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then the centre of any ball satisfying the Fefferman condition is in the ball of
radius R and centre at zero. The bounds for the number of eigenvalues less
than — ¢ for the potential Vand the Fefferman estimates for N(—eg, dp4pe-12V})
are, therefore, equal. When we repeat the argument fixing the radius R and
substituting the potential 8 +4,-12 V; for V;, we see that the radius of any ball
which we must count does not exceed b2 E(A|R+ke™ /%)~ 12 Therefore, if
B,, ..., B, is a maximal family of disjoint balls satisfying the Fefferman
condition then for 1 <j<n

[P 2 ¢, EQAIR+ ke V242, e,
3,

N(—¢2, V) < ¢y E(4R+ke™ 122w § [V]%,

Iy} <R+ ke~ 172

which completes the proof.

Remark. Choosing zero as the centre of a “big” balil in spite of its
arbitrariness does not influence much the value of the bound for large A
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On weak (r, 2)}summing operators and
wealk Hilbert spaces

by
MARTIN DEFANT and MARIUS JUNGE (Kiel)

Abstract. We study Pisier’s concept of weak operator ideals and give applications, in
particular to (r, 2)-summing operators. This leads to new characterizations of weak Hilbert spaces
in terms of integral operators and Hilbert numbers. Moreover, a weak version of Grothendieck’s
inequality and the normability of certain Weyl number ideals are proved.-

Introduction. We extend Pisier’'s [PS1] concept of weak properties of
Banach spaces in the following way. If (%, o) and (B, f) are quasi-Banach
ideals and 0 < g < co, an operator T: X — Y belongs to the ideal IB,(x, B) if
there is a constant ¢ = 0 such that for all ue(l,, X) and ve B*(Y, I,} (the
conjugate ideal of B)

sup k' a,(vTu) < cau) f*(v),
keN
where g, is the kth approximation number.

In this notation, by [PSZ], X is a weak Hilbert space if and only if
id, B, (n5, m,), where IT, is the ideal of 2-summing operators.

Given an ideal (8, f), we call an operator T: X —Y a weak, S-operator if
it belongs to M, B: =T _(|j-||, f) (WB: =W, B are the weak f-operators).

Denote by II,, the (r, 2)-summing operators and by 27 . all operators
with Weyl numbers in the Lorentz sequence space [, .. We prove that

W I, 5 =25, L+1lp=1/g+lir>1.

For ¢ = 1 this was shown in [PS1] and [MAS]. Even in this case, however, our
proof is different and vses Grothendieck numbers.
As an application we prove that £ , admits an equivalent Banach ideal
norm if and only if p > 2. '
Using equalities of the form W, L=98 1, (1/2+1/p=1/g>1),
M IT,, =W, I, (1/2+1/p = 1/g+1/r) and an extension of a result of Geiss
[GEI], we prove that the following are equivalent:

1980 Mathematics Subject Classification (1985 Revision): 46B20, 4FA30, 4TA65.
Key words and phrases: weak ideals, weak {r, 2)-summing operators, weak Hilbert spaces.
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1) X is a weak Hilbert space.

2) Bvery operator T: I, X is weak l-summing

3) There exists a constant ¢ =0 such that for all integral operators
u: =X

sup ka, (1) < ci, {t).
feN

4) For every 1 < r < 2 there is a constant ¢ 2 0 such that for all operators
ue 8 (1, X)

sup k' a4, (u) < ¢ sup kM by (u),
keN keN

where h, is the kth Hilbert number.

Clearly the equivalence of 1) and 2) is a weak version of Grothendieck’s
inequality.

For the background material we refer in general to the monographs of
Konig [KON], Pietsch [PI1], [PI2] and Pisier [PS2].

1. Preliminarjes. We use standard Banach space notations. In particular,
we have for all Banach spaces X and subspaces E — X

ipi E=X,  xox
The Lorentz spaces [, , and Lo 0<p, g <o, neN, are defined in the usual
way. Denote by # .2 I;— I3 the formal identity map.

Standard references on s-numbers and operator ideals are the monographs
of Pietsch [Pit] and [PI2].

