Contents of Volume 97, Number 3

P. ŠEMRI, Quadratic functionals and Jordan *-derivations	157165
M. Urbański, On the Hausdorff dimension of a Julia set with a rationally indifferent	
periodic point	167-188
F. Przytycki, M. Urbański and A. Zdunik, Harmonic, Gibbs and Hausdorff measures	
on repellers for holomorphic maps, II	189225
J. STOCHEL, Characterizations of subnormal operators	
T. STODIN, Weighted norm inequalities for Riesz potentials and fractional maximal	
functions in mixed norm Lebesgue spaces	239244
P. Domański and L. Drewnowski, Uncomplementability of the spaces of norm	
continuous functions in some spaces of "weakly" continuous functions	245-251
K. Urbanik, Analytic stochastic processes II	253-265
Editorial notes	

STUDIA MATHEMATICA

Managing Editors: Z. Ciesielski, W. Orlicz (Editor-in-Chief),
A. Pelczyński, W. Żelazko

The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory. Usually 3 issues constitute a volume.

Manuscripts and correspondence concerning editorial work should be addressed to

STUDIA MATHEMATICA

Śniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, telex 816112 PANIM PL

Correspondence concerning subscriptions, exchange and back fascicles should be addressed to

INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES

Śniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, telex 816112 PANIM PL

© Copyright by Instytut Matematyczny PAN, Warszawa 1991

Published by PWN-Polish Scientific Publishers

ISBN 83-01-10223-3

ISSN 0039-3223

PRINTED IN POLAND

W R O C Ł A W S K A D R U K A R N I A N A U K O W A

Quadratic functionals and Jordan *-derivations

1

PETER ŠEMRL (Ljubljana)

Abstract. Let X be a left A-module where A is a real Banach *-algebra with an identity element. In this note the general form of quadratic functionals defined on X is obtained; the notion of Jordan *-derivations arises here.

1. Introduction. In this note we shall consider only real Banach algebras. An algebra is called a *-algebra if there exists an involution, that is, a linear anti-isomorphism of period two. All algebras will have an identity element denoted by 1.

Let A be a Banach *-algebra.

DEFINITION 1.1. A function $D: A \rightarrow A$ is a Jordan *-derivation if for all $a, b \in A$

(1)
$$D(a+b) = D(a) + D(b),$$

(2)
$$D(a^{2}) = aD(a) + D(a)a^{*}.$$

Usually, a mapping $D: B \to B$, where B is an algebra, is defined to be a derivation if it is linear and satisfies D(ab) = aD(b) + D(a)b. In the present note we will not consider linear mappings. We will be interested in additive mappings which are not homogeneous in general. Therefore a Jordan derivation $J: B \to B$ is defined to be an additive function satisfying $J(a^2) = aJ(a) + J(a)a$. Over a commutative algebra with the trivial involution, $a^* = a$, the set of all Jordan *-derivations is equal to the set of all Jordan derivations as well as to the set of all (nonlinear) derivations [2].

A function D_x : $A \to A$, $x \in A$, defined by $D_x(a) = ax - xa^*$ will be called an inner Jordan *-derivation. It is easy to see that the vector space of all inner Jordan *-derivations on A is a subspace of the space $\mathcal D$ of all Jordan *-derivations. In two special cases we will find that the reverse inclusion holds as well. For a similar result concerning linear derivations we refer to [1].

In the present note we will prove some equivalent characterizations and useful properties of Jordan *-derivations.

¹⁹⁸⁰ Mathematics Subject Classification: 39B70, 46K99.

This work was supported by the Research Council of Slovenia.

