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QuesTIONS. 1) Can we drop (i) in the condition (M,)? .
2) What condition on the Radon-Nikodym derivative v} is equivalent
to (M, )?

Janusz Wos is unfortunately no longer among us. This is one of the last
papers on which he worked.
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Cross-sections of solution funnels
in Banach spaces

by
BARNABAS M. GARAY (Budapest)

Abstract. The present paper applies negligibility theory (a part of infinite-dimensional
topology) to study the geometry of the failure of Kneser's theorem in inﬁnite-c}imef}smx?al Ba_nach
spaces. In particular, it turns out that arbitrary compact subsets of. the infinite-dimepsional
separable Hilbert space can be represented as cross-sections of solution funnejls. For peneral
infinite-dimensional Banach spaces, the existence of initial valve problems with exactly two
solutions is proved.

1. Introduction. Let X and Y be Banach spaces. If U < X is open and
V< ¥ then CP(U, V) denotes the set of all mappings f1 U -V (with
domain U) having continuous pth Fréchet derivative, p=10,1, 2, ... (C*(U, V)
is simply the set of all continuous mappings) We also _lfet Ce (U, V)
== ﬂ {C?(U, V)| peN}. The derivative of fe CP(U, V) at ueU is denoted by
D.f (u). The origin of X is denoted by 0. _ ‘

For FeC°(R x X, X), consider the ordinary differential equation (ODE)

(1) D,x = F(t, x}.

For (t, Xo)eRx X, a function xeC*(I,, X) is called a solution of (1)
through (t,, x,) if I, is an open interval in R contam{ng tys X{tg) = xo and
D, x(u) = F(u, x(u) for all uel,. Solutions with domain R are cal}ed_global.

Let # (X) denote the class of functions Fe C'(Rx X, X) satisfying the
following conditions:

(2) for each (t,, x;)eR x X, the ODE (1) has at least one solution through
{tas xo)i

(3) all solutions of (1} extend to global solutions.

The well-known Peano theorem states that all F e CO°(R xR", R") satisfy (2).
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14 B. M. Garay

As is observed in {197, (3) is satisfied for alil Fe C°(R xR", R") which have
supports in sets of the form R x compact. Unfortunately, the Peano theorem
does not remain valid in infinite dimensions. Given an arbitrary infinite-
dimensional Banach space X, (2) is satisfied only for those fe C*(Rx X, X)
which fulfil some additional hypotheses {usually compactness assumptions
and/or assumptions of dissipative type [8]) [12]. In general, slightly stronger
hypotheses imply (maybe a weaker form of) condition (3). For example, as
a simpie corollary of Gronwall’s inequality, (2) implies (3} provided that
i1F(r, x)| < K+L|xf, (t, x)eRx X, for some K, L > Q.

Given Fe (X}, (ty, xo) e R x X, the cross-section of the solution funnel at
time ¢ is the set

S (F, (14, xo)} = {x{n}e X |x is a solution of (1) through (r,, x,)].
The solution funnel {integral funnel) is the set

S{F, (tg, xo)) = {{t. x(0) eRx X | x (e S, (F. (5. X))}
It is also natural to consider the set of all solutions of (1) through (z,, x,) in the
function space C*(R, X} (endowed with the topology of uniform convergence

on compact subintervals), not just their graphs in Rx X [1], [17].

The study of the topological properties of the solution funnel was initiated
"by Kneser [15].

Kneser's THEOREM. Let Fe# (R™. Then S,(F, (ty, xg)) is a nonempty,
compact and connected subset of R, for all (i,, x,)eRxR" teR.

Arguing similarly to Section 2 of [19], it is easy to show that the
assumption F e # (R") is effectively equivalent to the standard assumptions due
to Kamke [14] (in his version of Kneser's [15] original theorem),

There is enormous literature on generalizations of Kneser’s theorem (for
certain classes of integral equations, lunctional differential equations, differential
inclusions etc. on manifolds, Banach spaces, locally convex spaces etc)). With
more or less effort, most of these generalizations can be derived from abstract
fixed point theorems in nonlinear analysis [16, Chap. 48], [23]. The interested
reader is referred to [10], [13], [16]-[18], [23] and the references therein.

