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On the essential spectrom and eigenvalue asymptotics
of certain Schrédinger operators

by
WIESEAW CUPALA (Wroclaw)

Abstract. The Feflerman estimate is used to examine the position of the essential spectrum
and to obtain integral estimates for the number of eigenvalues for a wide range of Schrédinger
operators.

Introduction. The Bohr—Sommerfeld quantization principle, according to
which volume ~h? in phase space corresponds to one bound state of the
quantum system, has been fully mathematically expressed in the form of the
Cwikel-Lieb-Rosenblum inequality.

For the Schrddinger operator —4 -V, denote the dimension of the
image of the spectral projector P(—co, 1) by N(A, V) and let Vol(4, V)
= {(x, &) E+V(x) < 4],

Trg CWIKEL-LIEB-ROSENBLUM INBQUALITY [7]. For d 2= 3, there exists
a constant C = C(d) such that for every potential ¥V on R® and for every 1,
N4, VY< C Vol(4, V).

The right side of this inequality is a “good™ estimate only if Vol(d, ¥)
co. There exists a wide range of potentials (e.g. V' (x} = x7 x3 ... x3) for which
Vol(i, V)= oo and N(4, V)< 0.

A more flexible version of the Heisenberg uncertainty principle, the
Fefferman SAK-principle (which says that each box B = {{x—x,| <,
|E—&yl < 871} which fits inside {(x, &: £*+ V{x) < A} should count fer one
eigenvalue of the Schrédinger operator) is an idea which, together with some
subtle techniques of harmonic analysis, makes it possible to obtain sharp
estimates for the number of eigenvalues for nonpesitive potentials.

THE FEFFERMAN INeQUALITY [1]. For d 23, 1 <p<d/f2, there exist
constants § = S(p, d), A= A(p, d), K = K(p, d) such that for every potential
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V< 0 on R and every E > 0, if we denote by N (E, V) the maximal number of
disjoint balls B with radii v not larger than E~'2 for which

(B [V PPr 2 se72,
B
then N(—E, V)< AN, (KE, V).

The aim of this paper is to use the Fefferman inequality to determine the
position of the essential spectrum and to obtain inilegral estimates for the
number of eigenvalues for Schrédinger operators. All the theorems of this
paper concern the dimension d 2 3 and the potential ¥ on R? for which:

(1) There exists a common core (an essential domain} for the operators
-4, —4+V .
(2) There exists EeR such that —d4+V 2 E.

The first condition has been thoroughly explored for ¥ 0 in [4]. Details
concerning other potentials are found in [5]. The second condition will be
discussed in a forthcoming paper.

Throughout the paper, the letters S, 4, K are reserved for constants which
appear in the Fefferman inequality. B is always used to denote a ball with
radius r.

The position of the essential spectrum of Schridinger operators. If H is
a selfadjoint operator, H > a> —oo and

w,(HY =  sup inf * (Hf, f)
dim K=n—1 fe.!ll)}fl'fl),:flﬂ(

then the mini-max principle says that either

(1) there exist n eigenvalues of H {counted in increasing order according to
their multiplicities) and g, is the nth eigenvalue, or

(2) u, is the infimum of the essential spectrum of H, and then
Uy = M1 = ..., and there exist at most n-1 eigenvalues of H (counted
according to their multiplicities) less than u,.

The mini-max principle and the Weyl theorem “about the essential
spectrum” [6] lead to ‘the well-known estimate

lim inf V(%) <infou(—4+ V),
R [x|=R

which in the case

lim inf V(x}=lim sup V{x)=a

R |x|zR R |x/ZR

gives the equality cress(;ﬁl_—{» VY =1[a, o).
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The Fefferman estimate makes it possible to extend this mini-max method
of determining the position of the essential spectrum to a considerably wider
range of potentials. The assumptions of the Fefferman inequality suggest the
following definitiomn:

DeFniTioN 1. Let @ be a domain in RY r,e > 0. Set

Rg(r, &) = inf{R: sup [{y: Wl <r, x—ye@}| <e}.

|x|Z R
Call Q a tight domain (written QeCs) if there exists rg>0 such that
R {rg, £) < o for every ¢ = 0.

It is easy to notice that if @ is tight then Ry(r, &) < o0 for any r,e > 0.
Let S, denote the indicator of 2, ie.
forxef,

1
Salx) = {0 forx¢ Q.

Lemma 1. If Q is a tight domain, then for all t>0 and E >0
N(—E, —t8,) < .

