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Step 4 The polynomial p “vanishes” in (3). Since p and g have no common
zero in K the second step implies the existence of k, ve 4, ve A™" such that
p+kg = v. Putling this in (3) vields .

(4 f+Hg= su%

with He A4 chosen appropriately.

Step 5: The polynomial s in (4) “vanishes”. By this equation s and g can
have no common zero in K. (Such a zero would be a common zero of f and g,
contradicting «f+fg = 1) Now the second step implies the existence of
h,wed, wed™! such that s+ /g = w. Together with (4} this yields

1 1
f+(H+lu—)g=u—w.
’ v v

Since the right-hand side is invertible, we are done. =

Note that there exist compact sets K with R(0K)= C(PK), but
A(K)# R(K); see [12], p. 72, Example 9.8.
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Remarks on singular convelution operators
by
ANDREAS SEEGER (Princeton, N.I}

Abstract. We prove some endpeint estimates for singular convolution operators. For example,
let m be a bounded function such that for some suitable CF(R™[0})-function ¢, em(t') is in
the Besov space BY%, uniformly in ¢> 0. Then m is a Fourier multiplier on IF(R") if
a=n(l/p—1/2)>nfg, 1 <p <2, and on H' f a =n/2, 2 < g < co. If m is radial we may replace
Bl by Bt

1. Introduction. The purpose of this paper is to prove endpoint estimates for
some classes of multiplier transformations on IF(R") and other function spaces.
We consider a convolution operator T, defined by Tf = & ~'[mF[], where
Ff (or f) denotes the Fourier transform of f. The M*-multiplier norm of m is
defined as the norm of T as a bounded operator on LF(R™)..

To formulate a theorem let us introduce some notation. Let p e C§ (R") be
supported in {&; 1/4 < |f <4} and positive in {&; 1/2 <|& <2} Let
e CE(R") be supported in {x; |x| < 1} and be equal to 1 in {x; [x{ < 1/2}.
Define ¥,(x) = Y(27'x)—y(2 """ *x). Then ¥, is supported in {x; 27% <
x| <29, ¥, will be used to decompose the convolution kernel # ' [m].

TueoreM 1.1, Suppose that 1 <p<r <2 and

(1.1 ] o +sup 3 2910 | gin(z-)+ B g < A

1>01>0
Then m is a multiplier in M?, and |miye < cA. If p=1<r <2 we have the
conclusion that T is a bounded operator on the Hardy space H'. .

This result can be considered as an endpoint version of Hérmander's
multiplier theorem [16] (compare (1.2) below). It extends a result by Baernstein
and Sawyer [1] who proved that the condition

Iml|2,+sup 3, 272 jom{t-) P} < oo

t>0 >0

1985 Mathematics Subject Classification: Primary 42B15; Secondary 42B20, 46E35.
Key words and phrases: Fourier multipliers, sharp function estimates.



92 A. Seeger

implies that T is a bounded operator on H?, provided 0 < p < 1. Theorem 1.1
is also closely related to recent results of A. Carbery [4] and the author [22] on
IFf-variants of Calderén—Zygmund theory (see also [6], [7]). While those
resizlts can be applied to operators which are bounded on IF in some open
range (py, po) but not in (I, po], our present result can be considered as
a variant which is more suitable for endpoint estimates. Specifically, let B%, (R"),
o > 0, be the Besov space with norm

lglle, = gl + 2 2%lg+ ¥l
>0

Then we have the following multiplier criterion;

CoroLLary 1.2. Suppose 1 <p<2, a=n(l/p—1/2)> n/q. Then

(12) fm| s < csup omiz-)z, -
t=>0

For 2 < g< o0 one has

{1.3) “m“M(Hi) scsup | (Pm(f')";;;{,z’,

t>0

(where, of course, M(H") denotes the multiplier norm on H?).

Corollary 1.2 covers the sharp estimates for multipliers like 2¥°1°(1 4- |£[2) %2
(see Feflerman and Stein [12], Miyachi [16] and Baernstein and Sawyer [1]).
Apparently Corollary 1.2 {and Corollary 1.3 below) cannot be obtained by
interpolation with known results. In [1] 1t is shown that (1.3) does not hold
with Bij, ; replaced by By, ;. A substitute involving B2, , is contained in [23].
Somewhat different results have been obtained by Besov [2], Carbery [3] and
Lizorkin [17]. However, for radial muitipliers m = h(||) a stronger result is
true. If @, is defined similarly to ¢ above, but now as a function on R, we have

COROLLARY 1.3. Suppose n 22, 1 <p<2(n+1)/(n+3), ¢=n(l/p—1/2).
Then

(1.4) ' 1AL Dlaee < e sup oo a2, @)
>0
(1.5) 180 Dl acy < csup [l h(e: )“Bﬁ,z Ly

t>0

Corollary 1.3 improves some multiplier estimates for radial multipliers in
higher dimensions due to M. Christ [9] and the author [21] (see also Carbery,
Gasper and Trebels [5]). A counterexample of A. Miyachi [18] for a radial
multiplier shows that neither (1.3) nor (1.5) imply a weak-type (1-1)-estimate.
M. Frazier has asked whether the results in [1] have analogues in Triebel-
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Lizorkin spaces. The answer is yes and we prove Theorem 1.1 and another
generalization of a result in [1] in this slightly more general context.

Section 2 contains some preliminary facts about Triebel-Lizorkin spaces,
the statement of multiplier theorems in these spaces and a technical lemma
which is not needed for the proof of Theorem 1.1. In Sections 3 and 4 we prove
these theorems and in Section 5 we give the short proof of the Corollaries.

Since sharp function estimates are important in Section 4, we give
a characterization of FP%-spaces in terms of sharp functions as an appendix
{Section 6), including a variant of the John-Nirenberg inequality.