Less 1s known about the problem of characterizing cross-sections of
solution funnels. In spite of various necessary resp. sufficient conditions
{formulated in terms of algebraic and/or differential topology) obtained by
Pugh [19] and Rogers [20] in the finite-dimensional case, the problem as
a whole is far from being settled. The best result is due to Pugh [19, Cor. (5.4)]
who solved the problem under the additional hypothesis “funnel cobordant to
a point™ In an ingenious mixture of examples and counterexamples, theorems,
conjectures and open problems, Pugh [19] has made an attempt at considering
the classification problem of cross-sections of solution funnels in térms of
cobordism theory in algebraic topology. The point xo €R" and the compact
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set 4 = R" are called furnnel cobordant in R* if there exists an Fe # (R") such
that §, (F, (0, xg)} = A and S, (F, (1, @) = {x,} for all a A. Funnel cobordism
will be denoted by {x,} —ip A. (Arguing similarly to Section 2 of [19], it is easy
to show that {x,!miyA implies {xg}+,;4 for some GeF (R") which has
support in some R xcompact: this is Pugh's original definition.) :

PucH’s TusoreM [19, Cor. (3.4)1. (a) I/ {x,} —p4, then there is a C”
diffeomorphism from R"\ A onto R"\ {x,}. .
) (b) If A = R* is compact, x,€R* and there exists a C* diffeomorphism (in
fact, if n 5= 4 then “C® diffeomorphism™ can be replaced [19, Remark 2] by
“homeomorphism™) from R"\ A onto R™\ {x,}, then there exists an F eF (R"
with {xq} 1y A.

The construction of F in [19, pp. 287-292] is based on the construction
119, Cor.({5.10)] of a C* diffeomorphism from R"\ A onto R™\ {x(,}.Wh.iCh fixes
all points in some neighbourhood of infinity. It is worth mentioning th{;tt
Fed (R constructed in [19, pp. 287-292] has the additional property that {in
case A consists of at least two points) (0, x,)eR x R" is the only point of
nonuniqueness for (1). N

The present paper is devoted to the problem of chargctenzmg
cross-sections of solution funnels in infinite dimensions. More precisely, }'he
problem we investigate is to what extent Kpeser's theorem fails in infinite-
dimensional Banach spaces [19, Problem 4]. .

By gencralizing Part (b) of Pugh’s theorem, we provide a lede class of
examples for cross-sections of solution funnels in inﬁnite—dimens:oqal Banach
spaces. The method we apply is an extension of the one dejvelo-ped n [1 1;] for
constructing counterexamples to the Peano theorem in 1nﬁmte—c%1mens1onal
reflexive Banach spaces and is independent of techniques used in [19].

2. To what extent does Kneser’s theorem fail in infinite-dimensional Banach
spaces? Let X be an infinite-dimensional Banach space. As was observed by
Binding [3, Section 2], it is easy to construct an F eff (X} such that
S, (F, (0, 0y)) = {xe X |ix|| < 1}. Thus, cross-sections of solutlpn funnel-s need
not be compact, To our best knowledge, the first examplg of this kind —in case
X =1_, the Banach space of real sequences ¢ = {c,} with ¢ = sup el < co
—is due to Cellina [7, p. 135]. Further, by a modification of‘Godu.nov § general
counterexample [12] for the Peano theorem in infinite-dimensional Banach
spaces, Binding [3, Section 4] has constructed an Fe C'Rx X, X) such that
54 (F. (0, 04)) is not connected. Unfortunat_ely, F¢F (X). I_n fact, the d.1scon-
nectedness of S, (F, (0, 04)) in [3] is caused by a certamn strong kind of
violation of (2). B

The aim of the present paper is to point out that the dlsconr}ectedness of
cross-sections of solution funnels may be cansed by a very comp_hcated global
behaviour of the trajectories as well and.not only by the fallu're of l(_)cal
existence. For various types of Banach spaces, we construct ordinary diffe-
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rential equations D, x = F{t, x), F e # (X), with disconnected cross-sections of
a solution funnel.

THrorEM 1. Let X be a Banach space and let A be a nonempty bounded
closed subser of X. Let a =sup{|a|lacAd}. Assume that there exists a C?
diffeomorphism h mapping X\ A onto X\ {04} such that h(x) = x whenever
Ix|l 2 a+1. Then there is an F € # (X) such that S, (F, (0, 0y)) = A. Moreover,
if A consists of at least two points, then Fe# (X) can be chosen so that

4 (0,0.)eRx X is the only point of nonuniqueness for (1).