Note that for two quasi-Banach ideals (2, «), (B, f) the inclusion % « B
implies £ < co for some ¢ = 0.

The ideals of bounded, finite-dimensional, absolutely (r, 2)-summing and
integral operators are denoted by &, §, I1,, and J,, respectively (I1,: = 1T, ,).

Let (A, «) be a quasi-Banach ideal. The compomnent U*(X, ¥) of the
conjugate ideal (U*, o*) is the class of all operators Te Q(X, Y) such that

o*(T): = sup{|tr (T9)| | Se F(X, Y), a(S) <1} < .

The component X, ¥) of the dual ideal (NY, a?) is the class of all operators
Te £(X, Y) such that T*eL(Y*, X*), and o*(T): = a{T*).

Next we recall the usual notation of some s-numbers of an operator
Te (X, Y):

a,(T): approximation numbers,
¢,(T): Gelfand numbers,
x,(T): Weyl numbers,

¥.(T): Chang numbers,

#,(T): Hilbert numbers.

icm
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The Grothendieck nmbers were recently introduced by several authors.
Let Det: K"—X" be the unique determinant. Then

I(T): = sup{[Det({ Tx;, ¥INIM" [ (xi-1 = By, ()= = By}

Let s be any s-number. The component 25 (X, Y) of the ideal (23, [}, ;) is
the class ef all operators Te £(X, Y) such that

Ba(T): = |8(T) pq < c0.

Since on Hilbert space components all s-numbers are equal, we put o, ,(T)
1= BT, provided that T acts between Hilbert spaces.

Let a, b, ceR. Then a ~,b (u~Db) means that (1/c)a <b < ca.

We now make a list of those known results and facts which are essential
for this paper.

(1.1) [CAR] For all neN and Te 2(X, Y) we have

H

(IT e )" < T (T).

k=1

(1.2) [GEY] Let H, K be Hilbert spaces and Te 8(H, K). Then for each
nelN
(
x

In particular, when Te2(B, I3) we have [Det({T(e), )| = I (T), where

()i is the sequence of unit vectors in I

(1.3) [GEI] For all neN, Tel(X,Y) and Sell,(Y,Z) we have
I,(ST) < en™ 12 my (S} (T)- '

(14) [P11] Let 2 <r < 0. Then &y < I, , = &7, Furthermore, there is
a constant ¢, >0 such that [, <m <l

::

a(T)" = I (T).

1

(1.5) [JOH] Let neN and let E be a Banach space with dim E = n. Then
there exists an invertible. operator ue@(l3, E) such that |ul|=1 and

my (1) = myu™ ) = /. .

For further information on {1.5) see [PS2], [TOJ] and {KON].

2. Weak operator ideals. In this chapter we introduce the concept of weak
operator ideals. Since most of the proofs of this chapter are technical and not

very interesting, we just state our results. Let (%, «), (B, f) be quasi~Bana}ch
ideals, X, ¥, Z Banach spaces and 0 < g < . We start with the following

definitions: : .
(2.1) An operator Te £(X, Y) has the property B(a, ) (Te B(a, X, ¥pif

pla, BU(T):= sup{B(TS}| Z Banach space, Se U(Z, X), a(S) € 1} < c0.
Observe that (P(a, ), ple, f)) = (BeU ™!, foa™).
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{2.2) An operator
Te W (x, H{X, V) if

TeL(X, Y) has the property 2B (, ) (written

(o, BY(T): = sup{o, . @T) |ueAll,, X), a(u) < 1
veBH(Y, L), f*0) < 1} < 0.
In the case o = ||'|| we define
(18,8, e, f):= (W, (-], B @, (-1, B).

In the case g =1 we define

(‘ﬂ}(fx, B)a (D(OC, ﬁ)) = (m (Oﬂ, 18)1 CO_[(OC, 18))! (ﬂBSBa (‘Oﬁ): = (QBI %" (DL ﬁ)'

2.3. PrOPOSITION. (i) (2B, (2, f), @, (2, f)) is a quasi-Banackh ideal and for all
1 < g < o0 there exists an equivalent Banach ideal norm.

