

STUDIA MATHEMATICA 97 (1) (1990)

Stationary perturbations based on Bernoulli processes

b

ZBIGNIEW S. KOWALSKI (Wrocław)

Abstract. It is shown that if random perturbations of an endomorphism by diffeomorphisms are based on a Bernoulli process with a finite number s of states, $s \ge 3$, then the iterations of the perturbed endomorphism form a weakly mixing process. For s = 2, the above statement is not true.

Consider the one-parameter family $\{T_{\epsilon}\}_{\epsilon\in(a,b)}$ of transformations of the interval [0,1] into itself such that

(1)
$$T_{\varepsilon}^{-1}(y) = (1 - \varepsilon) y + \varepsilon g(y),$$

where $g \in C^2[0, 1]$, g(0) = 0, g(1) = 1, and $a = (1 - \sup g')^{-1}$, $b = (1 - \inf g')^{-1}$. Moreover, assume that there exists exactly one point y_0 for which $g'(y_0) = 1$ and g'(y) < 1 for $y < y_0$ (the case g'(y) > 1 for $y < y_0$ is similar).

Let $\sigma\colon X^{\mathbf{N}}\to X^{\mathbf{N}}$ be the one-sided (p_1,\ldots,p_s) -Bernoulli shift. Here $X=\{1,\ldots,s\}$ and $\mathbf{N}=\{1,2,\ldots\}$. Such a transformation will be called a Bernoulli process. Let T be an endomorphism of the Lebesgue space ($[0,1],\mathscr{B},m$). Using the process σ we will randomly perturb the endomorphism T by s elements of the family (1). Namely, we take s functions $T_{\varepsilon_1},\ldots,T_{\varepsilon_s},\,\varepsilon_i\neq\varepsilon_j$ for $i\neq j$, and we define the transformation

$$\overline{T}(x, y) = (\sigma(x), T_{\varepsilon_{x(1)}} \circ T(y)).$$

In addition we postulate that T preserves the product measure, which is equivalent to $\sum_{i=1}^{s} \varepsilon_i p_i = 0$. The proof of this fact may be found in [3].

According to that paper the Bernoulli process σ and the diffeomorphisms (1) generate more random perturbations in the case of $s \ge 3$ than in the case of s = 2.

In the present paper we prove the following theorems.

THEOREM 1. If $s \ge 3$ and σ is a Bernoulli process, then the endomorphism \overline{T} is weakly mixing for any positive nonsingular endomorphism T.

THEOREM 2. If s=2 and σ is a (p_1, p_2) -Bernoulli shift, then for every pair $(\varepsilon_1, \varepsilon_2)$ such that $\varepsilon_1 p_1 + \varepsilon_2 p_2 = 0$, there exists an automorphism T such that \overline{T} is not ergodic.

¹⁹⁸⁵ Mathematics Subject Classification: Primary 28D05; Secondary 60A10.

In connection with Theorem 1, we note that in [1], [4] there are described the ergodic properties of the endomorphisms $\overline{T}(x, y) = (\sigma(x), T_{x(1)}(y))$, where T_1, \ldots, T_s are Lasota-Yorke type transformations and σ is a Bernoulli shift. In this paper we use some ideas from [4].

Before we start the proofs we make some additional considerations. Let σ be a Bernoulli shift. Let T_1, \ldots, T_s be measurable transformations of the space (Y, \mathcal{B}, ν) such that the transformation

$$\overline{T}_0(x, y) = (\sigma(x), T_{x(1)}(y))$$

preserves the product measure $\mu \times \nu$. Here μ denotes the (p_1, \ldots, p_s) -Bernoulli measure. In this paper we assume that relations between sets hold modulo a set of measure zero.

LEMMA (S. Pelikan). Let $A \subset X^{\mathbb{N}} \times Y$ be an invariant set of positive $\mu \times \nu$ measure $(\overline{T}_0 A \subset A)$. Then there exists a set $B \subset Y$ such that $A = X^{\mathbb{N}} \times B$.

COROLLARY 1. Let $\overline{T}_0^{-1}A = A$. Then there exists a set B such that $A = X^{\mathbb{N}} \times B$ and $T_i^{-1}B = B$ for i = 1, ..., s.