Given an infinite-dimensional Banach space X and a nonempty bounded
closed set 4 in {xeX||x|| € «}, it is an extremely difficult task to decide
whether there exists a homeomorphism/diffeomorphism i mapping X %\ 4 onto
X\ {0y} (with or without the property that h{x) = x whenever |x| = a+1).
The topological case of this problem is thoroughly discussed in [2]. We do not
know of such a survey in the differentiable case. (For various smoothness
properties in Banach spaces, see [21])

We now list several examples of pairs (X, 4) satisfying the conditions of
Theorem 1.

ExaMpLE 1 (Part (b) of Pugh’s theorem) Let X = R" and let A4 be
a compact subset of X. Assume that there exists a C* diffeomorphism from

X\ Aonto X\ {04} By [19, Cor. (5.10)], the pair (X, A) satisfies the conditions
of Theorem 1.

Examere 2. Let X be the separable infinite-dimensional Hilbert space and
let A be a nonempty closed locally compact bounded subset of X. By a twofold
application of [24, Theorem 1], the pair (X, A) satisfies the conditions of
Theorem 1. In fact, there exists [24, Theorem 1] a C* diffeomorphism h, from
X\ A onto X with A, (x) = x whenever | x| = o+ 1. Similarly, there exists a C*
diffeomorphism A, from X onto X\ {0} with 4,{x) = x whenever jx|| = a+1.
The desired diffeomorphism h can be chosen as h,oh,.

ExampLe 3. Let (X, ||- i) be a separable Banach space with Schauder basis
and let A be a nonempty compact subsst of X. Assume that there is an
equivalent norm ||, on X with the property that the function * — ||x],,
x # Oy, isin CP(X\ {04}, R).p =1, 2, ..., co. By a twofold application of [22,
Cor. 197, the pair (X, 4)—with h being a C? diffeomorphism, p =1, 2, ..., oo
—gatisfies the conditions of Theorem 1.

ExaMmPLE 4. Let X be a reflexive Banach space and let 4 be a nonempty
bounded discrete subset of X. By a twofold application of [11, Lemma 2] (cf,
[9, p. 138]), the pair (X, 4) satisfies the conditions of Theorem 1.

CONJECTURE. As usual, let I, denote the Banach space of real sequences
= {c,,_} with(c] = Y le,| < oo. Givenael, a #0,e X =, we conjecture that
the pair (I;, {a, 04}) does not satisfy the conditions of Theorem 1.
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The conjecture is motivated by the following remark.

Remark 1. Let X be an infinite-dimensional Banach space and let K be
a nonempty closed bounded subset of X. Assume that there is a ct
diffeomorphism mapping X \ K onto X. (This~and moreover, the existence of
a C™ diffeomorphism —is known to be true if (a) X is separable and K is
compact [9, Theorem 5.2] or if (b) X is the separable Hilbert space and X \ K is
homeomorphic to X [5, Theorem 9]). It is natural to ask if there is a C!
diffeomorphism h from X \ K onto X with the property that {xeX|h(x) # x}
is bounded. The answer is, in general, negative. More precisely, (for arbitrary
nonempty bounded K in X} the answer is negative [22, p. 589] wheqever
{pe C'(X, R)!the support of ¢ is nonempty and bounded} = @. For a list (_)f
spaces satisfying this latter property, see [25]. In particular [4], the answer 13
negative in case X = l,. Nevertheless, the problem as a whole seems to be very
difficult and is far from being solved.

TugoreMm 2. Let X be an arbitrary infinite-dimensional Banach space. Then
there is an F e & (X) satisfying (4) such that the ODE (1) has exactly two global
solutions through (0, 0,)eRx X,

The proof of Theorem 1 is divided into the proof of two propositions. As is
pointed out by Remark 2 below, Proposition 1 has its own interest. The 4 = 5]
case of Propositions1 was proved in [11].

The definition of @ (X, A) (see Section 3 below) makes sense for A =0 as
well. (11) goes over into the requirement that (5) has no bounded glo‘pal
solutions. Given an arbitary infinite-dimensional Banach space X, (by using
different notation) we proved that—with (9) replaced by (9)’—(15(:5(' O #d
[11, Theorem 1] and then, by applying the 4 = (& case of Proposition 1, we
constructed counterexamples to the Peano theorem in X [11]. Theorem 2 of
the present paper will be obtained as a simple corollary of &(X, Q) +# 0.