Let X be a left A-module. We always assume that 1x = x for all $x \in X$. A mapping $Q: X \to A$ will be called an A-quadratic functional if it satisfies the parallelogram law

(3)
$$Q(x+y)+Q(x-y) = 2Q(x)+2Q(y), \quad x, y \in X,$$

and the homogeneity

$$Q(ax) = aQ(x)a^*, \quad x \in X, \ a \in A.$$

In the special case $A = \mathbb{R}$, (4) becomes $Q(tx) = t^2 Q(x)$ for all real t and all vectors $x \in X$. S. Kurepa has proved the following theorem [5]:

THEOREM 1.2. Let X be a real vector space and let Q be a real-valued quadratic functional defined on X. If $\{e_{\alpha}; \alpha \in J\}$ is an algebraic basic set in X (Hamel basis for X over the field of real numbers), with J well ordered by <, then

$$Q\left(\sum_{\alpha \in J} t_{\alpha} e_{\alpha}\right) = \sum_{\alpha,\beta} b_{\alpha\beta} t_{\alpha} t_{\beta} + \sum_{\alpha < \beta} \left(D_{\alpha\beta} \left(t_{\alpha}\right) t_{\beta} - D_{\alpha\beta} \left(t_{\beta}\right) t_{\alpha}\right),$$

for all $\sum_{\alpha \in J} t_{\alpha} e_{\alpha} \in X$, where $b_{\alpha\beta}$ are real constants and $t \mapsto D_{\alpha\beta}(t)$ is a derivation.

Our main result is a generalization of this theorem. We will determine all quadratic functionals on an arbitrary left A-module X, where A is a real Banach *-algebra. The approach in this general setting, specialized to the case $A = \mathbb{R}$, gives a shorter proof than the original one.

Recall that B: $X \times X \to A$ is called an A-sesquilinear functional if

(5)
$$B(a_1x_1 + a_2x_2, y) = a_1B(x_1, y) + a_2B(x_2, y), \quad x_1, x_2, y \in X, \ a_1, a_2 \in A,$$

(6)
$$B(x, b_1y_1 + b_2y_2) = B(x, y_1)b_1^* + B(x, y_2)b_2^*, \quad x, y_1, y_2 \in X, \ b_1, b_2 \in A.$$

Each A-sesquilinear functional gives rise to an A-quadratic functional by Q(x) = B(x, x). It is natural to ask whether for each A-quadratic functional Q there exists a sesquilinear functional B such that Q(x) = B(x, x). This problem was treated by many authors [2], [3], [5]-[15]. Let us mention only two results. The answer is in the negative in the case $A = \mathbb{R} [5]$. On the other hand, if A is a complex *-algebra then each A-quadratic functional can be represented by an A-sesquilinear functional [11]. This last result can be considered as a generalization of the Jordan-von Neumann characterization of inner product spaces [4]. Our main result implies that Jordan *-derivations arise as a "measure" of the representability of quadratic functionals by sesquilinear ones. More precisely, it will be proved that each A-quadratic functional can be represented by an A-sesquilinear functional if X is a free A-module and the function $F: A \to \mathcal{D}$ defined by $F(x) = D_x$ is onto. If F is also one-to-one, then the assumption that X is a free module can be omitted. We shall also see that the answer to our question is in the negative if there exists a Jordan *-derivation on A which is not inner.

THEOREM 2.1. Let A be a real Banach *-algebra and D: $A \rightarrow A$ an additive function. Then the following assertions are equivalent:

- (i) D is a Jordan *-derivation,
- (ii) for all invertible $a \in A$

(7)
$$D(a) = -aD(a^{-1})a^*,$$

(iii) for all $a, b \in A$

(8)
$$D(aba) = abD(a) + aD(b)a^* + D(a)b^*a^*.$$

Proof. (ii) \Rightarrow (i). (7) yields D(1) = 0. If a is invertible and ||a|| < 1, then 1+a, 1-a, $1-a^2$ are invertible as well, moreover $(a-1)^{-1} - (a^2-1)^{-1} = (a^2-1)^{-1}a$. We will show that for such an a we have

$$D(a^2) = aD(a) + D(a)a^*.$$

Indeed.

$$D(a) + a^{-1}D(a)a^{*-1} = D(a) - D(a^{-1}) = D(a - a^{-1}) = D(a^{-1}(a^2 - 1))$$

$$= -a^{-1}(a^2 - 1)D((a^2 - 1)^{-1}a)(a^{*2} - 1)a^{*-1}$$

$$= -a^{-1}(a^2 - 1)D((a - 1)^{-1})(a^{*2} - 1)a^{*-1}$$

$$+ a^{-1}(a^2 - 1)D((a^2 - 1)^{-1})(a^{*2} - 1)a^{*-1}$$

$$= a^{-1}(a + 1)D(a - 1)(a^* + 1)a^{*-1} - a^{-1}D(a^2 - 1)a^{*-1}$$

$$= (1 + a^{-1})D(a)(1 + a^{*-1}) - a^{-1}D(a^2)a^{*-1}.$$

Hence $0 = a^{-1}D(a) + D(a)a^{*-1} - a^{-1}D(a^2)a^{*-1}$, which yields $D(a^2) = aD(a) + D(a)a^*$.