(i) 9,(, f) = BB, (x, f*).

(i) TedB o, (X, ¥) if and only if

M(T):=sup{n'®a,(wTi)ineN, ucl(l}, X), o (u)

ve B(Y, ), f*(v) < 1}
In this case we have w,(o, B)(T) = T)
(iv) W (a, p) = ‘.B(oc w, f) = (B*) ™1 oIl 05 1)

(v) Plax, f) = W (o, ﬁ) Jor all 1 <g< oo,
{(vi) Suppose that for all operators Re £(Z, Y) we have ReB if and only if

sup {f**(Rw)|we 2, Z), |w]
Then M (o, f) = Plot, f) for all 0<g < 1.

2.4. ProrosiTION. (i) Let B be an injective Banach ideal. Then IR (x o, B) is
injeciive.

(ii) Let W be an injective Banach ideal. Then 13 Lo, ) is Surjeczwe

(iii) Let A be an injective quasi-Banach ideal and 23 an injective or B*
a surjective Banach ideal. Then M (a, B) is maximal.

(iv) Let U be an injective Banack ideal and B an injective or B* a surjective
Banach ideal. Then B (a*, B) is maximal.

(v) Let U be an m]ect:ve Banach ideal and B an mjectwe quasi-Banach
ideal. Then

£ 1} < .

mq(&*d, ﬂ) — %q(ﬁvd, Ex)d.
If additionally B is an injective Banach ideal, then
T, (o, f)F = W, (F*, o).
{vi} Let W be an injective Banach ideal. Then
W, (@, 1;) = (1B, A,
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2.5. PROPOSITION. Every maximal quasi-Banach ideal (U,

o) with A = A
admits an equivalent Banach ideal norm.

Proof. By Proposition 2.3 (v) and (ii) we have ¥ o U** — IRA** = YA
= 9. Since (W**, a**) is a Banach ideal, the assertion is proved. =

3. Some new aspects of Grothendieck numbers. We generalize Geiss’ result
(1.3) as follows:

3.1, PropPOSITION. For all 0 <r < o0, neN, Te (X, Y and S 2 (Y, Z)
we have

T (ST) < e)! P ren™ 1 (ST (T).
Proof. Wlog we may assume that dim Yz n TFix(x)i-: < By,
{zF)V -1 < Bz and define

ui= 9y ¢,®x,el(lf, X), vi= 3} zF®fcZ, ).
k=1 k=1
where (e )i=1 < BB, (fili=1 =[5, are
”U” = SUP; = n”zkH = L.

Choosc a subsp1ce Tu(ly) = E < Y with dimE == n. By (1.5) there exists an
invertible operator weQ(E,l3) such that m,(w™')=m,(w)= \/H and
w~ 1| = 1. Hence there exists an extension We (¥, 15) of w (i.e. W[z = w) with
m(W) = /n (eg [PI1]) ,

The multiplicativity of the Weyl numbers and (1.4) imply

the unit vectors. Then we have

- . . —1
W) < Kot yzr—1 (o2 88w )

& Xy + 1372 (i';o,z) x[(k+1)/2](S) flef gl ”‘"f1 I

k+1]77 k+1 _1"",:
% [TJ Ty (I'c'n,z) 9 Ir.oo(S)

< 21j2+1]r k—]f2—l/rn1/2 lf,m(S).

ak(i?n'l USiE

Hence by (1.2)-(1.4) we obtain

IDet ((STx;, ZXONY" = |Det (<%, vS Tu(ey), ep)| 1"
= |Det (i, 2 vSigw ™! WTley), e o)
= |Det({i% » vSiz W™ (e), ep)|*" |Det{(W Tu(e), e3)|'"
(H Oy (5,2 USIg W™ 1))”"|Det{<WTx,, J>)[1/"
k=1
< 21/2+ l.;‘rnljz(n km1/2~1/r)1fn lf,x.(S) F,,(Wﬂ
k=1
< 21/2+1,‘r 1/2(e/n)1/2+1/r lx (S) en-—l/z TEZ(W)F"(T)

(26)1/2+1,’r en” 1fr lx )F (T)
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The next proposition is a kind of converse of Proposition 3.1.