3. A simple reduction principle. From now on, let X be an arbitrary Banach
space and let 4 be a nonempty bounded closed subset of X Let

o = sup{lal |ae4}.
For feC%(X, X), consider the ODE
(5) D.y=1{.
Let ®(X, A) denote the class of functions feCX, X) satislying
@ S (»)—yl <2(x+2) for all yeX,
(I f(y) =y whenever |y = a+2,
8 f(»=0y if and only if yed,

(9) for each y,eX, the ODE (5)\as at least one solution through
{0, yo)eRx X, Z\%

2 — Stadia Mathematica 97.1
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(10)
(11)

all solutions of (5) extend to global solutions,

if ye CL(R, X) is a bounded global solution of (5), then there exists an
ac A such that y(r)=a for all teR.

Provosrrion 1. Assume that @ (X, 4) # . Then there exists an F .7 (X)
satisfying

(12a)  for each a€ A, the function x,e C' (R, X) defined by
2 oy
x[,(f) = L I/ i 2 0
0y Ifr=<0,
is u solution of (1) and
(12b)  conversely, if xe C* (R, X) is a global solution of (1) through (0, 0y). then
x =x, for some acA. Thus,
(12¢) S, (F,(0,04) =

Moreover, if (9) is replaced by

(9Y  for each y,eX, the ODE (5) has exactly one (global) solution through

0, yoleRxX

and if A consists of at least two points, then F e F (X) can be chosen to satisfy (4)
as well.

Proof. Consider the transformation J: Rx X -+ R x X defined by
(t, x):=J (1, y)i=(exp(—1/2), yexp(—1)), (r,y)eRxX.
Clearly J is one-to-one and maps R x X onto (0, o) x X.
Given an fe®(X, A), the ODE (5) is transformed into
(1R) Dix=Gt,x):=2(" x~f(t"*x), >0, xeX.

In fact,

Dyx = (D™D, y—y)exp{—1) = —2L'1(f(y)——y)t‘2 = G (I, x).

By the conmstruction, if yeC'(R, X) is ,a solution of (5}, then x({f)
= y(—21In(1))¢% t > 0, is a solution of(lR) and conversely, f xe C* (I, X)isa
'ponextendable solution of (1R), then I, = (0, o) and y(7) = x(exp(—1/2) )exp (1)
is a global solution of (5). By (7), G(t, x) = 0y whenever || x| = (z+2)t, t > 0.
Consequently, given a mnonextendable solution x of (IR), there is an
¥ = X(x)e X such that x () - ¥ as t — 0*. Moreover, if % # 0, then x (1) = %
whenever  re(0, (I[¥|Ax+2) ). If %£=0, then, in virtue of (6),
IOl < 2(a+2) £ for all + >0, '
Using (6) again, we obtain |G (¢, x)| < 4(x-+2)¢t for all {t, x)&(0, o0)x X.

It follows immediately that

CE R P

ft>90, xeX,
ift<0, xeX,

icm
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defines a continuous extension of G. With F defined above, consider the
ODE (1). Observe that (1R} is the restriction of (1) to (0, co)x X and that
each nonextendable solution x of (1R) extends uniquely to a global solution of
(1) by letting x(z) = % for all 1 <0

The previous considerations imply 1mmed1ately that Fe C*(Rx X, X) and
that F satisfies (2), (3) and (12a) (and also (4) provided that (9) s replaced by (9)'
and A consists of at least two points). Since (12¢) is now a trivial consequence of
(12a) and (12b), it remains to prove (12b).

In fact, if xeC1{R, X)isa gIobal solution of (1} through (0, 0y), then, in
virtue of (6), |x (1)l < 2(c+2)¢* for all > 0. Since J maps Rx{yeX|| yl
<k}, k>0, onto {(f, )eRx X[t >0, x| < kt?}, it follows that x corres-
ponds to a bounded solution of (5). More precisely, x () = y(—2In(t) %, t > 0,
where ye C! (R, X) is a solution of (5} with || y(t)| < 2(z+2), TeR. In virtue of
{11), there exists an ae 4 such that y{r} = a for all teR. Consequently, x = x,
and this concludes the proof of (12b) as well as the proof of Proposition 1.