Consider now an invertible element a with norm greater than 1. Then for some positive integer n, $n^{-1}a$ is invertible with norm smaller than 1 and certainly $a = n(n^{-1}a)$. Since D is additive, (2) holds also in this case. Now, let a be arbitrary. Choosing an integer n > ||a||, we have

$$D(a^2) - 2nD(a) = D((a-n)^2) = (a-n)D(a) + D(a)(a^*-n),$$

so that (2) is valid for this a as well.

(i) \Rightarrow (iii). In (2), replace a by a+b to get

(9)
$$D(ab) + D(ba) = bD(a) + aD(b) + D(a)b^* + D(b)a^*$$

for all $a, b \in A$. Consider now x = D(a(ab+ba)+(ab+ba)a). Using (9) we see that

$$x = aD(ab+ba) + (ab+ba)D(a) + D(ab+ba)a^* + D(a)(b^*a^* + a^*b^*)$$

$$= 2abD(a) + a^2D(b) + aD(a)b^* + 2aD(b)a^* + baD(a)$$

$$+ bD(a)a^* + 2D(a)b^*a^* + D(b)a^{*2} + D(a)a^*b^*.$$

On the other hand,

$$x = 2D(aba) + D(a^2b) + D(ba^2) = 2D(aba) + bD(a^2) + a^2D(b) + D(a^2)b^* + D(b)a^{*2}$$
$$= 2D(aba) + baD(a) + bD(a)a^* + a^2D(b) + aD(a)b^* + D(a)a^*b^* + D(b)a^{*2}.$$

Comparing the two expressions for x we arrive at (8).

(iii)
$$\Rightarrow$$
 (ii). Take $b = a^{-1}$ in (8).

Remark 2.2. In [15] it has been proved that an additive function f defined on a complex Banach *-algebra which satisfies $f(a) = -af(a^{-1})a^*$ for all invertible $a \in A$ is an inner Jordan *-derivation. This is a direct consequence of our theorem: just substitute a in (8) by i. So in this special case the function $F: A \to \mathcal{D}$ defined by $F(x) = D_x$ is onto. But it is also one-to-one. Indeed, if $x \neq y$, then $D_x(i) = 2ix \neq 2iy = D_y(i)$.

Let us complete our discussion of Jordan *-derivations with a lemma which will be needed in the sequel.

LEMMA 2.3. Let A be a real Banach *-algebra and D: $A \rightarrow A$ a Jordan *-derivation. Then for all a,b,c and invertible $d \in A$ we have

(i)
$$dD(d^{-1}a)d^* = D(ad) - aD(d) - D(d)a^*$$
,

(ii)
$$D(cbca) = cD(ba)c^* + cbD(ca) - cbD(a)c^* + D(ca)b^*c^* - cD(a)b^*c^*$$
.

Proof. (i) Define e = ad, which yields $a = ed^{-1}$. Thus,

$$dD(d^{-1}a)d^* = dD(d^{-1}ed^{-1})d^* = eD(d^{-1})d^* + D(e) + dD(d^{-1})e^*$$
$$= adD(d^{-1})d^* + D(ad) + dD(d^{-1})d^*a^*$$

by (8). Using (7) completes the proof.

(ii) Consider first an invertible $a \in A$ and arbitrary $b, c \in A$. We have

$$D(cbca) = D(ca(a^{-1}b)ca) = cbD(ca) + caD(a^{-1}b)a*c* + D(ca)b*c*$$

by (8). Now (i) implies $aD(a^{-1}b)a^* = D(ba) - bD(a) - D(a)b^*$. Inserting this in the previous relation gives (ii) in this case.

Next, let a be an arbitrary element of A. For an integer n > ||a|| the element n-a is invertible so that (ii) is valid for n-a, c and b. Using (8) and the relation D(n) = nD(1) = 0 we get the desired result.