3.2. ProposiTION. Let (€, 7) be a quasi-Banach ideal and Te (X, Y). Then
we have for all neN
@) I'(T) < sup{T,wT)|ve€(Y, L), 7(v) <y(%.2)}

(i) 7, (T) <sup{l(Tizw)|EcX, dlmE = n, ue U, E), y (1) < y(it 5))

Proof (i) Let (x)-, < By and (y¥)i-, < By~ Choose a subspace
[gt-;cEcX with dimE=n (wlog dimX >n). We define §:=
Yoo i ®x.€2(1, E), where (fi)i=, are unit vectors in 7. Furthermore, let
u:= Si% ; e 2(l4, E) and hence

P ) <Y, IS = p(i%,2) sup (x| < p(i 2)-

k=1,...n

Let {e,)i—, be the sequence of unit vectors in . Then

|Det({ Tx;, y¥o)t" = ‘Det {Tiguley, y} ))|1f“ I (Tigu).

(i) can be proved similarly. »

4. A criterion to compute weak norms. The purpose of this chapter is to
give a necessary and sufficient crlterlon for an operator to be in a weak
operator ideal

4.1. ProrosITION. Let (U, o), (€, y) be quasi-Banach ideals and let (f (n))yen
be a positive sequence such that

cr==sup f( n)(l_[ 1f( k))”"< 0.

neN .
Then we have for all Te 8(X, Y) the implications (i)=>(ii) = (ili). Furthermore, we
have the estimates M5(T) < M,(T) < cM (7).

(i) There exists a constant M ((T) = 0 such that for all ue A(l,, X) and

e (Y, 1)
sup f (k) a, (0Th) <

keN

M (T) () y(v)-

(i} There -exists a constant M,(T) 2= 0. such that for all ueW(l,, X)

sup —5— f (K} [ (T) <

wen P {ico,2) MZ(T) ().

(iti) There exists a constant M4(T) = 0 such that for all ueU(i,, X)

1
sup—— fk)a (Thy) <

keN ?(lm 2)

M (T)a(u).
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If additionally
= sup {f (2K)/f (K), f (2k—1)jf (k}} < o0

keN
y(v) for all veQ(Y, 1y, then (i), (i) and (i) are
(T) < M5(T) < My(T) < eM(T).

Proof. (i)=(ii). Let ue A{l,, X). We obtain from Proposition 3.2 and (1.2)

and supreny(i% 2} () <
equivalent and we have (1/bB)M

for all neN
[
TSR
- < (i'} ) Fmsup{( ﬁ (wTw)" | weC(Y, L), y(w) < p(f,2)}
00,2, k=
< (H)(H 1f (k)

"oo 2)

xsup{ sup f(k Va,(wT)iwe €Y, L), y(w) Wi, o)}

=1 n
< eM (T)ofu).

(ii)=(iii) follows from (1.1) and we have M,(T) < M,(T).
(iii)=(i). Let the additional assumptions hold. Then we ‘obtain for all

weN(,, X) and veC(Y, 1)
sup f (k) a,(vTh) < bsup f([(k+ 1)/27) Xpg+ 13721 (®) X+ 121 TH)

keN keN

< by sup- z)f(k)xk(Tu) < bM, (T} 3(0).

xeN Y

Remark. Using the second part of Proposition 3.2 it is possible to prove
a “left-hand” version of the preceding result.

For applications in Chapter 5 the following corollary is useful.