Remark 2. For ¢> 0, replace J by J: Rx X — Rx X defined by
(t, x)i=J,(z, y):={exp(—7/2), eyexp(—1)), (z, y)eRxX.
Observe that J = J,. Repeating the proof of Proposition 1, we obtain
S,(F,. (0,04) ={eacX|acd}, &>0,
where F,e & (X) is defined by
L B P

Observe that F (t, x) =0y as £ — 07, uniformly on bounded subsets of R x X
For & < 0, define F,(t, x) =0y for all (, x)eRxX. Clearly

S1(F.. (0, 0g) = {Ox},-
The one-parameter family of the ordinary differential equations
D,x=F.1t x), ¢cR,

provides an example for a new type of bifurcation phenomena, for the birth of
a nontrivial (if A consists of at least two points) solution funnel. This yields
a positive answer to a question raised by Pugh (19, Problem 5].

e< 0.

Remark 3a. Let W =Rx X\ {(0, Oy}}. As usual F|W denotes the restric-
tion of F to W Returning to the proof of Proposition 1, observe that
F|We C?(W, X) provided that fe C*(X, X),p=1, 2, ..., 0o, and that F|W is
Iocally Lipschitzian provided that sc is f.

4. The second part of the proof of Theorem 1. T is left to prove that with (9)
replaced by (9Y, @(X, Aj # @ provided that the pair (X, 4) satisfies the
conditions of Theorem 1. _
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PROPOSITION 2. Assume that the pair (X, A) satisfies the conditions of
Theorem 1. Then wzrh {(9) replaced by (9Y, ¢(X, A) # @.

Proof. Consider a C' diffeomorphism h: X\ A — X\ {0y}, x = w = h(x),
such that h(x) = x whenever |[x]| z a+1. The ODE

Dw=w, w#0,,

is transformed into

(13) Dyx=e(x):=[D,h ' (h(x)]h(x), xeX\A.

Note that ee»CO (X\ A, X) and e(x) == x whenever ||x| = a-1. Formula (13)
defines an ODE on X\ A. For each z,e X\ A4, define a function x(-, zo}bz
R — X by x(t, zo) = h™ " (h(z,)exp (1)). Obviously x(-, z,) is the unique (non-

extendablg:) solution of (13) through (0, z,)e R x (X \ A). It follows that (13} has
no bounded global solutions.

Let M: (z+1, 00) =1, a+2] be a real function with M (k) = k whenever
kelo+1, o+3/2) and M (k) =1 whenever k= a+2. For ye X\ 4, define
if |yl <a-+t,

. e
A(y) ={ | .
Myl it iyl >ea+1.
Note that 1eC°(X\ 4, R} and A(y) >0 for all ye X\ 4.
Let x: X —>[0 1] be an Urysohn function for the pair (A, {xeX x|
oc_+12}) keCOX, R), x(x)e[0,1] for all xeX, x *(0})= A and
(1)= {xeXl x|l = a+2}. Since 1(y) = 1 whenever | y| = o +2, there is
no loss of generality in assuming that
(14) k(y) < for all ye X'\ 4.

Finally, for'we X, define

A(Y)

(P At

(15) f(y)m{ ey} ifyeXid,
0y if yed.
We claim that fed (X, A)
Since A < {ye X[yl < o} and [|(A(y))""e(y)]| = 1 whenever || y| < a+]1,

it follows immediately that feC®(X, X) and that f satisfies (8). Recall that

e(y) = y whenever [ y| > «+ 1. Consequently, by the properties of M and &, we

sec that f(y) = y whenever || yf = «+2. In particular, f satisfies condition (7)

and, in order to prove (6}, we may assume that || y|| < o+ 2. If | ¥l < a+1, then

If 0 <1 <o+2 Similarly, if «+1<|pf<a+2, then [f (3] <]yl

<a+2. Hence |f(y)—yl < If(¥i+1yl <2(«+2) whenever || y| <a+2.
It is left to prove that f satisfies (9)}{11).

For ye X'\ A, define u(y)=A(y)}(x(y)"* and consider the ODE
(16) Doy =(u(y) 'e(y), yeX\A
Observe that (16) is the restriction of (5) (with f defined by (15)) to X Y A. The
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solutions of (16) are related to those of (13} by (an abstract formulation [6] of)
Vinograd’s reparametrization principle, For z e X\ A4, define

G

T (z)= |

0

wlx(s, zo)ds, 17 (z) = j pix(s, zo))ds,
0

where x(-, z,} is the unique (nonextendable) solution of (13) through (0, z,).
For each zye X'\ A, it is well known [6] that (16) has a unique (ncnextendable)
solution y(-, z,) through (0, z,) which is defined for te(r™(z,), t¥ (z4))
Further [6], for all teR,
¥

h™t(h(zo)exp () = x(t, zo) = ¥(v. 5,) where 7= f,u x(s, zo))ds
It is easy to see that 1~ (z,) = —o0, ¥ (z,) = oo for all z,€ X\ 4. In fact, there
is no loss of generality in assuming that §jz,] = o+2. Then [x{s, zo)l| € a+2
whenever s < (. Consequently, in virtue of (14),

T (z0) = | Alx(s, zo) (k(x(s, 20) Tds< [ 1ds=—o0.