3. Quadratic functionals. In this section we will find an explicit expression for a quadratic functional Q defined on a left A-module X where A is a real Banach *-algebra. For this purpose let us solve a certain system of functional equations.

Theorem 3.1. Let A be a real Banach *-algebra. Suppose that $f,g:A\to A$ satisfy

(10)
$$2f(a) + 2f(b) = 4f(\frac{1}{2}(a+b)) + (a-b)g(0)(a^* - b^*),$$

$$2g(a) + 2g(b) = 4g(\frac{1}{2}(a+b)) + (a-b)f(0)(a^* - b^*),$$

$$f(c) = cg(c^{-1})c^*$$

for all $a, b \in A$ and all invertible $c \in A$. Then there exist (and are uniquely determined) an element $x \in A$ and a Jordan *-derivation D such that $f(a) = ag(0)a^* + ax + xa^* + f(0) + D(a)$ for all $a \in A$.

Proof. Set $x = \frac{1}{2}(f(1) - f(0) - g(0)) = \frac{1}{2}(g(1) - f(0) - g(0))$. Define D, E: $A \to A$ by

(11)
$$f(a) = ag(0)a^* + ax + xa^* + f(0) + D(a),$$
$$g(a) = af(0)a^* + ax + xa^* + g(0) + E(a).$$

The relation $f(c) = cg(c^{-1})c^*$ and (11) yield $D(a) = aE(a^{-1})a^*$ for all invertible $a \in A$. Putting b = 0 in (10) we get $2f(a) + 2f(0) = 4f(\frac{1}{2}a) + ag(0)a^*$. Together with (11) this implies $D(a) = 2D(\frac{1}{2}a)$. On the other hand, using the first equation of (11) in (10) we get $2D(\frac{1}{2}(a+b)) = D(a) + D(b)$. The last two relations yield the additivity of D.

Consider now an invertible element $a \in A$ such that ||a|| < 1. Then 1+a is invertible and $(1+a)^{-1} = 1 - (1+a)^{-1}a$. From the definition of x and (11) it follows that D(1) = E(1) = 0. Using additivity of D and the relation $D(a) = aE(a^{-1})a^*$ we get

$$D(a) = D(1+a) = (1+a)E((1+a)^{-1})(1+a^*) = -(1+a)E((1+a)^{-1}a)(1+a^*)$$
$$= -aD(a^{-1}(1+a))a^* = -aD(a^{-1}+1)a^* = -aD(a^{-1})a^*.$$

Since D is additive, $D(a) = -aD(a^{-1})a^*$ for all invertible a < A. The proof is now complete.

Suppose now that X is a left A-module and $Q: X \to A$ an A-quadratic functional. Let a pair of elements $\{x, y\}$ generate X. We define f(a) = Q(x+ay) and g(a) = Q(ax+y). For an invertible $a \in A$ we have $f(a) = Q(a(a^{-1}x+y))$. Using the homogeneity of Q we obtain $f(a) = ag(a^{-1})a^*$. The parallelogram law implies

$$2f(a) + 2f(b) = 2Q(x + ay) + 2Q(x + by) = Q(2(x + \frac{1}{2}(a + b)y)) + Q((a - b)y)$$

$$= 4Q(x + \frac{1}{2}(a + b)y) + (a - b)Q(y)(a^* - b^*) = 4f(\frac{1}{2}(a + b)) + (a - b)g(0)(a^* - b^*).$$

Hence according to Theorem 3.1 we have $Q(x+ay) = aQ(y)a^* + ac + ca^* + Q(x) + D(a)$, where $c = \frac{1}{2}(Q(x+y) - Q(x) - Q(y))$ and D is a Jordan *-derivation. For $a, b \in A$, where a is invertible, we get

$$Q(ax+by) = Q(a(x+a^{-1}by)) = aQ(x+a^{-1}by)a^*$$

= $bQ(y)b^* + bca^* + acb^* + aQ(x)a^* + aD(a^{-1}b)a^*.$

Using Lemma 2.3(i) we find that

(12)
$$Q(ax + by) = aQ(x)a^* + acb^* + bca^* + bQ(y)b^* + D(ba) - bD(a) - D(a)b^*.$$