The following relations hold for transformations from the family (1):

$$(T_{\beta}^{-1} T_{\varepsilon})'(x) = 1 \Leftrightarrow x = x_{\varepsilon} := T_{\varepsilon}^{-1}(y_{0}), \quad \text{if } \beta \neq \varepsilon,$$

(2) $(T_{\beta}^{-1} T_{\epsilon})^{\gamma}(x) > 1$ if $x < x_{\epsilon}$ when $\epsilon > \beta$ and if $x > x_{\epsilon}$ when $\epsilon < \beta$.

Let $s \ge 3$. For a sequence $\varepsilon_1, \ldots, \varepsilon_s$ such that $\varepsilon_i \ne \varepsilon_j$ for $i \ne j, 1 \le i, j \le 3$, we will assume without loss of generality that $\varepsilon_2 < \varepsilon_1 < \varepsilon_3$. By (2) we have

$$(T_{\epsilon_3}^{-1} T_{\epsilon_1})'(x) > 1$$
 for $x > x_{\epsilon_1}$, $(T_{\epsilon_2}^{-1} T_{\epsilon_1})'(x) > 1$ for $x < x_{\epsilon_1}$.

We define the auxiliary transformation $\varphi: [x_{\epsilon_3}, x_{\epsilon_2}] \to [x_{\epsilon_3}, x_{\epsilon_2}]$ by

$$\varphi(x) = \begin{cases} T_{\varepsilon_2}^{-1} T_{\varepsilon_1}(x) & \text{for } x \in [x_{\varepsilon_3}, x_{\varepsilon_1}], \\ T_{\varepsilon_3}^{-1} T_{\varepsilon_1}(x) & \text{for } x \in (x_{\varepsilon_1}, x_{\varepsilon_2}]. \end{cases}$$

We have $\varphi'(x) > 1$ for $x \neq x_{\epsilon_1}$ and $\varphi'(x_{\epsilon_1}) = 1$.

LEMMA 2. The transformation φ is ergodic with respect to the Lebesgue measure, i.e. the equality $\varphi^{-1}D = D$ implies $D = [x_{\epsilon_3}, x_{\epsilon_2}]$ for every measurable set D of positive measure.

Proof. Observe that $\inf(\varphi^2(x))' > 1$. Indeed, assume conversely that $(\varphi^2)'(x^-) = 1$ for some x. Then $\varphi'(x^-) = \varphi'(\varphi(x)^-) = 1$, which is possible only if $x = x_{\varepsilon_1}$ and $\varphi(x_{\varepsilon_1}) = x_{\varepsilon_1}$. The last equality contradicts the definition of φ . Let $\varphi^{-1}D = D$ for some set D of positive measure. By Lemma 2 from [2], there exists a nonempty interval $I \subset D$. By the definition of φ , it is easy to see that there exists n such that $x_{\varepsilon_1} \in \varphi^n(I)$. Hence we conclude that there exists exactly one φ -invariant set, which implies $D = [x_{\varepsilon_1}, x_{\varepsilon_2}]$.

Proof of Theorem 1. It is sufficient to show that the transformation $\overline{T} \times \overline{T}$ is ergodic. By the definition of \overline{T} ,

$$\overline{T} \times \overline{T}((x, y), (u, v)) = (\sigma \times \sigma(x, u), T_{e_{x(1)}} \circ T \times T_{e_{u(1)}} \circ T(y, v)).$$

Let A be a $\overline{T} \times \overline{T}$ -invariant set. Then by the Bernoulli property of the process $\sigma \times \sigma$ and by Corollary 1, $A = X^{\mathbb{N}} \times X^{\mathbb{N}} \times B$ where

$$(T^{-1} \times T^{-1})(T_{\varepsilon_i}^{-1} \times T_{\varepsilon_j}^{-1})(B) = B$$
 for $i, j = 1, 2, 3$.

Let $D = (T \times T)B$. Then by positive nonsingularity of T we get

$$(T_{E_i}^{-1} T_{E_{im}} \times T_{E_i}^{-1} T_{E_i})(D) = D$$
 for $i, j, n, m = 1, 2, 3$.