42 CoRrOLLARY. Let (%, 0) be a quasi-Banach ideal. Then for all
0<g<oo and Tel3 A .

sup k4 %, (T) < e, ofT).

ken 0l 2)

Proof. Choose (€, y): = (U*, «*) and f(n): = n'?, neN. Then

¢1=sup [ (m){ H 1/f (k) = sup n*(1/nl)'™ < et and

neN k=1 neN

for all ne(,, X) and veWX(Y, I,).

sup kM a, (vTuy < w, o (T) flull a*(v)

keN



210 M. Defant and M. Junge

Proposition 4.1 (i)=-(ii) yields for all uef(l,, X)

1
sup kM1 ————a,(Tu) < e 0, a(T) |[u]. =

pn 0% (G,0)
5. Weak (r, 2)-summing operaters. The following proposition follows
immediately from Proposition 24.
5.1. ProrosITION. Let 2<€r< oo and 0 < g < 0. Then
© MW, 11, , is an injective and maximal quasi-Banach ideal,
() (W8, 1T, ) = W, (mrh, 1y).

Remark, For all 2<r <o and vel(X,[,),
if and only if

UCQB (TE,‘ 2 l_)(X: Iz)

wg(n:fi2= il)( ) —Sllp{G'qm UHHMEH (121 ): n:f'z(u)ﬁ I} < 0.
Mascioni [MAS] denotes the above supremum by “wzl,{r)”. Hence
(@m,,2)* = “om; ",

The following lemma was essentially proved by Mascioni [MAS].

52. LemMa. Let ve2(Y, [,) and 1 < q,4" < oo with 1/q+1/q = 1. Then

M) o) < ()" 0) <27 50).

() K o) <i (0.

Proof (i) Let ue@{,, ¥} with |ul] <
< iy () lull <iy(v). =

53. LemMA. There exists a constant ¢ >0 such that for all neN

() {15,0)" (1,2) ~ (1 +1nn).
(il) w3 (i,1) ~ nf(l +Inn).

Proof (i) Let ue®(}, !7). Hence by (1.4}

1. Then supuka, (o) < o (ou)

[rif uls oy ({1 u) < (1+10n) 05, (i 2 u)
== 2(1 +lnn)l (ir;,?.)lll’f,w(u)
< 201 -+HInmmy (7] 2) 1o (1) < 2(1 + 1nn) I o (u).

To prove the reverse estimate consider the diagonal operator D_:
(x> (k™1 x),. Since D, e85 (5, I,) (eg [PI1]), we obtain

(B5,)*({1,2) = 7 Htrit 2 Dl 2 (3¢)" (1 +1Inn).

() The lower estimate follows from (i)

L=y,

1 n
cl+ln

T ao(il,z 5.1 iz 1)
183,211 (5, ) * (21, 2)

wli 5 (i5,1).

icm

Weak (r, 2)-summing operators 211

Since (25 .)* is a Banach ideal, (5 ,)* (11,2) (3, )** (i3,1) = n (e.g. [PI2]). Hence
from Proposmon 2.3 and (i) we obtain the upper estimate:
0l (13,1) = @5, P (1) < (B ,)** = A
2,(i%,1) BV (5,1) < (5,5) (B} = & m)* @ 2) 1+1[1n. B

54. LEmMa. For all 0 < r < oo there is a constant ¢, > 0 such that for all

neN
\/r_z ifr<2,

) (Bl (F2) ~,, 4 /(1 +10m) i r=2
ptoir ifr>2,
Jn if r<2,
(ii) OF o {i,2) ~o S A0/l +In)  if r=2
ntfr ifr>2,

Proof (i) For all ke{l,..., n} we have by (1.4)

X (15.2) S Mo (P ) K72 = (nfk)H2,

This implies for all ue 87, (53, 1)

|tr %2 6 <

oy 1) <2 Z M (1 ) B o () < 2./m Z kM2 (),
This proves the upper estimate.

If r <2, then (B, V*(i%5) = |f%.all = /n. If r> 2, then

. H h
Eay ({2 > e
S N R R

Now let v = 2. By [PII} we have g (1 )= (n+1)2. By Corollary 4.2 and
Lemma 5.3 :

— nl—l/r_

n
(ot 2 = (i3
( E,m)* (Im.z) ( 2 1)

ec2n/(1 +1n2n),

n
(B, )* (7%,2)
< ewli ,(13Y) <
Tharefore (15,0 (% ) = (2ec)” 1\/— 1+Inn).