Proof Let us fix 1 < p < d/2 and examine the number of disjo.int balls
B with radii not larger than h, satisfying for an ¢ > 0 the inequality

B A QVB| = & 2.
Then obviously r > '?? and therefore for any such ball
B Q|3 Ceiitip=2r,

Since Q is a tight domain, the number of disjoint balls satigfying the last
condition is finite; putting & = §%¢7, h = K~*2 E~** and making use of the
Fefferman theorem, we finish the proof of the lemma.

Define

liminfc, V= sup inf V(x).
£eCs xeflS

ProPOSITION 1. For every potential V
liminfe, V< info{—4+ V).

Proof For t < liminfg, ¥, there exists @, Cs such that V(x) > tfor x££,
If f is in the common core of the operators —4, —A+Vand |f] =1 then

(— A+ W f) 2 t+{(— 4~ 1) 1. f)-

So “n(_d + V) P-4 r"""#’n(_A _taﬂn)-
For any £>0, by Lemma I, N(—g —tdg) < oo, ?l.nc'l 50
t(— A+ V) = t—e for sufficiently large n. By the free choice of ¢ < liminfe, V'
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and &> 0, we see that there exists n, such that u,(—~A+V) =t for n = n,
Therefore, according to the mini-max principle, liminfg, V< inf o — 4 + 7).

Let Cs, denote the class of those tight domains @ for which the
complement ° contains balls with radii of arbitrary length, and let
lim supe,, V= inf sup F{x).

eCsn xe2°

ProrosiTION 2. info,,(—4+ V) < limsupg,, V.

Proof If t > limsupg,, V, then there exists @, e Cs, such that sup V(x) <t.
xeflf

Fix & > 0 and a naturhl number n. Let B, , ..., B, be a family of disjoint balls
with radius ¢~"2 included in Qf. Translating and dilating a fixed smooth
function ¢, with support in the unit ball, we obtain a sequence of smooth
functions ¢, ..., @, such that suppp; = B forj =1, ..., n.Iff= 3" a;¢, then

(—4+ V)1 ) < Ylla 1P, +lal Ve, @)
< .Celaf® o * +eh /17 = (Ce+ D f12

By the free choice of € > { and t > lim supe,, ¥ we come to the conclusion that
for any natural » there exists an »n-dimensional subspace 2 < L? such that
((—A+W)1, f) < t| fi* for fe #. Therefore the image of the spectral projector
P(~—oo0, t] has infinite dimension, ie. t 2 inf o~ 4 4+ V), which finishes the
proof,

PROPOSITION 3, [fliminfe, V= im supg,, V= then 6 — A4+ V) = [a, ).

- Proof. We may assume that a = 0. For any natural n choose domains
2_(n), 2, (n)sCs, such that

inf Vz —1/n,

£2_(m°

sup V< i/n.

2 -+ [")c

Let x,eR? be such that {x: [x—x|<n'?} cQ_(nnQ, () (x, exists by
the Csy-condition). Take a function # > 0 such that n(x) =1 for |x| < 1/2,
7ix) =0 for [x] > 1. Let n,(x) = #(n~"*(x—x,)). Then

(1) [Pl < Cn™ 12, |4 | < Cnt

For fixed A = 0 choose ke R such that |k| = 1*"* and define @,(x) = e** 7, ().
We have

(2} limsup{{V(x)l: xesuppg,} =0, [g,] = Ca™ 2

A straightforward calculation gives

(—A+V=1)p, = & ((— A+ V)n,—ikPn,).
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So by (1) and (2}
limsup{{—4+V—2Ne,| =0,

which implies that

im [, |7 (- 4+ V—Ae,] =0

and so [0, «o) = 6(— A4+ V), which together with Proposition 1 proves the
assertion,

Nontrivial examples of tight domains are given by

Lemma 2. If p is a polynomial on R? such that for every x # 0 there exists
y with p(x+y) # p(y) then for every A >0 the domain 2, ={x: |p(x)} < A}
is tight.

Proof We first show that the operator — 4+ p* has a compact resolvent.
Set o _p(y) = p(x+y), W=lin{o, p: xeR?}. We define a multiplication on the
product RYx W by

(xla Wl)(xi'.! W?.) = (x1+x29 W1+gx1 W.Z)'

It is easy to see that RYx W with this multiplication is a finite-dimensional
nilpotent Lie group whose Lie algebra is isomorphic to the Lie algebra of
unbounded operators on (R of the form

B.+iw, xeR weW.

