representation T of 4 on X put

% ={Re #(X): RT,= T,R for all ¢ in A}.

Schur’s lemma (see [2], p. 121) says that % is a division algebra and the
Jacobson density theorem says that for Z-independent elements x, ..., x, in
X (e Y71-1Dx; =0, D;e&, implies D; =0 for i=1,..., n) the orbits

O(T, x4, ... S Tx)eX™ aed}

coincide with X* (see [2], p. 123, Theorem 10).
In the case when X is a topological vector space (i.v.s.) a representation

T of A on X is said to be a tuv.s-representation if all operators 7, are
continuous. Such a representation is said to be algebraically irreducible if it is
irreducible in the sense described above, and it is called irreducible if there are
no proper {i.e. different from (0) and X) closed Tinvariant subspaces of X. In
the case when X is a normed space one can put a submultiplicative
homogeneous norm on the division algebra @ of the Schur lemma. Thus by the
Gelfand—Mazur theorem & = C if X is a complex normed space. In this case
the Jacobson density theorem implies that an algebraically irreducible re-
presentation Tis algebraically totally irreducible, i.e. the orbits O(T, x Lo eees Xp)
coincide with X" for all n-tuples x, ..., x, of linearly independent elements.
We say that Tis totally irreducible if the orbits O(T, x, ..., x,) are dense in X"
for linearly independent elements x,, ..., x,. This property is weaker than
algebraic total irreducibility. For a t.v.s.-representation T of 4 on X call an
operator R in L(X) a T-intertwining operator if RT,x = T, Rx for all x in X and
all @in A

One of important problems of representation theory (cf. [3], p. 329,
problem II) is the question whether an irreducible t.v.s.-representation T of an
algebra A, whose only T-intertwining operators are scalar multiples of the
identity operator, is necessarily totally irreducible.

Our Theorem 1, formulated as in the abstract, can be treated as a partial
answer to-this question (in the case when X is an F-space and in addition T'is
algebraically irreducible).

» %) = {(T.xq, ..

§ 4. An application to strong generation. Let X be a real or complex space of
type F. The strong operator topology on L(X) is given by a basis of neigh-
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bourhoods of T, in L(X) of the form
X, By = [ TeliX)y

where x4, ..., X, € X, 6 > O, and |- || is an F-norm generating the topology of X.
Without loss of generalily we can assume that the x; in (7) are linearly
independent. The strong topology is the topology of pointwise convergence of
nets of operators and it is ronmelrizable if X is infinite-dimensional and locally
convex (for rigid spaces it is, of course, metrizable),

We say that a subset § of L(X) stroagly gencrates L(X) if the smallest
subalgebra A (S} of 1.(X) which contains § and is closed in the strong operator
topology coincides with L{X). We prove the following easy

Tox;—Tx| <e, i=1,..., n}

L

Proposrtion. Let X be a real or complex space of type F. Suppose that S is
a subset of L(X) such that for any n-tuple (x,, ..., x,} of linearly independent
elements of X the orbit O(A(S), X, ..., x,) is dense in X", Then S strongly
generates L(X). Conversely, suppose that S strongly generares L(X). Then
O(AS), x1. .., X)) = X" for any metuple (xy, ..., x,) of lineurly independent
elements of X provided X is in addition u locally convex space (a By-space).

Proof If for every n-tuple (x,, ..., &,) of linearly independent elements of
X the orbit @{A(S), x(,.... x,) s densc in X", then choosing an arbitrary
operator T, in L{X) we sec immediately thal any neighourhood of T, of the
form (7) contains an element T'of A(Y), and since A(S) is closed in the strong
operator topology, we have T, e A(S),

Conversely, if § strongly generates L{X), Le. LX) = A(S), then assuming
X to be locally convex we can for given linearly independent elements
Xy -y X, € X find continuous linear functionals f; on X such that fi(x) = &, ;
{the Kronecker symbol), Choosing arbitrarily y,,...,y, in X and setting
Tx = Y711 f{x)y, we obtain an element Tin A(S) with Dy, =y, i=1,...,n.
Thus (yy. ..., p)e@{A(S), x;,..., x,), and so this orbit equals X" The
conclusion follows,

We can now formulate our characterization theorem.

Turorum 2. Let X be a real or complex By-space. A subset § e L(X)
strongly generates LX) i and only i

(i) the commutant 8 consists of scalar multiples of the identity operaior, and

(i} the algebra A(SY strongly generated hy 8 is transitive.

Proof. One can easily see that the commutants of § and of A(8) coincide,
If' S strongly penerates L{X), L(X) = A(S), then clearly A(S) is transitive and
8 = [A(8)]" consists of scalar multiples of the identity operator. On the other
hand, if we have (i) and (i), then [A{S)]" consists of scalar multiples of the
identity operator and by Theorem | all orbits ('(A(S), X,. ..., X,) are dense in
X", provided the x, ure linearly independent. The conclusion now follows from
the proposition,
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It would be desirable to replace condition (ii) by
(i) Lat(S) = {(0), X},

where Lat(S) is the lattice of all closed subspaces of X which are invariant with
respect to all operators Tin S. One can see that Theorem 2 so modified would
give a positive solution to the problem mentioned tn § 3 in the case when X is
a By-space.
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Moultifonctions analytiques polygonales

par

LINE BARIBEAU* {Québec)

Absteact, The speetrurm ol an analytic family of clements of 8 Banach algebra is an example of
an analytic multivalued function. In this paper wo study continuous analytic multivalued funciions
whose values are conves polygong. It is shown that if the number of vertices is bounded, then these
vertices vary holomorphically away [rom branch points. Examples are given to show that this
exceptional sel can be quite large, and thal the number of vertices may be unbounded. This shows
that such & function cannat be seen as the convex hull of a finite analytic multivalued function, as
was Lhe case for segment-valued functions,

1. Introduction. La méthode sousharmonique s'est révélée au cours des
derniéres années une technique trés puissante pour étudier la théorie spectrale
dans les algébres de Banach. Dans [8], Z. Stodkowski montre que cette théorie
se laisse ramener 4 I'étude des fonctions analytiques multiformes, ou multifon-
ctiony analytigues, qu’on définit comme suit:

Dermvrrion 1. Soit A - K (4) une fonction définie sur un domaine D de C",
prenant ses valeurs dans # (C™), ensemble des compacts non vides de €™ On
dira que la fonction K est analytique si elle satisfait les deux propriétés
suivantes:

1. K est semi-continue supérieurement.

2. Pour tout cuverl D, =D, si Vest un voisinage de Gr(K|p,) = {(4, z):
AeDy, ze K(A)}, et (4, 2) une fonction plurisousharmonique sur ¥, alors la
fonction

P(A) == sup il 2): ze K(A)}

est plurisousharmoenique sur Dy,

Si A= (4) est une fonction holomorphe a4 valeuts dans une algébre de
Banach, la fonction multiforme A++Sp /() est analytique. La théorie des
algébres uniformes fournit d’autres exemples de fonctions analytiques multifor-
mes [2].

Certains fonctions analytiques multiformes sont bien connues. Par exem-
ple, les multifonctions analytiques finies sont précisément les fonctions algé-
broides, c'est-a-dire de la forme
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