(ii} follows from (1) as the corresponding implication in the proof of
Lemma 5.3. =

55. THEOREM. Let 0 <g,p< o0, 1

(i) 96,95, =M M, , = £ if 1/¢1+1/r~.

(i) QB &y —ﬂB T2 =25 o I 1g+1fr > 1
If additionally r > 2, then 1w, L =25,

Lo and 2€r < w0, Th.en

and 1+1/p = 1/g+1/r.

2 — Studia Mathematica 96.3
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(i) W, =25, f0<g<land I+1p= l/g.
(iv) ED3 85 = 8! for each s-number s.
v) %ﬁ;m;ﬂ Fo<p<2.
Proof. (i) Let 1/g+1/r < 1. Hence 1’

Te (X, Y), ue(l,, X) and ve(Ly,)* (¥, 12)

Caoa0TH) € 0 o (0Ti0) < || TN fitel] B, (6) < I TN flual] (B 0)* (o).
This proves £ « MW, & <M 87, = & and LB, 8, =W 1T, , < L.
(i) Let 1/q+1/r> 1. By Lemma 52 we have for all Teﬂﬁm(X Yy,
ue(,, X) and ve (L8 (Y. 1)
g0 (UTH) € 21015 (T B oo (0) < 2M0 5 oo (T) ]| (750 ().

This shows £5 . < QB 25 c BB 87, < I8, 8, and, by (1.4), 25, =98 87,
Note that nz (;w 2) = . /k for all ke N. By (1.4) and Lemma 54 forallr > 2
there exists ¢, = 0 such that for all keN

Tp, 2(100 2) 3 (Ir,m)* (iﬁu.z) ‘<\ C, kl_ 1""

Hence I, < 8} ., by Corollary 4.2 and B, 11, , <MW, &, = &5,
r > 2. This completes the proof of (ii).

(i) By Lemma 52 we have for all Tef§ (X, Y), uecf({,, X} and
ve@*(Y, 1) =3,(Y, 1)

Ogo0(0Th) < 21 %

g. By Lemma 5.2 we have for all

for all

o (T o (0) < 2V 5 o (T) [l i (0).

Hence 5.1;,‘,D < 9B, 8. The reverse inclusion follows again from Corollary 4.2,
since i,(i%, ;) =k for all keN.

{iv) Observe that (£7)*(Y, [,) = £(¥, [,). Hence (iv) is obvious.

(v) Since E (55 o) ~ n'? (e.g. [P11]), (v) follows from Lemma 54. =m

5.6. CoroLLARY. The following operator ideals possess an equivalent Banach
ideal norm:

() 8. fl<p<oo
(i) 87 and 8, f 2<p<g
In all other cases of p, there exists no equivalent Banach ideal norm.

Proof. Since by Proposition 2.3 for all 1 < g < oo ¥ (a, p) has an
equivalent Banach ideal norm the assertion follows from Theorem 5.5.
The Lorentz spaces [, ,,, 0 < p < 1, possess no equivalent norm. Hence the
operator ideal £} ,, has no equivalent Banach ideal norm for any s-number s.
Lemma 5.4 yields for a« = If_, that

if r=2,
fl<r<2.

n " n(l +Inn
“*(lm.z)“(lz,m) ~ {n—1/2+1j,-)

icm
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For Banach ideals (B, 8), by [PI2]; f*(i%,..) B(i5,) = n. Thus £, cannot be
equivalent to any Banach ideal norm for 1<r<2. =

The following corollary contains a quotient formula for Weyl numbers.

5.7. COROLLARY. Let 0 <p, g, 5, t<c0,0<z< oo and 2
that 1+1/s+1/p=1/g+1/r =1+ 1/t. Then

ﬂi.m = gB(l:,z’ I:Scn) == ng(l;z’ nr.:’.)-

In particular, Te 25 . (X, Y) if and only if there exists a constant ¢ =
oo (Ti)y < clf (1) for all ue83.(1,, X).