Hence

$$(3) (I \times T_{\varepsilon_i}^{-1} T_{\varepsilon_i})(D) = D, (T_{\varepsilon_i}^{-1} T_{\varepsilon_i} \times I)(D) = D \text{for } j = 2, 3.$$

Let $D_y = \{v: (y, v) \in D\}$. Then $T_{\epsilon_2}^{-1} T_{\epsilon_1} D_y = T_{\epsilon_3}^{-1} T_{\epsilon_1} D_y = D_y$, for a.e. y, which implies $\varphi^{-1} (D_y \cap [x_{\epsilon_3}, x_{\epsilon_2}]) = D_y \cap [x_{\epsilon_3}, x_{\epsilon_2}]$ for a.e. y. By Lemma 2, we have $D_y \supset [x_{\epsilon_1}, T_{\epsilon_2}^{-1} T_{\epsilon_1} (x_{\epsilon_1})]$. Since $T_{\epsilon_2}^{-1} T_{\epsilon_1} D_y = D_y$, we get $D_y = [0, 1]$ for a.e. y. Consequently, $D = E \times [0, 1]$ for some set E. By applying the equalities (3) to the set E, we get E = [0, 1] and hence $D = [0, 1] \times [0, 1]$, which yields $B = [0, 1] \times [0, 1]$.

Proof of Theorem 2. Let $\varepsilon_1 p_1 + \varepsilon_2 p_2 = 0$. We will find a set B such that $T_{\varepsilon_1}^{-1} B = T_{\varepsilon_2}^{-1} B = TB$ for some automorphism T. From the definition (1) we see that it is easy to construct a set B_0 such that $T_{\varepsilon_2} T_{\varepsilon_1}^{-1} B_0 = B_0$ and $0 < m(B_0) < 1$. Let B be such a set B_0 . Observe that $m(T_{\varepsilon_1}^{-1} B) = m(B)$. Indeed,

$$\begin{split} m(B) &= \mu \times m\left[\overline{T}^{-1}\left(X^{\mathbf{N}} \times B\right)\right] = \mu \times m\left[A_1 \times T_{\varepsilon_1}^{-1}B\right] + \mu \times m\left[A_2 \times T_{\varepsilon_2}^{-1}B\right] \\ &= p_1 \, m\left(T_{\varepsilon_1}^{-1}B\right) + p_2 \, m\left(T_{\varepsilon_2}^{-1}B\right) = m\left(T_{\varepsilon_1}^{-1}B\right). \end{split}$$

Let T be any automorphism of the interval [0, 1] such that $TB = T_{\varepsilon_1}^{-1} B$. Then the set $X^{\mathbb{N}} \times B$ is \overline{T} -invariant.

Let
$$I(x) = x$$
 for every $x \in [0, 1]$.

THEOREM 3. If a process σ satisfies the assumptions of Theorem 2 and T=I, then the endomorphism \overline{T} is ergodic.

Proof. Let $\overline{T}^{-1}A = A$. Then $A = X^N \times B$ and $T_{\epsilon_1}^{-1}B = T_{\epsilon_2}^{-1}B$, where $\epsilon_1 p_1 + \epsilon_2 p_2 = 0$. We define the auxiliary transformation $\psi: [x_{\epsilon_1}, x_{\epsilon_2}] \to [x_{\epsilon_1}, x_{\epsilon_2}]$ as follows:

$$\psi(x) = \begin{cases} T_{z_2}^{-1}(x) & \text{for } x \in [x_{z_1}, y_0], \\ T_{z_1}^{-1}(x) & \text{for } x \in (y_0, x_{z_2}]. \end{cases}$$

Here $\psi'(x) > 1$ for $x \neq y_0$ and $\psi'(y_0^-) = 1$. The next part of the proof is identical with the argument used for the sets D_y in the proof of Theorem 1.

EXAMPLE. For $g(y) = y^2$ we obtain the family of perturbations by parabolas $T_{\varepsilon}(x) = (2\varepsilon)^{-1} \{ [(1-\varepsilon)^2 + 4\varepsilon x]^{1/2} + \varepsilon - 1 \}$ where $\varepsilon \in (-1, 1)$.

Final remarks

I. It is not difficult to see that the above results may be presented, in a more general form, as follows.

Let $\{T_{\varepsilon}\}_{\varepsilon\in(a,b)}$ be a family of transformations of the interval [0, 1] into itself such that $0 \in (a, b)$ and $T_0 = I$, $T_{\varepsilon} \in C^2[0, 1]$, $T_{\varepsilon}(0) = 0$, $T_{\varepsilon}(1) = 1$, $T_{\varepsilon}'(x) > 0$ for every $x \in [0, 1]$ and $\varepsilon \in (a, b)$. Moreover, assume that there exists $y_0 \in (0, 1)$ such that for every β , $\varepsilon \in (a, b)$

$$(T_{\beta}^{-1})'(y) > (T_{\varepsilon}^{-1})'(y)$$
 for $y < y_0$ when $\beta < \varepsilon$ ($\varepsilon < \beta$), $(T_{\beta}^{-1})'(y) > (T_{\varepsilon}^{-1})'(y)$ for $y > y_0$ when $\varepsilon < \beta$ ($\beta < \varepsilon$).