In the following we shall always denote by ¢ an abstract constant which
may depend on the dimension » and the values of p, g above, unless otherwise
stated. The precise value of ¢ may change from line to line. For pe[1, o] the
conjugate index p’ is defined by 1/p+1/p' = 1.

2. Multipliers on Triebel-Lizorkin spaces. We first recall the definition of the
homogeneous Besov and Triebel-Lizorkin spaces (see Triebel [26]). Let ¢ be
defined as in Section 1 and let R, denote the operator deﬁned by convolution
with & L[p(2*)].

For ceR, 0 < p,qg < oo the homogeneous Besov space B is defined as
a subspace of S'/P (tempered distributions modulo polynomlals) and the norm
is given by

“f”iagq = “{Zanf}qu(m)-
Sirnilar!y, foreR, 0 <p< o, 0 < g < w0 the homogeneous Triebel-Lizorkin
space FP is defined as the space of all fe§/P such that

[|f||FM = H {2Mkaf} ”LF(I'?)
is finite. In particular, recall FR2=1F, l <p<oo, FF2P=H?, 0<p< 1. In

[15], Frazier and Jawerth have shown that a reasonable definition of F"“’* is
obtain by setting

flige = sup(0™* ] 3 2R SO dy),
2 kSLOD)
where the supremum is taken over all cubes Q and L{Q) = log, (sidelength

of Q).
By M(B?) and M (F?%) we denote the spaces of Fourier mult1p11crs on the

homogeneous Besov and Triebel-Lizorkin spaces with the usual operator
norm. The notation is justified, because the space of multipliers on BE, does not
depend on o and ¢ and the space of multipliers on FZ* does not dcpend on
w (see [26, pp. 120 ff, 24170).

Our first theorem extends the H' Tesult by Baernstem and Sawyer [1].

TrEOREM 2.1. Suppose 0 < p,q < co. Let w be an increasing positive function

such that .
2.1 2 w(l)—pq/(p—q) < 1.

>0
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Let

(2.2) Alp,w, 0) = (sup 3. llom(t-)x B, 5amw ()",
>0 1>Q

2.3) DG, 0) = (sup T, lom(r-+ Bl5eim)

Then

@ |mlasgesy+ Il < cllmll, + A, w, 1)]  f 1<p<q<y,
(b)  mismgen < climl,+Alp,w,p)] i 0<p<1, pLg< o0,
@ lmllucera + imlssay < clliml o+ Ap, w, 1)+ D{g, 1)]

_ fl<gs<
) mlasire < cllmll,+ A, w, )+D(g, @] # 0<q<1, 1
@  |mlageq < clliiml, + Alp, w, p)+D(g, 9)]

Remark. A variant for 1 < p < ¢ < p' already appears in [227, which
reads in our notation

t

pEp,
£ p= ow,

f0<g<ps<l.

lml agioa < clliml o+ 3 sup llem(z-)» 8| 1111l

1>Q >0

The second theorem geheralizes Theorem 1.1.

THEOREM 2.2, Let 0 < p,q,r <o, 6 <1 and
@4 Bl o) =(sup T 2 om(e)x B 5n)

t>0i>0
and D(g, &) as in (2.3). Then we have the estimates
(a) sty + limlagieay < cllmlo + B, ] if 1<p<r<gsyp,
(b)  lImlaes < cllimlo+Blo, P if 0<p<1, p<r<g< o
©  Imlmien+ Imlazey < eliml .+ B, r, )+ D(g, 1)]
fl<g<r<ps<syp,

@) Imlsion < cllmlo+Blor, )4+D(g, 9] i 0<q<1, 1<p< oo,
€ lmlisges < clilmll,+Blp, v, p)+D(g, @)1  if O<q<r<p< L.

Since for 1 € p < o0, M? = M(B®), we recover Theorem 1 and H? results
{p<r=1) of [1] if we take g = 2.

The formulation involving M(B") instead of M, (1 < o) seems to be
more natural since it gives a unified theorem for all values of 2, g, r. We finish
this section with two technical lemmas which explain that for 1 <7 < o the
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M (B'}-condition on @m(t)+ ¥, is not really more general than the M,-con-
dition. Neither lemma is required for the proof of Theorem 1.1.

First we collect some error estimates which were used in Carbery [4]. For
a convolution operator T with kernel K we denote by T* the operator with

kernel

(2.5) K'=Kv,
Then we have

Lemma 2.3 (Carbery [4]). Let T be a convolution operator with kernel
sz_]'[m]. Then the kernel Of Rj+k(TRj+k)j+l is 2_(j+k)”Kijkl(2_j_k'),
where for each fixed g and N, (1+)x)* K u(x)| is bounded by
@ N 2*7A 279V m|, i i>k+5,

(b) cequ(i—k)nz(i—l)N ['!m”w if i<k-5, i<l
) 257" mi, if i>1
)j+l

The same bounds are obtained for the norm of R;i4(TR;+y as a bounded

operator on Bj, (0 < p < co).
The proof consists in a straightforward analysis of
Kijkz('f) = (P(f)j-@(zi_ky’) m(2777*y) 'ﬁt—k(f—J’)dJ’

and its derivatives (see [4]).
As a consequence of Lemma 2.3 we have

LEMMA 24. Suppose m is supported in {£; 1/4 < |&| < 43, Then jfor 1> 0,
0<pg< oo, p<r, we have the inequality

17~ [lm % P} [Tl jgs < cpqu[27H77H0 E!M*ET’IIM(Brﬁ?-‘W lmfi IS e,

Before proving this lemma we have to mention one more important tool,
the Calderén decomposition formula. The following version is proved in [14].
For each MeN one can choose #,¢ &S with the following properties:

(i) /i has compact support in {x; [x| < 107"} and
(2.6) fAx)x*dx =0, ldl<M,
{ii) ¢ has compact support in {£; 1/2 < |} < 2}
(i) Yrezn(2*o2*E) =1, £#0.
If we define [P,f1" =#5(2*)f, [R.f1" = 9(2*)f then
(2.7} ) Z Pkkamf
keZ

where the convergence is in $/P and also in Fpe. A few more notations: Let ¢
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be a function compactly supported in {& 1/4 < || < 4} which equals 1 in
{&; 1/2< |8 < 2). Then we define [R 1" = ¢(2%&)f(&), hence we have

(2.8) RR,=R,.

