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Stable rank of holomorphic fumction algebras
by
RUDOLF RUPP {(Karlsruhe)

Abstract. We calculate the stable rank of stable subaigebras of A(K).

Introduction. The concept of the stable rank of a ring, introduced by H. Bass

‘[17, has been very useful in treating some problems in algebraic K-theory. In

a series of papers G. Corach and F. D. Suarez calculated the stable rank of
many Banach algebras. Among them are the well-known algebras A(K), where
A(K) is the Banach algebra of all continuous complex-valued functions on
a compact set K of the plane € which are analytic in the interior K% of X. In
this paper we restrict ourselves mainly to subalgebras of A(K), where K has
a “good” boundary. For these algebras we calculate the stable rank. It is worth
mentioning that the algebras may bear no topology at all. Many subalgebras of
the disc algebra A{D) satisfy our conditions, for example, W™, 4*(D} and
A (D) (for definition, see below).

This paper presents material from the author’s thesis. In a forthcoming
paper we will study the subalgebras of the disc algebra more closely.

§1. It is well known that the group of units in a Banach algebra is open.
Unfortunately, this feature is lost in the general case of a topological algebra.
Therefore we define:

A topological algebra 4 is called a Q-algebra if the set of units, 4™, is open
in A.

In this paper we consider complex, commutative Q-algebras with unit
element being denoted by 1.

Given a Q-algebra A4, an element ae A" is called unimodular if there exists
be A" such that :

{b,ay:= 3 bag;=1.
=1 )
We denote by U,(A) the set of unimodular elements of A". Finally,
a=I(ay, ..., a,)e U, A) is called reducible if there exist x,, ..., x,—4 in A such
that
(@ +x(a,, ... @1 +xy-18)€U,_1(A).

1980 Mathematics Subject Classification: 46715, 18F25.
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The stable rank of A, denoted by sr(A4), is the least integer n such that every
acl,;(4) is reducible.

From the theory of the stable rank of Q-algebras we mention the following
fact; see [10, p. 18, Korollar 1], or [4, Proposition 1]. {The proof given there is
also valid for (-algebras.)

PropOSITION 1.1. Suppose that A is a Q-algebra, y: [0, 1]— C is a continuous
curve and let T: [0, 13- U,(A), T(@®):= (a—~y(t), b) such that {a—y(0), b} is
reducible. Then {a—y(1), b) is also reducible.

§2. Let C(K) resp. R(K) denote the Banach algebras of all continuous
complex-valued functions on a compact set K < C, resp. of all those functions
in C(K) which can be approximated uniformly by rational functions with poles
off K. Let ||.flx = supeex |/ (2.

A subalgebra A of A(K) is called stable if A contains all the polynomials
and if (f—f(zo)/(z—zo)€A whenever fed and zoeK® Many of the
well-known examples of subalgebras of A(K) have this property, e.g.,

wri={Y a2 ¥ la)< oo}
n=0 n=0

A®(K):={feC(K): f analytic in K° Vnig,eC(K}: g,lgo = f};

AK):={fe C(K): { analytic in K® and satisfies a Holder—Lipschitz
condition on K of order o} 0 <a<1).

A subalgebra A of A(K) is called inversionally closed if a function fe 4 is
invertible whenever it has no zero in K. (Note that no invertible function in
A can have a zero in K. We require the converse.)

All algebras mentioned above are inversionally closed and stable.

The proof for A®(K) is trivial, for W we refer to [9], p. 301, whereas the
proof for A,(K) is standard, but requires some effort.

TreoREM 2.1. Every stable and inversionally closed subalgebra of R(K) has
stable rank one.

Proof. We have to show that every unimodular element (f, ¢) is reducible,
that is, we have to show that a function he A4 exists such that f+ hg is invertible
in A. Sinre A is inversionally closed it is enough to show that f+ hg has no zero
in K.

Since the algebra R(K) has stable rank one (see [3] or [107), there exists
ke R(K) and a zero-free function ueR(K) such that

f+kg =u.
Now approximate k by rational functions »,e R(K). Obviously we have

JHrg=u+{r,—kg.
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Since r,, has poles off K, we haver, = p,-q, ', where p, and g, are polynomials
and g, has no zeros in K. On the other hand, A4 is inversionally closed and
contains all polynomials, so r,e4.