[+ 0

Similarly, by the properties of 4 and x,

 (zq9) = _H( exp () (e (= Uexp(s)))‘la‘.s = {1-1ds=o0
0

For each z,e X \ 4, we arrived at the conclusion that (5) (with [ defined by
(15)) has a unique (nonextendable) solution y(-, z,)e C*(R, X). Further,
yi(1, 250 X\ A for all teR and | y{z, zp)| = o0 as 7 o0,

For zeR, z,eA, define y(z, z,) = z,. Obviously y(-, ZyeC* (R, X) is
a solution of (5) (with f defined by (15)) through (0, zg)eRx A and if
ye CH(R, X) is a solution with y(r)e A for all teR, then y = y(-, z,) for some
zg€ A

Summarizing the properties of the solutions of (5) (with f defined by (15))
established above, it follows immediately that f satisfies (9)’ (a stronger form of
(9)), (10) and (11) and this concludes the proof of Proposition 2.

Remark 3b. The smoothness properties of f€® (X, A) (defined by (15))
depend crucially on those of x constructed in the proof of Proposition 2. For
simplicity, et X be the separable infinite-dimensional Hilbert space and let
A be a nonempty bounded closed subset of X. Let « = sup {}a|| |a= 4}. Assume
that there exists a C* diffeomorphism h mapping X \ A onto X \ {0y} such that
h(x) = x whenever |x|= a+1. For p=1,2,..., by choosing x to be an
appropriate Whitney-Urysohn function (this can be done by applying the
methods used e.g in [9, pp. 118-119]), it is not hard to prove that f (defined by
(15) is in C? (X, X) n & (X, A). The core of the construction of such a function
x is to ensure that f be p times continuously differentiable at all asA4.
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Remark 4. Consider an fe C* (X, X)n ¢ (X, 4) where X is the separable
infinite-dimensional Hilbert space and 4 = {a,, a,, ...} is a discrete subset in
IxeX||x] =1}. Modifying F (obtained from f in proving Proposition 1) on
[1, co)x X, it is easy to construct an Fe % (X)such that §, (ﬁ, (0, 04)) = A4 but
S, (F, (0, 0y) = {na,|a,e A, n=1,2,...}. In other words, cross-sections of
solution funnels need not be bounded.

5. The proof of Theorem 2. Let (X, || ) be an infinite-dimensional Banach
space. Choose an x,€X so that [[xy]| = 1. Consider a continuous linear
functional L: X - R for which L(x,) = 1. Set Z = {yeX|L(y) = 0}. Since
y—L{(y)x,eZand y = (y—L(y)xe)+ L{y) x, for all ye X, the space X can be
represented as X = Z xR and ye X can be written as y = (z, )¢ Z x R where
z=y~L(yx, and 1=L(y. In particular, Oy =1(0, 0), x,=(0; 1)
— x4 = (0,, —1). By passing to an equivalent norm, there is no loss of
generality in assuming that | y| = max{/iz|, 4|} for all y = (z, )e ZxR.

In virtue of Proposition 1, it is enough to prove that—with {9) replaced by
(O~ @(X, {xo, —Xo}) # ©.

Observe that Z = X is an infinite-dimensional Banach space. By [11,
Theorem 1], there exists a geC?(Z, Z) satisfying

(17} lg(z)—z| <4 for all zeZ,

(18) g{2) =z whenever |zj| =2, ‘

{19) for each z,¢ Z, the ODE D,z = ¢(z) has exactly one solution through
0, z5)eRx Z,

(20)  all solutions of the ODE D,z = g(z) extend to global selutions,

(21}  the ODE D,z = g(z) has no bounded global solutions.