We can use R, or R, in the definition of Besov and Triebel-Lizorkin spaces.
Finally, if Q, = {x; 0 < x; < 1,i=1, ..., n} is the unit cube, then for leZ,
ved" let

(2.9) Qi = {x; y—27"xe 0y}

For fixed I the @, , clearly form a mesh of cubes of sidelength 2!. We denote the
characteristic function of Q,, by y,, hence Zy Ly = 1.

Proof of Lemma 24. We assume p < ¢o and leave the analogous proof
for p = oo to the reader. We first estimate | T'P,R,f||, if |k < 10. Since the
convolution kernel of P, {|k] < 10} is supported in the unit cube, we have by
Holder’s inequality

(210) ITPRIIF < ¢ Y I TR, molif 202

aeZn

<c ), [TPR ) o [E 272,
yeEn
For the second ineguality simply write ¥, =) g,,=0,, %0, and use the
embedding " < I*, We introduce one more Littlewood—Paley decomposition
and estimate

Z 1Prs Ry T[Pk RV 017 < cllRg sy Tl”B,_,j,rE IlPk+v§k+ka[(ka)X0,y] (14
T ¥
where B"— B’ indicates that we take the operator norm in Bj,

Since all moments of ¢ and all moments up to order M of 5 vanish, it is
easy to see (by Taylor’s formula) that the conmvolution kernel H,, of
Pry Ry Py, 1s bounded by

(211) CM,NZ"’“MZ_“‘”)"(I+2'“‘+“)|x|)‘N
if v=0, and by
2.12) Cxn 2 K27 (L 27K %))~

if v=<0; hete K, N=0, 1, 2,.
‘We have the estimate

(2.13) Z ‘lPk+vﬁk+ka(ka) Xo |2
b

<eX(L ] Mt dx""[ sup [Rf(2)]"

¥ Qo.y zalo,y
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It is straightforward to check that

(L J Hebe—pldy] dx)™
QD.y
is bounded by 27¥(14+2#*M-1747) f y > 0 and by 27K(1+ 281+ if
V<0

For |k < 10 we may use the Plancherel-Polya inequality (see Triebel [26, p.
197) to get :
(2.14) Z sup R, f(2)* < c[R. [}

¥ 2lo,y

Clearly |Rysy T lir—s < Clim« ¥ 4ear), which we use for |v] < 10. For

[v| =10 we have by Lemma 2.3

IRk + Tl ir < €27 27" Iml

and if we put (2.10){2.14) together and sum over all v we get the estimate
(2.15) [ T'PLRFIF < ex (2"~ lm o Bl asiany +27 " Imll ,1° KR SIS

for |kl < 10. By similar considerations using Lemma 2.3 again we get for |k} = 10
(2.16) IT' PR f i, < cymin(2™™, 227 W iiml|, | R, |,

and the conclusion of Lemma 2.4 immediately follows by (2.15) and_(?_..16).

3. Estimates in FP (p <g). We shall have to use some variant of
Calderén—Zygmund theory. In our approach we use a maximal operator
introduced by Peetre [20] which replaces the Hardy—Littlewood maximal
operator in standard Calderén-Zygmund theory., Let (using the notation in
Section 2, (2.5))

(3.1) HFf(x)=  sup R Sf(x+2z),
|z| €£10vR2¥
(3.2) Ao f00) = [{A*f )} ia-
Then Peetre showed that
(3.3) £l pee = A5

if 0<p<oo, 0<g< . In fact, A, f is dominated by a sequence of
Hardy-Littlewood maximal operators (see Fefferman and Stein [11], Peetre
[207). For the limiting case p= cc one has the equivalence

(3.4) I lpes = (suplQI ™ [ % |A47%F()iFdy) ™.
Q

Q kSLO)

"Peetre’s proof can be used to show this equivalence as well (see also
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Lemma 6.4 below). We shall have to consider the level sets

(3.5) Q, = {x; ¥ f(x)>2"}

for peZ, and, following R. Fefferman [13], alsc the expanded sets
3, = {x; Myp(x)>1/2},

where y,, denotes the characteristic function of € and M the Hardy-Littlewood
maximal operator. Of course || < ¢|f]. For u<Z, <#, will denote the collection
of all dyadic cubes Q with the property |Q n Q| > [Q]/2 but |0 n 2,4 ,] < |QI/2.
We have the following elementary lemma which is—in a slightly different
version—contained in [8], where instead of A/ f an area integral is used.

Lemma 3.1, Let 2, be as in (3.5). For s 2 q we have

(3.6) Y 2 R gpll2tintimeid < 21 ke ).

Kk Qe
L(@}=k

Proof If L(Q) =k we clearly have for all xeQ

IRy f(x)] < mf ")

and consequently for Qe o,

IR xgl22C 0 <2 [ |4 f ()it dy.

Qn&y
Hence the left-hand side of (3.6) is dominated by

23 fl*fG)edy =2 I [AS)dy 217410 =
k02
We may assume that the thtlewood—Paley operators defining F§? are given
by R.P,, and for fixed k we decompose

TRP, f = TRkPk(ﬁkf) = Z TRkPk[(ﬁkf) XQ]-

LiQy=k
(R.1) Yo Wwe introduce a vector-valued function

(3.7 = {eg}

where 0 runs over all dyadic cubes.