There exists é > 0 such that for all zeK

lu(z} = 8,
because u has no zero in K. Now we choose N so large that

lry—kglx < 8/2

and obtain for all ze K

|f @ +ru(2) g(2)] = &/2.
Taking the function kh to be ry we are done. m

Remark. In Theorem 2.1 it is enough tc assume that A4 contains all
polynomials and is inversionally closed.

It is natural to ask whether the assumption 4 < R(K) can be replaced by
A < A(K). In this general setting the problem is unsolved, but we present an
affirmative answer if K has a “good” boundary.

To this end we need the following proposition, whose proof may be found
in [7], Theorem !, or [10¢], Theorem 2.8.

ProrosiTioN 2.2. Let K = C be compact such that R(9K) = C(0K) and let
A — A(K) be stable and inversionally closed. Then the element (f, greA? is
unimodular iff f and g have no common zero in K.

Proof Of course we have only to show that if f and g have no common
zero in K, then (f, g) is unimodular.
To this end consider o, feC(K),

7@ W
W +lg@) |f@IF+1g @1

Obviously, we have af+ fig = 1. In particular, these functions are continuous
on 9K, so by assumption, we can approximate them by rational functions r,
(k =1, 2). For all zedK the following inequality holds:

I @7@)+ 2D 9@ > b @)+ BE ) ,
— | & — (@) £ (@) +(r2(2) — B(2) 4(2)]|ox -

Now the second term on the right-hand side can be made arbitrarily small and
the first is identically 1. So, for sufficiently good approximations, the function
r,f+7,g has no zero on 8K. Let r, = p/q,, where p, and g, are polynomials
such that g, has no zero on K. Define §:= ¢,¢q, and consider the function
H :=(gr,)f+(drs)g. The stability of A gives He A and, moreover, the function

a(z): B(z):
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H does not vanish on K. This implies that H has only finitely many zeros at
all. (This is a consequence of the identity theorem for analytic functions. Note
that the interior of K may be disconnected!) By assumption the algebra 4 is
stable and inversionally closed. Se there exists a polynomial s€ 4 and an
invertible function ue A~ ! such that H = su, ie.,

(1) pf+-ag = su,

where we have abbreviated p:= gr, and g:= §r, (these are also polynomials).

To finish the proof we show that we can get rid of all the zeros of 5 in
equation (1). If {e K is a zero of the polynomial 5, we write s(z) = (z—{) §(z).
Since H does not vanish on 8K, ¢ lies in the interior of K. Note that at least one
of the functions f and g does not vanish at {, say f. Using the stability of
A again, there exists ke A such that

@ J@ f(—1=(z-0k(z)
Muitiplying (1) with k yields
phf+qky = sku = (z—{) k3u.

(zeK).

Together with (2) this implies the existence of J, fed, not necessarily
polynomials, such that

B+ gg = u.
After finitely many steps the right-hand side i invertible in 4. =

Remark. Proposition 2.2 is a special case of the so called “Nullstellensatz”
for these alpebras; see [7] or [10].

Tueorem 2.3. Let K = C be compact such that R(3K) = C(dK) and let
A = A(K) be stable and inversionally closed. Then its stable rank is. one.

Remark. The condition on K is rather mild, since by the well-known
Hartogs-Rosenthal theorem R(6K) = C(3K) if 8K has two-dimensional Lebes-
gue measure zero. Also 4 may not be topologically complete.

_ Proi?f._We have to show that every unimodular element (f, g) is reducible.
Since 4 is inversionally closed, this is equivalent to the existence of he A such
that f+hg has no zero in K. For g = 0 there is nothing to prove, so we suppose
g#0.

_Step 1: f(2) = z— 2. Consider the algebra 4 endowed with the topology of
uniform convergence on K. Since A is inversionally closed, the result is

a. Q-algebra. By Proposition 1.1 it is sufficient to exhibit a path
I: [0, 11 U,(A4),

Ity = {z=7(1), g),
with I'(0) = (z-4, g) and reducible I'(1).-
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Let G be the component of K° which contains 4. By the maximum principle
there exists {€dG with g({) # 0. Obviously, {€ 6K and Proposition 2.2 yields
(z—( gleU,(A).

Because of the continuity of g at { there exists a convex neighborhood U of
{ such that g never vanishes in U n G. Since { is a boundary point of G and of
K, there exist ' e G~ U and £ e U n [C\K]. Now the algebra A is inversional-
ly closed, in particular we have 1/(z—{")e A, since z—{"c 4.