Procf By the multiplicativity of the Weyl numbers, Proposition 2.3 (iv)
and Theorem 3.5 we have obviously

‘Q;; 5] < g‘B(']'s S} ) < m(l:z: lf,co) = g:B(l;'.:,z: COq TEr,Z) = %q(l:’sc,zs i"‘P'r,Z)'.

Let 0 <e f< oo such that 1/24-1/fe =141/t and 1/241/f=141/p. Then
again by Proposition 2.3 (iv) and Theorem 5.5

Pz, L) =W, my) and  W(|-|, m,) = L5 .

So it remains to show that MWL, n,) = W(||- ||, 7).
For this, let Te M, (15, n,)(X, YV),neN,ues (5, X}and ve 2(Y, I%). Then

s z3 :"!.'2) (T) Is z(u) Tty (U

< en'W e g (1., ) (T) |ull 7, (0)

r < o0 such

0 such that

PLY (Z:,z: Tfr,z) =

Al q (vl < ntf~Yeg, (0T < nt~Yey
= car (B 2, ) [luf] 7, (),

where the constant ¢ =
completes the proof. m

0 only depends on s and z. Hence Proposition 2.3 (iii)

We finish this chapter with the following easy proposition:

5.8. ProrosiTion. For all and 1<p

W, 11, = I8, 11,

Proof We only have to observe that by the Grothendieck-Pietsch
factorization theorem IT,({y, X)=IT,(l,, X) for all 1<p<2 =

O<gecw <2 we have

6. Some applications to weak Hilbert spaces. Weak Hilbert spaces were
introduced and investigated by Pisier [PS1]. We use cne of their various
characterizations as a formal definition:

{6.1) We call M(n3, n,) the ideal of weak Hilbert operators. A Banach
space X is called a weak Hilbert space if idy is a weak Hilbert operator.

Proposition 2.4 yields immediately the following
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6.2. PROPOSITION. For all 0 < g < oo the quasi-Banach ideal ¥ (n, m,) is
injective, surjective, maximal and completely symmetric.

The next theorem .is a weak version of Grothendieck’s inequality.
6.3. PROPOSITION. A Banach space X is a weak Hilbert space if and only if
W, (, X) =L, X)

Proof First of all note that by the “little Grothendieck theorem”
ms(d,, L)= 2(,, L) for each £}space L and therefore we have
M(n3, n,) (L, X) =W ,(L, X) for each Banach space X.

Now let X be a weak Hilbert space. Then by the ideal properties and
Proposition 5.8

21, X) = Wxg, m,)((;, X) = Wi, (ly, X) = WIT, ({4, X).

For the reverse direction let X be a Banach space such that
W, (f, X) = L(,, X). By the maximality of 8J7, (Proposition 5.1) and by
Proposition 5.8 we obtain thersfore

W(rd, 7,}{1,(By), X) =W, (1,(By), X) = 2(,(By), X).

But this implies that the canonical surjection Q: I,(By}— X is a weak Hilbert
operator. Hence the surjectivity of (x4, n,) (Proposition 6.2) completes the
proof. = .

Now we want to characterize weak Hilbert spaces only by Weyl numbers
and integral operators. '

6.4. THEOREM. Let 0 < g, p < oo such that 1/p = 1+1/q. Then
W, (n3, mp) = W0, |-1) = By, o)
In particular, for all Banach spaces X the following are equivalent:

(1) X is a weak Hilbert space.
(2} There exists a constant ¢ =0 such that for all ue3,(l,, X) and
ve3, (Y, L)

sup k* a (vu) < el (W) iy (v).
keN

(3) There exists a constant ¢ =0 such that for all ueSl'(lz, X)

sup ka, (1) < ¢iy (1),
keN

Proof. Let 0 <r,5,t<co such that 1/r=1+1/s=1/24+1/g. Then
Proposition 2.4 (v) and Theorem 5.5 imply