For each Q we define, again followmg R. Fefferman [13], an expanded cube
as follows: If Qe .o/, then S(Q) is the unique dyadic cube containing Q in the
Whitney decompos1t10n of Q (see Stein [24], p. 167). With these definitions we
can write down our basic sphttlng

(3.8) TR.f = GX(F(f)+H F ()

Setting e, =
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where
(3.9) G (F) =} (TR Y Pyeg,
IeZ LSO <k+i
L=k
(3.10) HYF)= Y(TR}*' | ¥ Pe,

leZ L{SON=k+1
LD)=k

(Recall that the kernel of (TR,)**!is &# ~*[¢(2*-)m] ¥,.) We shall consider the
vector-valued functions G(F) = {G*(F)} etc. in [P(¥). Note that the map
/= G(F(f)) is not linear, but F-»G(F) is (the same remark applies to H).
Lemma 3.1 suggests considering the functions F in vector-valued weighted
Lebesgue spaces X(p, ¢) and X (p, q):

1Fllxia =TI T legld™)™,
Qe
which we use for g = 1, and

Pl = (ZI (S 3 2 llegl L)™',

kL) =k
Qerd

which we can use for all p, g

Remark. The only reason we introduce X(p, g) is to avoid the slight
complication which arises if one interpolates “L™-type spaces™ by the complex
method.

By Lemma 3.1 we have

IF (M < IF Nk aipa < 022""1{36 Ho (%) > 2¢)]

S el A flip < €I i

Now Theorems 2.1 and 2.2 follow in the case 1 € p<g< oo from the
following three propositions and an application of Lemma 2.4 to replace
MP*-conditions by M (B¥)-conditions.

Prorosition 3.2. Suppose g= 1, 0 <p < g, and

sup ¥ lpm{t)« P liua < D(g, 1) < 0.

t>0 (>0

Then ‘
(3.11) IHF) | ogay < eLlm] o, +D (g, DINFlxen-

3 — Studia Mathematica 972
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ProrosiTION 3.3. Suppose 1 < p < g, w increasing as in (2.1) and

sup Y. lom(z-)x Bl wl) = A(p, w, 1) < 0

>0 >0

Then

(3.12) 1G(FHlLoge <
Prorosimion 3.4. Suppose 1<

cAP, w, VIF | g

p<r<qgand

sup 3. figmit')* Pl = Blp, 1, 1)

>0 [>0Q

Then

(3.13y - HG(F)”LP(M) CB(P, r, 1) ”F“X(p.q)

Proof of Proposition 3.2. We first assume that 0 <p < 1 <
For peZ let bf = )e,, where the sum is extended over all Qeus
L(Q) = k. Also let bf; = ) e,, where the sum is extended over all Qe
L(Q) =k, L(S(Q)) > k+1 Then

w1th
with

'3:

o

VH (F)[2oqey < ): ||(Z | Z(TRk)*+’Pkb;:l!“)”“II§-

We observe that for every I, (TRQ"“P by is supported in Q Hence by
Hélder's inequality

G149  JHEIw <TI0 (T TRFPb)"

since |G, < ¢|R2,|. Observe that the I%-operator norm of (TRY**T is just the
MS-norm of qom(2 k)« ¥, Since by = bt for I <0 and

Z. (TRk)kﬂ - TRk— Z (TRk)k+[,

<0 1>0
we obtain

IIE(TR;J"“P;J’E;IIQ s Z lom (2™ )% 2 laa | Pbfill+ [ om2 ™ Y aa | PBEI,

+ 2, lom275 )« &, | P b,

>0
Of course, for every I, we have

1PcbhillE <

Z HEQ“g

[
L(Q}=k
and the same with bf instead of bf,. Now
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(3.15) lom2™* ) yea < c{llm| .+ D(g, 1)

and we obtain (3.11) for O0<p <1,
If 1<p<gqg we apply interpolation, using an argument in [7]. Let
bu =Y .z bfs. Then we have as above

climle+Dig, DIV Y. legllds

k LQ)=k

HH(F)ifas = ZHZ{TR PP byl; <
hence (3.11) for p == q. We may interpolate between the weighted Lebesgue
spaces X(1, g) and X(g, g) and this finishes the proof of Proposition 3.2.

Proof of Proposition 3.3. Let a* = }'e, where the sum is extended

over all Qe o, with L(Q) = k, k < L(S(Q)) < k+{ and let af = } 5 af*. Since
P < I? we have -

(3.16) 1G(F)iLege) < ):H Z (TR Pyafi?) W< Ap,w, 1) I

where

1P = ¥ sup w(l) "7 | Pk,

k I1>0

For each Whitney cube S in &, let a}* = e, where the sum is extended over
all Qe with L(Q) =k, S(Q) S. Then we clearly have

P<Ysupwlh) Py, Y |a¥ ||"<ZZZW(L(S) k)™

k 1>0 u k<L(S)<k+1

where we have used the monotonicity of w. We apply Hélder’s inequality for
the k-summation and, using (2.1), we get

S ZZ(E i[al.sc‘u“g)p/q = ZZ|S|“P/<1(§ Hagﬁlig)p/q.
# S E PR

las*113

Now
Y Isi< |4,

SeW (D)
where we sum up over the family W(Q ) of all Whitney cubes in Q Applymg
once more Hdélder's inequality we see that

P <Y (E T 1519 < 1P g
" kE S

which proves the proposition.