We define the transformation $\overline{T}(x, y) = (\sigma(x), T_{\varepsilon_{x(1)}} \circ T(y))$, where T is a positively nonsingular endomorphism and $\varepsilon_1, \ldots, \varepsilon_s, \ \varepsilon_i \neq \varepsilon_j$ for $i \neq j$, satisfy $\sum_{i=1}^s p_i(T_{\varepsilon_i}^{-1})'(y) = 1$. Then the transformation \overline{T} preserves the product measure and

- a) \overline{T} is weakly mixing for $s \ge 3$,
- b) for every pair $(\varepsilon_1, \varepsilon_2)$ such that $\sum_{i=1}^2 p_i(T_{\varepsilon_i}^{-1})'(y) = 1$, there exists an automorphism T such that \overline{T} is not ergodic.

II. In this paper due to the assumption of Lemma 1 we only consider a Bernoulli process σ . We now show that if σ is an aperiodic Markovian process then the assertion of Lemma 1 is not true in general. Let $\sigma\colon X^{\mathbb{N}}\to X^{\mathbb{N}}$ be the one-sided shift preserving a Borel measure η , and let T_1,\ldots,T_s be measurable transformations of the space (Y,\mathcal{B},ν) such that the transformation

$$\overline{T}(x, y) = (\sigma(x), T_{x(1)}(y))$$

preserves the product measure $\eta \times \nu$. Let $f(x) \in L_1(\eta)$ and $g(y) \in L_1(\nu)$. Then

$$(f \cdot g)(\overline{T}(x, y)) = \sum_{i=1}^{s} 1_{A_i}(x) f(\sigma(x)) g(T_i(y)).$$

The equality $(f \cdot g)(\overline{T}(x, y)) = f(x)g(y)$ holds iff

(4)
$$f(\sigma(x)) = \sum_{i=1}^{s} 1_{A_i}(x) \lambda_i f(x),$$

where $\lambda_1, \ldots, \lambda_s$ are the numbers such that $g(T_i(y)) = \lambda_i^{-1} g(y)$ for $i = 1, \ldots, s$. By (4) we obtain an example of an aperiodic Markovian process which does not satisfy Lemma 1. Let σ be a Bernoulli process, for s = 2. The partition $\{A_{11}, A_{12}, A_{21}, A_{22}\}$, where $A_{ij} = A_i \cap \sigma^{-1}(A_j)$, defines an aperiodic Markovian process for s = 4. Let Y be the set $\{-1, 1\}$ with the measure v such that $v(-1) = v(1) = \frac{1}{2}$. We define $T_1(y) = T_4(y) = y$ and $T_2(y) = T_3(y) = -y$ for every $y \in Y$. Let $f(x) = 1_A(x) - 1_{A^c}(x)$, where $A = A_{11} \cup A_{12}$, and g(y) = y

for $y \in Y$. Then $(f \cdot g)(\bar{T}(x, y)) = f(x)g(y)$ and the set $\{(x, y): f(x)g(y) = 1\} = A \times \{1\} \cup A^c \times \{-1\}$

is T-invariant.

References

- A. Boyarsky, Uniqueness of invariant densities for certain random maps of the interval, Canad. Math. Bull. 30 (1987), 301-308.
- [2] Z. S. Kowalski, Invariant measures for piecewise monotonic transformations, in: Probability-Winter School, Karpacz 1975, Lecture Notes in Math. 472, Springer, 1975, 77-94.
- [3] -, A generalized skew product, Studia Math. 87 (1987), 215-222.
- [4] S. Pelikan, Invariant densities for random maps of the interval, Trans. Amer. Math. Soc. 281 (2) (1984), 813-825.

INSTYTUT MATEMATYKI POLITECHNIKI WROCŁAWSKIEJ INSTITUTE OF MATHEMATICS, WROCŁAW TECHNICAL UNIVERSITY Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

> Revised Warch 29, 1989 (2551) Revised version July 18, 1989