Let ¥ be the unitary character of W given by
x: wiexp(iw(0)).

x induces a representation n of R x Win IZ(R?). One can see that for any fe I7,
x, yeR*, we W

Teon £ ) = €™ [ (y+x).

By the Kirillov theory [37, the representation  is irreducible if and only if for
every x there exists we W such that d,w #0.

Suppose that = is not irreducible. Let x be such that 8, w = 0 for every w.
Then, in particular, 32w = 0, i.e. for every neN and ye R, %6, p(0) = 0. Using
the Taylor formula, we sce that

plx+y) =Y kI™ 850, p(0) = p(y),

contrary to the assumption of the lemma. Therefore = is an irreducible
representation.
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Let g be the free nilpotent Lie algebra of the same nilpotence class as
RYx W, and let X,,..., X,y be a system of free generators of g. The
correspondence '

Xy=d;, j=1,...d, Xypit—ip
defines a homomorphism A: exp(g) —R?x W which is onto.

Set # = moh, L= —Y X?. Then d#(L) = — A+ p® The operator (L—z)~*
is the convolution with an integrable function for any z¢ [0, oo) [2]. Accord-
ing to the Kirillov theory, the image of an operator of conyolution with an
integrable function by an irreducible representation of a nilpotent Lie group is
a compact operator. Hence the resolvent of — A4+ p? is compact.

Note that this implies that for all &, @ > 0 the number of disjoint balls with
radius ¢ included in {x: p(x)* < a} is finite. Indeed, if there are n such disjoint
balls, then dilating and translating a fixed smoth function with suppeort in the
unit ball we conclude, in the same way as in the proof of Proposition 2, that
there exists an n-dimensional subspace # < I? such that for every fe#

(—4+p2)f.0)<(C

If there existed an infinite number of such balls, then the dimension of the
image of the spectral projector P{0, Cs™%/*+a] would be infinite, which
contradicts the compactness of the resolvent of — A4+ p?,

Let I7 = int U be a connected subset of a ball B such that each connected
component of U is smooth. If, for a & > 0, no ball with radius J is included in
U, then comparing the curvature of the components of U to the curvature of
the sphere, we notice that at least one of the following properties is true:

e M a) | £

(1) there exists a ball b < B for which bn U is disconnected,
(2) U} < ty(r —(r = 3)").

Since p is a polynomial, the set of those points of the hypersurface
{x: p(x)* = A} at which the tangent component of the gradient F{p?) vanishes
does not contain an infinite set of isolated points. We may therefore find
pairwise disjoint domains U,, ..., U, such that for every 1 < j < n and every

ball B, B n U, is connected and U ;= {x: p(x)* < A}. Thus the Dirichlet box
principle finishes the proof. : . :

Combining Lemma 2 and Propositions 1-3 we -obtain

TrEOREM 1. If p is a polynomial satisfying the assumptions of Lemmir 2 and
V is a potential on RY, then .

lim inf V(x) < infoe(—4+V)

R |px)=R

£ lim sup Vi(x).

R ‘|px)|=R

Moreover, if iminfV=limsupV=a then o (—4+V)=[a, o).
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Integral estimates for the pumber of eigenvalues. Let V< 0 be a locally
p-integrable function and let B be the ball with centre at zero and radius r. Fix
O0<bh<S§ and put

E = B (V) = sup{{|BI~ IIEVx W dy) P —(S—b)r~?).

X7

If E, < oo then for every r < b'>E;"? and every x<R‘

(BT IV {(x—y)Pdy)’? < Sr72,
' B

Therefore, for any >0
N(K~1b~Y(E,+8), V) < AN

ie. —44+Vz —CE(V) (see [1]).
Fix 1 <ps< d/2 and a potential ¥V on RY. Using the Fefferman inequality,

we may obtain integral estimates for N(i, ¥). To this end, let us introduce the
following notation:

LBVHE, +8) 712, V) =0,

Sp)=1 i |x|<R, dg0x)=0 if [x|=R
V,—min(V=1,0), E(GIR) =E,(6,V), E(A)=E(ijo0),
o, V(y) = Vix+y), Vol(i, VIR) = |{(&, ): |x| < R, |+ V(x) < 1}].

THEOREM 2. There exist constants s = s{p, d), a = a(p, d), k = k{p, d) such
that, for every ¢ >0, if for fixed R >0

sup Vol(d, o, Vlke™4?) < sE(yF %2

jx =R
© then
N{i—e, V) < .czE(/uR-|-iks“1f2)‘“2 PVol(i, VIR +ke™1/?).
Proof First notice that (—A-+V)f,f)= ,1+((_A+Vl)f,f), 50
w(—A+V) = A+p,(—4+V,), which means that
N(A—s, V)< N{—¢&, ).