Proof of Proposition 3.4. Let af be as in the proof of Proposition 3.3.
As in Section 2, we denote by ¥+, the characteristic function of a dyadic cube
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Qr +1c With sidelength 2**. We proceed as in the proof of Proposition 3.3 to
obtain

z[ Y (TR P [ 10100

>0 o

(3.17) G Ere) <

where we have used the fact that (TR *'P, [afy;+..] is supported on a dilate
of Oy, with comparable sidelength. We apply Hélder's inequality to
dominate the right-hand side of (3.17) by

Z [ Z U+ n(lfp=1/r) (Z ‘(TRk)h+1Pk [a:‘JCM« M] “f)”p] ?

>0
<[Blp, r, NP Y2~
k

where

If = Supz HPkanHz.a”f-

>0 @

Since P < I' we have (using the same notation as in the proof of Proposition
3.3)

SUDZ T

B SeW(,)
REL(S) Sh+!

lafir <2y ¥

u j2k L®=j
SeW(f2,)

2Jdn(1jr—1/a)p ”aisw ”g

and furthermore

szu(l P,‘r)IP < Zz_mtl p/r)z Z z Z{Jc.—j)n(l ~ pjr} “agu"g

n LSY=j k<j
SeW(f,)

ey, Y (3 lak TS e <

HoSeWw(@,) k

pr “F“X(p q)

where the last inequality was already shown in the proof of Proposition 3.3. =

We now state the analogues of Propositions 3.2-3.4 which cover the cases
< lor ¢ < 1 of Theorems 2.1 and 2.2 (which follow by means of Lemma 3. 1).
We use the same notation as in Theorems 2.1 and 2.2.

PropPOSITION 3.5. Let 0 <p<q<1. Then
1H(F)l{Lruq < (HmH +D(g, CI)) | x poay-
PROPOSITION 3.6. Let p < min(g, 1), and let w be increasing as in (2.1). Then

IGEN 1rysy < e(lmll o+ Alp, w, 2)) | Fll x iy

icm
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PropPoSITION 3.7. Let p<r<q, 0<p<1. Then

IG(F)iLegey < cB(p, 1, p) | 1| % om0

The proofs of these estimates are quite similar to the proofs of Propositions
3.2-34, sc we only sketch the necessary modifications. The following lemma
will be needed:

Lemma 3.8. Let I be a collection of dyadic cubes Q with sidelength 2 which
are contained in an open set E. For each Q let e, be a bounded function supported
in Q and let b =Y p.rey. Then we have for 0<p<1

IR nPybly < e2 7P| ( S, eg 2, 207"

Cel”
if e=M—n{l/p—1)>0, M as in (2.6).

Proof The convolution kernel I, of R, . P, satisfies the bounds (2.11) if
20 and (2.12) if v < 0 and so we have

IRyt  Pybl} < 3, llegl%| [Wh x—y)dy]” dx,

Qerr

which is bounded by ¢, 2"57 Y, [leg) 22" for v €0 and every KeN and by
27 MPRA AN leg 15, 2% for v 2= 0. Since L(Q) = k and since different cubes
with the same size are disjoint we obtain by an application of Hélder's
inequality

(Z [Q|)1 pla (Z “eQ“q 2kn)i"/4

whlch proves the lemma.

Z ”eQ”p PAGES c|Ejt ¥ (% ”eQHgozkn)m’

Proof of Proposition 3.5. We begin with the inequality (3.14} which
also holds for g < 1. Then

S S TR Ry Ry o Pibiull2

(>0 v

|5 R pel <
{=}
+ ) ElT-RkRki—vR-k-r.v-Pkb;:“g

RS

+ 3 L MT R Ryt Ry PbEN

>0 v

< cllim o +Dig )1 Y[R Pl

+sup | s, PRI

>0
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This is by Lemma 3.8 (for the case p =g) dominated by

clliml+Dig, @17 3 leglt 2
LQy=k -

and the rest of the proof is the same as for Proposition 3.2.

Proof of Proposition 3.6. With the notation as in the proof of
Proposition 3.3 we have

|G oy < (5 T TR P, b5

k I>0

< Z z z ”(TRk)kHRkHHJ‘\JJ(Bn)H Rk-i-kaang

kIx0 v
Scldlp, w P Y 1

where

IE =% supw()~? |Ry.,P.af|2.

Kk I>0

The estimate for I in the proof of Proposition 3.3 can be used to get the
inequality

B < ey Y (IR Pyt
® S &k

and if we use Lemma 3.8 for E= S we can proceed exactly as in Proposi-
tion 3.3 and finish the proof.

In order to prove Proposition 3.7 one modifies the proof of Proposition 3.4
in exactly the same manner. We omit the details.

4, Fri-estimates, p > q. In this section we shall give proofs of Theorems 2.1
and 2.2 in the case p > ¢. If | < g < p < o we may of course use duality and
the results in Section 3. We however prefer a direct approach to cover all cases;
and, more important, a direct proof turns out to be useful to obtain estimates
for non-convolution operators as well (see Remark (a) in Section 5 below). Our
estimates are based on the inequality

(4.1) [glliea < cli A7 all,
if geF*4, for the sharp function

HFg(x)=sup(iS71 [ T |P,Rg(0dy)""

xeS 8§ k< L(S)

where the supremum is taken over all cubes S containing x. (4.1) is a special

Singular convolution operators 105

case of Propc_\sitio% 6.1 below (for p= o (4.1) with equality is just the
definition of F§7).

Instead of estimating Tf we shall estimate .4,;* Tf. In order to apply (4.1) for
g <p< oo we have to assume that a priori Tfe FB¢. However, the class of
Schwartz functions f for which f is compactly supported in R™ {0} is dense in
Fp¢ if p,g <co. Since the hypotheses of Theorems 2.1 and 2.2 imply
boundedness on the Besov space ng, we know that a priori for these functions
Tf is in F§? (with bounds depending on the support of f), hence we can use

(4.1).
Our basic estimate (somehow dual to (3.8)) is
(4.2) N TF(x) < e[GY f(x)+ H f{x)]

where

@3  GFfe=(supiSI ] ¥ | T (TRPTPRSPdy)",

xes S ESLS) I>LS—k
@4  HEfG)=(uplSI™* ] ¥ | T (TRMPR.dy)"™".
xS S kSL(S) ISLS)-k .