Let Z denote the set of zeros of ¢ in G. Then it is well known that G\Z is
open and connected. So there exists a path 7 joining A and (" which avoids the
zeros of g, that is,

(z—7(2), g)e U,(4)
by Proposition 2.2. Now we join {’ and (" by a line segment. The composite

path with 7 will be called y. Now, the line segment jeining {’ and {" isin U, in
which g never vanishes. Thus '

{z—p{t), g)e U, (4).

Since z—{"” is invertible in A, it is clear that (z—(", g) is reducible.

Proposition 1.1 yields the assertion.

Step 2: f is a polynomial. This is standard, and we refer to [3], p. 630,
Step 4, or [10]. (It is done by factoring f into linear factors and then
multiplying the results of Step 1.)

Step 3: fe A. Since {f, g) is unimodular, there exist o, fe A such that

of +fg = 1.
We multiply this identity with g and add it to the former. The result is that the -
element (f, g?) is unimodular. Now we use {f, g%) rather than (f, g).
By the proof of Proposition 2.2 there exist polynomials p, g, se 4 and
uc A~ such that

(1) pf +q9® = su.
Also it is shown there that the polynomial s has all its zeros in K°.
Now suppose p({) = g({) = 0. By the identity above we have 5({) = 0, in
particular {eK° Dividing (1) by z—{, we arrive at
P g _ s
z—{ z—Cg—z—Eu'
Using the stability of 4 we know that all the quotients in (2) are elements of 4.
Now (2) is exactly of the form of (1), only the degree of the polynomial s is
reduced.
Repeating this process, we get the identity

3 of +hig = su
such that p, &, se 4, p and g have no common zero in K and u is invertible in A,

@ f+gq
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Step 4 The polynomial p “vanishes” in (3). Since p and g have no common
zero in K the second step implies the existence of k, ve 4, ve A™" such that
p+kg = v. Putling this in (3) vields .

(4 f+Hg= su%

with He A4 chosen appropriately.

Step 5: The polynomial s in (4) “vanishes”. By this equation s and g can
have no common zero in K. (Such a zero would be a common zero of f and g,
contradicting «f+fg = 1) Now the second step implies the existence of
h,wed, wed™! such that s+ /g = w. Together with (4} this yields

1 1
f+(H+lu—)g=u—w.
’ v v

Since the right-hand side is invertible, we are done. =

Note that there exist compact sets K with R(0K)= C(PK), but
A(K)# R(K); see [12], p. 72, Example 9.8.
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Remarks on singular convelution operators
by
ANDREAS SEEGER (Princeton, N.I}

Abstract. We prove some endpeint estimates for singular convolution operators. For example,
let m be a bounded function such that for some suitable CF(R™[0})-function ¢, em(t') is in
the Besov space BY%, uniformly in ¢> 0. Then m is a Fourier multiplier on IF(R") if
a=n(l/p—1/2)>nfg, 1 <p <2, and on H' f a =n/2, 2 < g < co. If m is radial we may replace
Bl by Bt

1. Introduction. The purpose of this paper is to prove endpoint estimates for
some classes of multiplier transformations on IF(R") and other function spaces.
We consider a convolution operator T, defined by Tf = & ~'[mF[], where
Ff (or f) denotes the Fourier transform of f. The M*-multiplier norm of m is
defined as the norm of T as a bounded operator on LF(R™)..

To formulate a theorem let us introduce some notation. Let p e C§ (R") be
supported in {&; 1/4 < |f <4} and positive in {&; 1/2 <|& <2} Let
e CE(R") be supported in {x; |x| < 1} and be equal to 1 in {x; [x{ < 1/2}.
Define ¥,(x) = Y(27'x)—y(2 """ *x). Then ¥, is supported in {x; 27% <
x| <29, ¥, will be used to decompose the convolution kernel # ' [m].

TueoreM 1.1, Suppose that 1 <p<r <2 and

(1.1 ] o +sup 3 2910 | gin(z-)+ B g < A

1>01>0
Then m is a multiplier in M?, and |miye < cA. If p=1<r <2 we have the
conclusion that T is a bounded operator on the Hardy space H'. .

This result can be considered as an endpoint version of Hérmander's
multiplier theorem [16] (compare (1.2) below). It extends a result by Baernstein
and Sawyer [1] who proved that the condition

Iml|2,+sup 3, 272 jom{t-) P} < oo

t>0 >0
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