W, (n2, 73} = Plnz, w,7m,) = P(ng, Ko) = Blnd, o, [ [) = W, (=4, 1)
=B, (m5%, ) = W, (i, m,)* = Pl ) = Bliy, 5.)*
=Bliy, @, [ =B, G0, -1 = W06, D
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Now let Te@B, (i, |-)(X, Y). Hence we have for all ueJ,(l,, X) and
vedy (¥, 1)

sup k2 a, (0Th) < w, iy, [ 1)1y (), (0).
keN

Since i, (i% »} = k for all keN and 1 _ (v) < i,(v) for all ve3, (Y, I,) (Lemma
5.2), by Proposition 4.1 (i)<-(iii) the inequality above is equivalent to: there
exists a constant ¢ > 0 such that for all ue3,(l,, X)

sup kM1 g (T < ciy (u).
keN
But this means Te®P(i,, & ,)(X, ¥). =

The following proposition is proved in the special case of weak Hilbert
spaces by Pisier {PS1]. The general case was obtained by Pletsch [PI3].

6.5. PrOPOSITION. Let 0 < g < oo and TeS. Then TeﬂBq(ng,'vtz) if and |
only if '
G (T):=sup k™' I'(T) < 0.

keN
Remark Usmmg Proposition 4.1, Proposition 3.2 and (L3) we get
a different proof of Proposition 6.5, yielding the following estimates:
G,(T) < w xS, m,){(T) < 211G (T).

In the last theorem we characterize weak Hilbert spaces by Weyl and
Hilbert numbers.

6.6. THEOREM. Let 0 < ¢, s< oo and 1 <r < 2Zsuchthat 14-1/s = 1/g+ 1/r.
Then

W (nd, m) = Bco o)
In particular, for all Banach spaces X the following are equivalent:

(1) X is a weak Hilbert space.

(2) For all 1<r<2 there exists a constant ¢ =0 such thar for all
e {1y, X)
' B () < el o ().

(3) There exist- 1 <r<2 and a constant ¢ =0 such that for all
ue 8,y X)

B () < el ().

Proof Let Te (., E.)(X, Y). Hr>1, we have by Lemma 5.2 and

(1.4) for all ue 2 (L,, X)

B o (Th) € clf o () = el (0%) = 0B oo (%) < (0 0)* (4%) < o, mi% ).
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Let 0 < p < oo such that 1/2+1/p = 1+1/s. Hence by Propositions 2.3 and
2.4, Theorem 5.5 and Proposition 6.2

B o, ) © BES, L) = PpS, 0,75) = I, (1, 7))
= mp(ngs ﬂ:r'.l)d = G*B{ngs wpﬂr'.z)d = g‘B(“%s CDq Tcg_)d
= mq(nga T":Z)d = %q(ﬁ%’ 7172)'

In the case r= 1, by Lemma 5.2 we have [ (Ti) < et o (u) < ciy (u) for all
ue @ (1, X). Hence TeB,(n§, ny) = W,(n3, ny) by Theorem 6.4.
Conversely, let Te B, (n$, n,){(X, Y). Hence by Proposition 6.5 there exists
a constant ¢ = 0 such that sup,n k2 * (T < c
Now let Se® .(Z, X) and uef(l,, X). Then we obtain by (1.1) and
Proposition 3.1

allsg (TSw)= ' c,(TSu) < I, (TSu) = n** T, ((Su)* T*)
< n¥ ()R g IE L (Su)*) Ty(T)
< (2e)2 Ve Jul B (S*)ntaT 1, (T)
< (2e)' 2 ech (S)ul. =

Remark. 1) Theorem 6.6 yields that the eigenvalue type of
I, (ng, n;)0 Lt is L. This implies the known eigenvalue estimate for weak
Hiibert spaces ([PS1]).

2) Since €%, =BII, by Theorem 5.5 and £} (I, X) = 8} (L, X)
= (WI1Y (I,, X) we have the following reformulation of Theorem 6.6:

X is a weak Hilbert space if and only if there is a constant ¢ = 0 such that
o, (W) < clon) W) for all ue(MBIY(,, X).

This is the analogue of the well-known Hilbert space characterization, due
to Kwapien [KWA: X is a Hilbert space if and only if there is a constant ¢ > 0
such that m,(u) < cnd() for all uells(,, X).
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