The proof 6f Theorems 2.1 and 2.2 will be finished by the following th‘ree
propositions, because by Minkowski’s inequality we have the embedding
Fpra By, for pzaq.

ProrosiTION 4.1, Let p > g > 0, o =min(g, 1). Then
IHE 1, < clllmll o+ Dig, )1 f llsge.

ProrosiTION 4.2. Let p > q > 0, ¢ = min(p, 1), w increasing as in (2.1). Then
LG fl, < cAlp, w, o} | f ag, -

ProrositioN 4.3. Let p>r 2 g, o =min{p, 1). Then
162 f1, < cBlp. 1, o} f I3z,

Remark. A proof of the FM-estimates for 1 < p' <g<p< o0 which does
not rely on Section 3 follows by observing that in this case D(g, 1} is dominated
by Imlly, +Alp. w, 1) or [m|o+B(p, 1, 1).

Proof of Proposition 4.1. We first assume g > 1 and the proposition
will follow by real interpolation between the cases p =g and‘ p = c0. T}_lc
appropriate interpolation theorem including the case p = co is proved in
Frazier and Jawerth [15]. .

For p = g we have a pointwise estimate involving the Hardy-Littlewood
maximal operator M:
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HI f(0) < (M(EITR P &SN +(M (T[T (TRYPR 1Y)

k k=0

and conclude the weak type inequality
(4.5) Al{x; HY f(x) > DY < climll o+ D(g, D] 1S {20

(Remark: We could have used Ny < g, defined in (6.1) below, to obtain

a strong type inequality.) For p = oo we observe that for a fixed dilate § of §
the function

I<L§)~k (TR;JHIP;L [(ﬁkf) Xnﬂ\ﬂ

vanishes on § (we have to dilate S by a factor Sﬁ, say). Hence [H}? f|| , can
be estimated by

wplSITH X || % (TRYFRIEL ).

E<L(S) ISL{S)—k

Now
: IIK% k---IIZ < | TRP LR 25115+ T TR PR xllie
= - >0
< (Imbe, +D(g, )" 2 I Pw s Ris P (RS 25115
By lemma 38

EXLS) v

L EIPe R BIRNZIE <c 3 T 2 1BA) kot

k<L) Q=8
L(Q)=k
Sc Y JIA*Tedy < LS 1%
k<LiS)S 9

by (3.4). This finishes the proof.
"Proof of P‘roposition 4.2. We use the assumptions (2.1) on w and
Holder’s inequality to dominate G¥ f(x) by
(suplSI=*f( T pw(L(S)—kP TRY PR, f]17%) "
ST B WES)—KL T TR AR
Since w is increasing and the Hardy-Littlewood maximal operator is bounded
on IM we get '

HGEfl, < (T T wONTRY1P, R, 11|7)
. k I»0
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which in the case p = 1 is bounded by

csup 3 wih) lpme-)x 2y aee (3 | RS |2
=0 ! k
and the proposition follows by applying Lemma 2.4.
For p < 1 the argument is similar and uses the same kind of modification
which already occurred in the proofs of Propositions 3.6 and 4.1.

Prool of Proposition 4.3. Again we only consider the case p > 1 and
leave the minor modifications for the case g < p < 1 to the reader. We apply
Holder’s inequality to see that, for &> 0, GF f(x) is bounded by

csup |S| =1 +eqin ( 2-—kap (j‘ I Z (TRk)k+£PkkaLQ)PIq)1IP.
xel k€ L(S) S I2LS -k
Let
Mspg(x)=sup sup |S|” ! H’"j lg(y)l dy.
xeS KSLS)Sk+! s
Then by Minkowski’s inequality
(4.6) 1GE f13 < e 227 ¥ [ Moguoa ((TRY T *PLRfF)|pial”
k >0

We observe that if & is a function supported in some cube of sidelength ¢, 287,

then M, ,[(TR,)**h] vanishes outside a cube with the same center and
comparable sidelength ¢, 2'** Furthermore, it is easy to see that

M 09(x) < clx”™" * g}

uniformly in k and [ So if we choose &= n(l/r-—-1/p) the theorem about
fractional integration tells us that M,,,, is bounded from L' to I¥* with
a bound independent of k and ! Therefore we obtain the estimate (denoting by
Yk+1, the characteristic functions of cubes with sidelength 2kth '

“Maq.k,:(I(TR;«)“‘!Pkﬁkfiq)“;ig <cXl KTRk)kHPk [R/) x““"’]lqlmf‘?)u.p
_ »

< e3[R Whrergr NRS) Haer 1)

< U1 | om(27F Y x B s [ RS

where we have applied Hdlder’s inequality for the last step.
Going back to (4.6) we get by Lemma 2.4 (and since & = n(lir—1/p)

IG# f1% < eB(p, r, 1)% IR 15 < cBlp, v, VIS sz, =
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5. Multiplier criteria. We want to prove Corollary 1.2. In order to verify the
hypothesis of Theorem 1.1 we have to show for 1 <p <2, 1/g= 1/p—1/2 the
inequality

(>.1) K f I, < 21D Imx By 1 £,

where K, = m#+¥,, and m is supported in {£; 1/4 < [¢] < 4}. We may assume
that f is supported in a cube of sidelength 2/, because then K, +f is supported
in a slightly larger cube of size ¢2™. By Hélder’s inequality

1K, *pr € 2PN e f 5.
Using Plancherel’s theorem and Hélder’s inequality we obtain
1K, =/ 13 < cflmx PP IFEIPdE < cllm= 71715

and (5.1) follows by an application of the Hausdorff-Young inequality.