Finally, let a and b be arbitrary elements of A. According to (3) we have for every integer n

$$2O(ax + by) + 2O(nx) = Q((n+a)x + by) + Q((a-n)x + by).$$

If n is large enough then n+a and n-a are invertible, so that we get using (4) and (12)

$$Q(ax+by) = -n^2Q(x) + \frac{1}{2}((a+n)Q(x)(a^*+n) + (a+n)cb^* + bc(a^*+n) + bQ(y)b^* + nD(b) + D(ba) - bD(a) - D(a)b^* + (a-n)Q(x)(a^*-n) + (a-n)cb^* + bc(a^*-n) + bQ(y)b^* + D(ba) - nD(b) - bD(a) - D(a)b^*).$$

A straightforward computation shows that (12) holds in this general case as well.

On the other hand, if for $c,d,e \in A$ and a Jordan *-derivation D, the functional $Q: X \to A$ given by (12) is well defined, then Q is a quadratic functional. This is an easy consequence of Lemma 2.3(ii) and the fact that D is additive.

Generalizing this result we shall obtain an extension of Theorem 1.2.

THEOREM 3.2. Let A be a real Banach *-algebra and Q an A-quadratic functional defined on a left A-module X. If a subset $\{x_{\alpha}; \alpha \in J\} \subset X$ generates X, where J is well ordered by <, then

(13)
$$Q\left(\sum_{\alpha \in J} a_{\alpha} x_{\alpha}\right) = \sum_{\alpha, \beta \in J} a_{\alpha} c_{\alpha\beta} a_{\beta}^{*} + \sum_{\alpha < \beta} \left(D_{\alpha\beta} \left(a_{\beta} a_{\alpha}\right) - a_{\beta} D_{\alpha\beta} \left(a_{\alpha}\right) - D_{\alpha\beta} \left(a_{\alpha}\right) a_{\beta}^{*}\right)$$

for all $\sum_{\alpha \in J} a_{\alpha} x_{\alpha}$, where $c_{\alpha\beta} \in A$ are constants, $c_{\alpha\beta} = c_{\beta\alpha}$, and $D_{\alpha\beta}$ are Jordan *-derivations.

Remarks 3.3. In the sum $\sum_{\alpha \in J} a_{\alpha} x_{\alpha}$ as well as in other sums of this paper only a finite number of terms may be nonzero. It should be mentioned that the expression $x = \sum_{\alpha \in J} a_{\alpha} x_{\alpha}$ is not unique in general and that also constants $c_{\alpha\beta}$ as well as Jordan *-derivations $D_{\alpha\beta}$ are not uniquely determined. One can easily prove that if $Q: X \to A$ given by (13) is well defined, then Q is a quadratic functional.

Proof. First consider the case that X is generated by a finite set of elements $\{x_1, \ldots, x_n\}$. Choose constants $c_{ij} \in A$, i < j, and Jordan *-derivations D_{ij} , i < j, such that

$$Q(ax_i + bx_j) = aQ(x_i)a^* + ac_{ij}b^* + bc_{ij}a^* + bQ(x_j)b^* + D_{ij}(ba) - bD_{ij}(a) - D_{ij}(a)b^*$$

for all $a, b \in A$ and all integers $1 \le i < j \le n$. Denote $Q(x_i)$ by c_{ii} and set $c_{ij} = c_{ji}$ for i > j. Suppose that for all subsets $K \subset \{1, ..., n\}$ of no more than k elements, $2 \le k < n$, the restriction $Q|_{Y}$ is of the form

(14)
$$Q\left(\sum_{i \in K} a_i x_i\right) = \sum_{i, j \in K} a_i c_{ij} a_j^* + \sum_{i < j, i, j \in K} \left(D_{ij}(a_j a_i) - a_j D_{ij}(a_i) - D_{ij}(a_i) a_j^*\right),$$

where Y is the submodule generated by $\{x_i; i \in K\}$. We will show that the restriction $Q|_Z$ to a submodule Z generated by k+1 elements is of the same

type. Assume that Z is generated by $\{x_1, ..., x_k, x_{k+1}\}$. Define

$$b_1 = Q\left(\sum_{i=1}^{k+1} a_i x_i\right), \quad b_2 = Q\left(\sum_{i=1}^{k} a_i x_i - a_{k+1} x_{k+1}\right),$$