The similarity between properties (17)~(21) and (6{11) is conspicuous.
Using the terminology adopted in Section 3, the existence of a geC®(Z, Z)
with properties (17)-(21) means that @ (Z, @) # &. In proving & (Z, & = d, ie.
in proving [11, Theorem 1], we have distinguished two cases. For in-
finite-dimensional reflexive Banach spaces, the proof is parallel to the one of
Proposition 2 with an important result of Dobrowolski [9] as its starting
point: Given an infinite-dimensional reflexive Banach space Z, there is a C'
diffeornorphism # mapping Z onto Z\{0;} such that h(z) =z whenever
lz]| 1 (see Example 4 of the present paper; cf. also Remark 1). For the
nonreflexive case, the proof is completely different. It is a direct construction
based on the existence of a nested system of nonempty convex closed subsets
{010 < e <1} of @, = {zeZ]||z] <2} satisfying [){0,]10<c< 1} =T and
0.<Qy 0<c<d<1 The function g: Z — Z constructed in [11] is locally
Lipschitzian and satisfies [|g (2)|| < 2+ ||z||, ze Z. Further, g has properties (17),
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(18) and. last but not least, in a technical sense, it is transversal to the boundary
of 0., 0 < ¢ < 1. This latter property “kills” the bounded solutions and ensures
the “repulsivity” of the empty set @ = (}{Q.10 <c <1}

Let I be a closed subset of the interval [—=1, 1] = R. Assume that
{1, =1} = T. In what follows we construct an fe®(X, {0z, y)eZxR
= Xiyel)) satisfying (9). The desired result @(X, {xg, —Xo}) # @ corres-
ponds to the special case I'={1, —1}.

Define
Xy = {(z, HeZ xRIA < L 2} < 3-1Al},

{z, eZxR|1 <213, 2zl < A+3},
X, =4z DeZxR|2< 7] <3, 3~ |zl < A< 2 2] -3},
X, =1 HeZxR|2< |z €3, 321zl A< 3+1z]},
X.={z HeZxR|-3<i< -1, 2]z < 3-2},
X¢={(z. YeZ xR|max {jz{, |4} > 3. _

Observe that |J{X,ji=1,...,6}=ZxR=X and int(X)nint(X)
=@ for i s j. Here of course, int(X;) denotes the interior of X, in X.

For (z, JeZxR =X, let

r

0 if (2, e X,,
3i=32  if (2 AeX,,
lzf +4A—3 if (z, e X,
p(zs )) = . . . .
Izl +4 i (z, e Xy,
Ga+3y2  if (2 MeXs,
¥ if (2, )EX,.

Tt is easy to see that p(z, 2) is well defined, |p(z, A=A <1 for all
(z, YeZxR, and p: X -R is a continuous function.
For y=(z, J)eZxR =X, let

fip=q EPEA
! (r(D) g(z/r (). plz, 4)

if ze Z, refl,
if zeZ, A¢T,
where
F=rufyeRlpy| =1}, rl)= inf{|Ji—yllyel}, ieR.
Observe that 0 < r(3) <1 for all ieR. In virtue of (17),
F (g (z/r () —2]| = r (D) llg (z/r (D) —z/r (2] < 4r {A)

whenever zeZ and r(4) 5 0. Since r: R — R is Lipschitzian ar_ld r{1) = 0if and
only if Ael, it follows immediately that 2 X — X is continuous and
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1f(M—yl < max {47(3), |p(z, )—1|} < max {4, 1} <6

for all y=(z, )eZ xR = X. Similarly, in virtue of (18), f{y) = (=, p(z, A)
whenever |zl| = 2. On the other hand, since [ = {yeRHy] =1} we have
F(») =z, plz, A)) whenever 2] 2 1. In particular,

Sy =y whenever |y| =max{|z|, |4} =3.
Further, since g{(z) # 0, for all ze Z,
J(p)=0y if and only if ye{(0;, y)eZxR = X|yel}.

Thus, with 4 ={(0,. y)eZxR = X|yel'} and « = !, it remains to prove
that f satisties (9), (10} and (11).
Consider the ODE

(22) (D.z, D.A)=D.y = f(y), yeX.
Parallel to (22), consider the ODE
(22R) D.y= {(Z’ " =0 ek, el
. (rWglz/ri), 0) if y =iz, NeX,, A¢T.