In order to prove Corollary 1.2 the straightforward use of the Hausdorff-
Young inequality is replaced by an application of the I*-restriction theorem for
the Fourier transform (see Tomas [25]). This argument is due to Fefferman and
Stein (see [10], for the variants needed here see [9] or [21])

Remarks. (a) The methods of this paper may be used to prove cer-
tain endpoint estimates for pseudodifferential operators with weak reg-
ularity properties. For example operators with symbol of type S,),
m=n(l--g}1/p—1/2], are bounded on the inhomogeneous space FH! if
p < g < p' (see Mivachi [19] for related results and further references, cf. also
Carbery and Seeger [6]).

(b) Corollary 1.2 is a best possible estimate for F!. More refined
If-estimates are discussed in a subsequent paper. A variant of Theorem 1.1
involving parabolic dilations can be used to give endpoint results for the class
of quasiradial multipliers considered in [21].

(c} It would be interesting to find an analogue of Theorem 1 on product
domains. To give an example, let 0 C”(R) vanish near O and 6(p) =1, |y| = 1.
Define m(&,, &£,) = 8(£)0(E,) (€, &l P exp(i]E, £, Is it true that m is a multi-
plier on IF(R?) if bja=|1/p—1/2], 1 <p < x?

6. Appendix: Sharp maximal operators on F?%. We consider the operator

61) N6 = (supl@™ (3, RSO ).
Qox 2 kSLIQ)
Note that, by definition, | f{ze = | A4 f],. The following proposition is

a variant of the sharp function estimate of Fefferman and Stein [12], and, in
fact, the latter is used to prove it.

PROPOSITION 6.1. Suppose 0 < p,q < co. For every feFB we have the
a priori estimate

1f Wrge < eI A4G5 11,

icm
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A partial converse is

PROPOSITION 6.2. Suppose 0 <y < p < 0, 0 < g < co. Then for all feFpe
| A F1, < ellf Tiga-

A limiting estimate for the case p=co is

PrOPOSITION 6.3. Suppose 0 <r < g < c0. Then there exist positive cons-
tants t, ¢q, ¢, depending only on n and r, such that for all noncenstant fe Fg? we
have the estimate

co < sup(log|Ql™" fexp[s T IRSONYISIE,,]d0) ™ < ey
Q Q kS LIQ) o

Proposition 6.3 may be considered as a variant of the John-Nirenberg
inequality. Related results have been obtained by Frazier and Jawerth [15]. We
do not use their approach, but it is conceivable that their technique also proves

Propositions 6.2 and 6.3.
We shall use the following pointwise estimate: Let

o~ R, —_ q LAY

Qax Q@ NS L) z
LimMa 6.4. If ¢ > max {n, 2n/g, 2n/y}, then for almost all xeR" we have

Tk o f(x) S ey f(x).

Prool We use Peetre’s mean value inequality [17]

(6.2) RSO-2<e@a™ T IR, S ()" dw)”
(y —z,2%
+¢2%¢  sup VR, f(u)l

{y—z—u| 23

where Q(z, t} is the cube with center z and sidelength ¢. This is valid for all
r> 0, and we use it for » < min(g, y) such that n(ljr+1/y) < o
Since VR, f = VR,R.f we have as in [20], [26] the straightforward

inequality
. RS o R
Zeup S 2R (2N

H
and, on choosing &> 0 sufficiently small, the left-hand side of (6.2) is
dominated by ¢Y;z027 1y, f(y) where

Lt f ) =

sup 2 kn j |R S (W) dW)Ur.

jzj g2l e QUy —2,2%)
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Let us fix x and @sx and let Q(l) be the cube one gets by expanding Q by
a factor 2'*1. Then we clearly have
Lo f () < 2 (MOKR,f) 20l D)

Let gy = (R N row if k < L{Q), and gy, = 0 if k> L(Q). Since y,q > r we may
use the Fefferman-Stein inequality for sequences of maximal operators [11]
and obtain

J( Hen FONY™ dy < 2 MgV o
0 k<L)

<c2™ [ [ % IR SI]™dy
o kL)

< METIMLAE ST 1)

Hence we get

AL F)< Y 27 sup (0] 18 Hk,zf(y)lq)m)lh

IZ0 xe} Q ksL(Q)
g ¢ z 2—£q21n(1,’y+ lfr)!/?q;; f(x)
Iz0
Since the sum converges, the lemma is proved.
Proof of Proposition 6.1. Since A% f(x)} < N (%) for y < & we may

assume y < g, ¥ < p. We apply the sharp function estimate by Fefferman and
Stein [12] to the "-valued function {JR,f|'} and obtain the inequality

Qax

1flles < e|lsup Q17 [(X (RS 1 =101 [ IR £17 d2] ") dy||L2
0 keZ Q

Using Taylor’s formula we get the estimate

63 127 J( T [RSP—1QI7 § IR S a1 dy
Q

Q k2L(Q)
<elQ™ [ Y bup[(y—xg) IR, f(w)dy
Q k2L(Q) weQ

where x,, is the center of Q. By a straightforward calculation using R, = R, R,,
(6.3) is dominated by

- _ R f(y-+2)f , \4 "
c 1 2@~k l_k__.__
oI¢ £ (k%%@) Sl:p (14+27F|z))e dy <% %,q.a 769

for xeQ and, if we choose ¢ large enough, the proof is finished by an
application of Lerama 6.4. '
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Proof of Proposition 6.2. We clearly have for all y<p < oo