$$b_3 = Q\left(\sum_{i=1}^{k-1} a_i x_i - a_k x_k - a_{k+1} x_{k+1}\right).$$

The parallelogram law (3) gives us

$$b_1 + b_2 = 2Q \left(\sum_{i=1}^k a_i x_i \right) + 2Q \left(a_{k+1} x_{k+1} \right),$$

$$b_2 + b_3 = 2Q \left(\sum_{i=1}^{k-1} a_i x_i - a_{k+1} x_{k+1} \right) + 2Q \left(a_k x_k \right),$$

$$b_1 + b_3 = 2Q \left(\sum_{i=1}^{k-1} a_i x_i \right) + 2Q \left(a_k x_k + a_{k+1} x_{k+1} \right).$$

Solving this system of equations we obtain

$$b_{1} = Q\left(\sum_{i=1}^{k} a_{i}x_{i}\right) + Q\left(a_{k+1}x_{k+1}\right) + Q\left(a_{k}x_{k} + a_{k+1}x_{k+1}\right) + Q\left(\sum_{i=1}^{k-1} a_{i}x_{i}\right) - Q\left(\sum_{i=1}^{k-1} a_{i}x_{i} - a_{k+1}x_{k+1}\right) - Q\left(a_{k}x_{k}\right).$$

Using (14) we complete the first part of our proof. The theorem is proved in full generality by a simple use of Zorn's lemma.

An A-module X is free if there exists a set $\mathcal{B} \subset X$ having the property that every $x \in X$ is uniquely expressible in the form $x = \sum_{i=1}^{n} a_i x_i$, where n is an integer and $a_i \in A$, $x_i \in \mathcal{B}$. Such a set \mathcal{B} is called a basic set.

COROLLARY 3.4. Let A be a real Banach *-algebra. All Jordan *-derivations defined on A are inner Jordan *-derivations if and only if for each free A-module X and each A-quadratic functional Q defined on X there is an A-sesquilinear functional B: $X \times X \to A$ such that Q(x) = B(x,x) for all $x \in X$.

Proof. Suppose first that for each Jordan *-derivation D on A there is $x \in A$ with $D(a) = ax - xa^*$. Let X be a free A-module and $Q: X \to A$ an A-quadratic functional. If $\{x_{\alpha}; \alpha \in J\}$ is a basic set in X well ordered by <, then there are constants $c_{\alpha\beta} = c_{\beta\alpha} \in A$, $\alpha, \beta \in J$, and Jordan *-derivations $D_{\alpha\beta}, \alpha < \beta$, such that Q is of the form (13). For each pair $\alpha, \beta \in J$, $\alpha < \beta$, we can find $d_{\alpha\beta} \in A$ such that $D_{\alpha\beta}(a) = ad_{\alpha\beta} - d_{\alpha\beta}a^*$. Set

$$e_{\alpha\beta} = egin{cases} c_{lphalpha}, & lpha = eta, \ c_{lphaeta} - d_{lphaeta}, & lpha < eta, \ c_{lphaeta} + d_{etalpha}, & lpha > eta. \end{cases}$$

Then Q is of the form $Q(\sum_{\alpha \in J} a_{\alpha} x_{\alpha}) = \sum_{\alpha, \beta \in J} a_{\alpha} e_{\alpha\beta} a_{\beta}^*$. From the definition of a free module it follows that the functional $B: X \times X \to A$,

$$B\left(\sum_{\alpha\in J}a_{\alpha}x_{\alpha},\sum_{\beta\in J}b_{\beta}x_{\beta}\right)=\sum_{\alpha,\beta\in J}a_{\alpha}e_{\alpha\beta}b_{\beta}^{*},$$

is well defined. Moreover, it is A-sesquilinear and Q(x) = B(x, x) for all $x \in X$. Suppose now that there is a Jordan *-derivation D on A which is not inner. Define $Q: A \times A \to A$ by $Q((a,b)) = D(ba) - bD(a) - D(a)b^*$. If there is a sesquilinear functional B which generates Q, then B is of the form $B((a,b),(c,d)) = aed^* + bfc^*$ for some $e, f \in A$. The relation Q((a,b)) = B((a,b),(a,b)) with b = 1 gives us $D(a) = -ae - fa^*$. Since D(1) = 0, we have e = -f, so that D is an inner Jordan *-derivation. This contradiction completes the proof.