It is obvious that (22R) is the restriction of (22) to X ,. Using (19)-(21), it is easy
to see that given a y, = (2, 4,)e X, \ 4, there is a unique nonextendable
solution yy (-, yo) = (2x{". Yo} 4o) Of (22R) through (0, y,) and this solution
is defined on some interval (—oo,t(y,)]=R where y, (z(yo), yo)e X,

Ny X))
Since

(23) F(y)=(z p(z, })) whenever y =z, AeX\X,, and

plz, ) >0 if (4, (X, u X )\ X,,

plz, A) <0 if {4, e(X, uXI\X,,
(24) plz. ) =4 if (4, 2)e X,

p: X —R is Lipschitzian (with global Lipschitz constant 2),
150 gt (0, e Ron sy e oot s ) = (2 30) A el of
(25) : lz(z, y)| ~+ 0 as T—¢0, and

if 45>0, then A(z, lg) > o0 as 1— o,

{26) if 1g=0, ther A(z, 15) =0 for all teR,
if 15 <0, then A(z, Ag)~» —o0 as 7 - 0.

_ Cogsidcr DOW . an fa.rbitr.ary Yo ==(29, )€ X\ X,. By the previous con-
siderations, X, is negatively invariant (i.e. solutions starting in X ; remain in X,

Solution funnels 25

for all negative time). Hence, as an easy corollary of (23) and (24), there exists
a unique nonextendable solution y(-, yo) = {z(-, ¥5), (", ¥o)} to (22) through
(0, yo)eRx(X\ X ) and this solution is defined for all real 7 and satisfies (25)
and (26). (It is worth mentioning that y(-, y,} can be computed explicitly
provided that it remains in X\ X,. In fact, z(z, y,) = z,exp(z) and the
differential equation for A(-, y,) is piecewise linear.)

Summarizing the properties of (22) established above, we see that [ satisfies
(9), (10) and (11) as well and this concludes the proof of Theorem 2.

Remark 5. The method we used for proving Theorem 2 can be applied to
general product spaces. Let (Z. |- |,) and (A, § - ||,) be Banach spaces. Assume
that Z is infinite-dimensional. The product Banach space (X, || - ||} is defined by
letting || y|l = max {||z|,, §4l,} for all y = (z, })eZ x A = X. A simple modifi-
cation of the proof of Theorem 2 shows that given an arbitrary closed subset
I of {ied||lAll, < 1} satisfying {AeA|{Al, =1} =T, we have

DX, {(0z. eZxA=X|yel'}) #D.

The condition {ieA|}i4], = 1} = I" seems to be only technical. Nevertheless,
we have no idea how to get rid of it: without it, there are too many technical
difficulties (the main ones being connected with replacing {23) and (24) by their
appropriate versions) and the method we used in proving Theorem 2 breaks
down.

Acknowledgement. The author is indebted to the referce for his/her remarks
and suggestions.
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On the uniqueness of equilibrimm states
for piecewise monotone mappings

by

MANFRED DENKER (Gittingen), GERHARD KELLER (Erlangen)
and MARIUSZ URBANSKI (Torun)

Abstract. Our main result is: Given a piecewise monotone interval map T and a continuous
function ¢ with P{T, ) > sup ¢ satislying an additiopal regularity condition, there is at most one
p-equilibrium state for T on each topologically transitive component L, of T, and only the finitely
many L, with h(Tl,) = P(T, ¢)—sup ¢ can support such an equilibrium state. The additional
regalarity assumption is: @ is of bounded variation or ¢ has bounded distortion under T

1. Introduction. For a continuous transformation T of a compact metric
space X and a continuous function ¢: X — R, the pressure is defined as

P(T, @) = lim lim n”~'logsup ¥ exp(p(x)+ ... +¢(T"""x))
g0 n— E xeE
where the supremum extends over all (n, &)-separated subsets (_)f X (recall that
E is (n,¢)-separated if for all x, ye E with x # y we have d(1"x, T'y) > ¢ for
some ie{0, ..., n—1}). Walters [W1] proved the variational principle -

P(T, ¢) = sup {h, (1) +[ o du}

where the supremum extends over all ergodic T-invariant measures p. If the
supremum is attained for some g, then p is called an equilibrium state for o.
For some classes of transformations such as expansive maps or piecewise
monotone interval maps [MS] it is known that equilibrium states exist for all
continuous .

The uniqueness problem is more difficult. Bowen proved uniqueness for
irreducible subshifts of finite type and Hélder-continuous ¢ [B1] and also for
general expansive systems with specification property if ¢ satisfies a condition
similar to our (2.3) below [B2]. Walters [W2] proved uniqueness for
B-transformations and Lipschitz-continuous ¢, and Hofbauer [HI1, H2]
showed that for general piecewise monotone interval maps of positive entropy
and ¢ =0 there is a unique equilibrium state (ie. a measure of maximal
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