A2 T, < e M (T IR ™ |3 < ¢ 1Ry S Hzsgays
k

which gives the Ff¢ estimate for p < co. Now suppese p = co. We may assume
that y > ¢q. Let A = A,, be the best constani in the inequality

(6.4) (suplQ ™ [ T IAFONA)T < A flljes
Q Q k<L)
and B, =24 IS N e .
For a cube Q let E(Q, B} be the set of all xeQ such that

Y A > B
kS L(Q)
Following Chang and Fefferman [8] we define a nested family of open sets
Q, = Q, > Q, = ... as follows. Let £y = 0. If @, is already defined, let {QF} be
the family of dyadic Whitney cubes in €2, (as defined in Stein [24, p- 167]). We
set

Qv+1 = U E(QL Bf)’
i

which is a subset of ©, and open in Q. Then by Chebyshev’s inequality

Qi <BFY, [ %

|4 fl2dy < By 13,101 A !ifﬂ;m L2712,
i E(QI.B;) ESLQY) i o

By iteration,
(6.5) |, <2710l

for all v 0. ' ‘ . _ ‘
We observe that each Whitney cube Qf is contained in a unique Whitney
cube Q% = Q*(i, v) in the decomposition of @, for p<v. .
If v\jfe set 0°(, v) = @ we obtain a nested sequence of cubes Q°(i, v)
= Q' v 2.2 Q. Now

(6.6) (j-( Z ]ka'(y)1q)7‘/q dy)m
Q

k€ L(Z)

.

<(SF | (T RJONIY &)

ve0 1 QNEQD kS LQ]

v

(3% § (T o a)”

v=0 i QNEQ) p=0
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where

o) =( ¥ RS9

k=SLQY)
and for u=0,1,...,v—1

iv 1
Fe=( ¥ R 1.
L{Q# ¥ 1{1,v)) <k € L{Q#(L,v))

By Minkowski’s inequality the term in (6.6) is dominated by

(S0 [ 1o (3 (55 | 11 dy))

=0 T QMEQH =0 v L QIEQD

o o
=3 J5)H(E )
u=0 u=0

~1a

0

By definition of E(Q}) we have Ii*()) < B, in QX\E(Q¥) and consequently

(67) L Jhs <TOIQH B < BFLIR).
p= a i #

In order to estimate Ji, we observe that

U enE@y= U o

> Q‘H'l: L
e i

Also if yeQN\E(Q) < Q! = 0f we have QF*1(;, v) = Q4*, QH(T, v) =
and obtain

<z Fo z

m o QETlcok of ! Lont Yy sk I(oY)

RSO dy) ™.

If Q47" is a Whitney cube which is contained in the Whitney cube Q& then

there is an x;,€ Qh\,+, such that dist(x;,, 0**%) < 4./n (see Stein [24],
p- 167). Hence R, f(y) < #*f(x;,) for ye Q'™ k> L(@4™1), which implies

IR f)19™ < By,

L@Y T H<nsLigh)
and furthermore
o
o8 T It ST (TI0BH < B SIy
= [} In

By (6.5), (6.7} and (6.8) we finally obtain

Singular comvolution operators 113

(27§ ¥ RSO )" < eBylgi™ “’(Z 2,/

Q kSL{Q) H=
w

< ed [ flipa( 3 27 MY < Copy 1 Ngen

#=0
where
Cray S C AL +y/g%) M0,
The proof of Lemma 6.4 shows that 4 = A,,q C,, for all ge[r, o], hence
(6.9) Crgy < Cp oyt
foral r€gsy< 0 =

Proof of Proposition 6.4 One half of the proposition is an immediate
consequence of Jensen’s inequality. The other half follows by Proposition 6.3
and a standard argument using the growth of the constant in (6.9), for y— co:

Q7 fex[s® T IR g

kg L)

[+4) Ig
|ka()’)|q)1lq]h1 dy € Z B_th (14-14ayle,
kSI1(Q) =

f’;? 18 S

which is boundcd ife<e e Mg temr ifgzr
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The convolution equation of Choguet and Deny on semigroups

by
KA-SING LAU and WEI-BIN ZENG (Pittshurgh, Penn.)

Abstract. We characterize the nonoegative solutions [ of the convolntion equation
F) = [sf(x+p)daly), YxeS, where § is a locully compact, separable, metrizable abelian
semigroup with cancellation, and o is & nonnegative measure. The technique is to identify the
extreme rays of the cone of solutions. The case where S is a group was studied by Choquet and
Deny.

§ 1. Imiroduction. Consider the convolution equation

(1.1) p=p*c

on a locally compact abelian group ¢, where o, u are regular Borel measures
on G, 5 = 01s given, and p is to be determined. Choquet and Deny [4] showed
that if ¢ is a probability measure, and if the regularization of y is bounded (ie,,
o+ @ is bounded for any continuous function ¢ on G with compact support),
then p=f-w, where « is the Haar measure on G, and [ satisfies

f(x)=f(x+y), VxeG, yesuppo,

ie. f is a periodic function with periods yesupp . The equation in the form

(1.2) S(x)=[f(x~y)do(y), VxeG,
G

was later considered by Doob, Snell and Williamson by a simple mar.tinga‘le
argument [7] (see also [15, p. 1511). The result has important applications in
renewal processes [8]. ‘

The nonnegative measures p satisfying (1.1) were characterized by Deny
[6]: Suppose in addition G is metrizable and separable, and supp ¢ generates
the group G. Then the extreme rays of the cone

He={uz0 pro=pu}

are of the form p = ¢y w, where ¢ >0 is a constant, and ¢ is a nonnegative
1980 Mathematies Subjeet Classification: Primary 43A0§; Sccondary‘60899.' )
Kay words and phrases: Choquet theorem, cone, convolution, exponential, extreme ray, ideal,

harmonlc measure, translation invariant.
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