Let us estimate the number of disjoint balls of radii not larger than
k42 g™ 12 satisfying the Fefferman condition

{(IBI7 IV = 8rm 2,
B

For such a ball r = bY* E())"Y?, s0
JIVAV’ ¢y BP9,

R we have
Vol (4, o, VIke™ /%) < ¢, E(Ayr~4?

If for every |x| =
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then the centre of any ball satisfying the Fefferman condition is in the ball of
radius R and centre at zero. The bounds for the number of eigenvalues less
than — ¢ for the potential Vand the Fefferman estimates for N(—eg, dp4pe-12V})
are, therefore, equal. When we repeat the argument fixing the radius R and
substituting the potential 8 +4,-12 V; for V;, we see that the radius of any ball
which we must count does not exceed b2 E(A|R+ke™ /%)~ 12 Therefore, if
B,, ..., B, is a maximal family of disjoint balls satisfying the Fefferman
condition then for 1 <j<n

[P 2 ¢, EQAIR+ ke V242, e,
3,

N(—¢2, V) < ¢y E(4R+ke™ 122w § [V]%,

Iy} <R+ ke~ 172

which completes the proof.

Remark. Choosing zero as the centre of a “big” balil in spite of its
arbitrariness does not influence much the value of the bound for large A

References

[1] Ch. L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206.

[2] G.B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat, 13
(1975), 161-207.

[3]1 A. A. Kirillov, Unitary representations of nilpotent Liz groups (in Russian), Uspekhi Mat.
Nauk 17 (4) (1962), 57-110.

[4] H. P. McKean, —4 plus @ bad potential, J. Math. Phys. 18 (1977), 1277-1279.

[51 M. Reed and B. Simoi, Methods of Modern Mathematical Physics, Vol. 2, Academic Press,
1975.

[61 —, —, Methods of Modern Mathematical Physics, Vol. 4, Academic Press, 1978.

[71 B. Simon, Functional Integration and Quantum Physics, Academic Press, 1979.

INSTYTUT MATEMATYCZNY PAN, ODDZIAL WROCEAW
INSTITUTE QF MATHEMATICS, POLISH ACADEMY OF SCIENCES
WROCLAW BRAMNCH

Kopernika 18, 51-617 Wroclaw, Poland

Received July 26, 1988 (2466}
Revised version February 7 and August 3, 1989

STUDIA MATHEMATICA, T. XCVI (1990)

On weak (r, 2)}summing operators and
wealk Hilbert spaces

by
MARTIN DEFANT and MARIUS JUNGE (Kiel)

Abstract. We study Pisier’s concept of weak operator ideals and give applications, in
particular to (r, 2)-summing operators. This leads to new characterizations of weak Hilbert spaces
in terms of integral operators and Hilbert numbers. Moreover, a weak version of Grothendieck’s
inequality and the normability of certain Weyl number ideals are proved.-

Introduction. We extend Pisier’'s [PS1] concept of weak properties of
Banach spaces in the following way. If (%, o) and (B, f) are quasi-Banach
ideals and 0 < g < co, an operator T: X — Y belongs to the ideal IB,(x, B) if
there is a constant ¢ = 0 such that for all ue(l,, X) and ve B*(Y, I,} (the
conjugate ideal of B)

sup k' a,(vTu) < cau) f*(v),
keN
where g, is the kth approximation number.

In this notation, by [PSZ], X is a weak Hilbert space if and only if
id, B, (n5, m,), where IT, is the ideal of 2-summing operators.

Given an ideal (8, f), we call an operator T: X —Y a weak, S-operator if
it belongs to M, B: =T _(|j-||, f) (WB: =W, B are the weak f-operators).

Denote by II,, the (r, 2)-summing operators and by 27 . all operators
with Weyl numbers in the Lorentz sequence space [, .. We prove that

W I, 5 =25, L+1lp=1/g+lir>1.

For ¢ = 1 this was shown in [PS1] and [MAS]. Even in this case, however, our
proof is different and vses Grothendieck numbers.
As an application we prove that £ , admits an equivalent Banach ideal
norm if and only if p > 2. '
Using equalities of the form W, L=98 1, (1/2+1/p=1/g>1),
M IT,, =W, I, (1/2+1/p = 1/g+1/r) and an extension of a result of Geiss
[GEI], we prove that the following are equivalent:
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