COROLLARY 3.5. Let A be a real Banach *-algebra. Suppose that the mapping $F\colon A\to \mathcal{D},\ F(x)=D_x$, is one-to-one and onto. Then for each A-quadratic functional Q defined on an arbitrary A-module X there is an A-sesquilinear functional $B\colon X\times X\to A$ such that Q(x)=B(x,x) for all $x\in X$.

Proof. Let X be generated by a subset $\{x_{\alpha}; \alpha \in J\}$. As before one can prove that Q is of the form $Q(\sum_{\alpha \in J} a_{\alpha} x_{\alpha}) = \sum_{\alpha,\beta \in J} a_{\alpha} e_{\alpha\beta} a_{\beta}^*$, where $e_{\alpha\beta} \in A$. The relation $\sum_{\alpha \in J} a_{\alpha} x_{\alpha} = 0$ yields for every $\sum_{\alpha \in J} b_{\alpha} x_{\alpha} \in X$

$$\begin{split} \sum_{\alpha,\beta\in J} b_{\alpha} e_{\alpha\beta} b_{\beta}^{\, *} + \sum_{\alpha,\beta\in J} b_{\alpha} e_{\alpha\beta} a_{\beta}^{\, *} + \sum_{\alpha,\beta\in J} a_{\alpha} e_{\alpha\beta} b_{\beta}^{\, *} + \sum_{\alpha,\beta\in J} a_{\alpha} e_{\alpha\beta} a_{\beta}^{\, *} \\ &= Q\left(\sum_{\alpha\in J} \left(b_{\alpha} + a_{\alpha}\right) x_{\alpha}\right) = Q\left(\sum_{\alpha\in J} b_{\alpha} x_{\alpha}\right) \right) = \sum_{\alpha,\beta\in J} b_{\alpha} e_{\alpha\beta} b_{\beta}^{\, *} \,. \end{split}$$

Since $\sum_{\alpha,\beta\in J} a_{\alpha} e_{\alpha\beta} a_{\beta}^* = 0$, we get

(15)
$$\sum_{\alpha,\beta\in J} b_{\alpha} e_{\alpha\beta} a_{\beta}^{*} + \sum_{\alpha,\beta\in J} a_{\alpha} e_{\alpha\beta} b_{\beta}^{*} = 0.$$

Fix $\gamma \in J$ and choose $b_{\gamma} = 1$ and $b_{\alpha} = 0$ for $\alpha \neq \gamma$. We get f + g = 0, where

$$f = \sum_{\beta \in J} e_{\gamma\beta} a_{\beta}^{*}, \quad g = \sum_{\alpha \in J} a_{\alpha} e_{\alpha\gamma}.$$

On the other hand, if we set in (15) $b_{\gamma} = c$, $c \in A$, and $b_{\alpha} = 0$, $\alpha \neq \gamma$, we obtain $cf + gc^* = 0$. Together with cf + cg = 0 this implies $cg - gc^* = 0$ for all $c \in A$. Since the mapping F is one-to-one, this yields g = f = 0, or (with the same definition of B as in the previous proof)

$$B\left(\sum_{\alpha\in I}a_{\alpha}x_{\alpha},x_{\gamma}\right)=0=B\left(x_{\gamma},\sum_{\alpha\in I}a_{\alpha}x_{\alpha}\right)$$

for all $y \in J$. Thus, B is well defined. This completes the proof.

EXAMPLES. Two special cases have been extensively studied. The first one is that A is a complex Banach *-algebra. In [6, 10-15] it has been proved that in this case each A-quadratic functional is generated by an A-sesquilinear

References

- [1] P. R. Chernoff, Representations, automorphisms and derivations of some operator algebras, J. Funct. Anal. 12 (1973), 275-289.
- [2] T. M. K. Davison, Jordan derivations and quasi-bilinear forms, Comm. Algebra 12 (1) (1984), 23-32.
- [3] A. M. Gleason, The definition of a quadratic form, Amer. Math. Monthly 73 (1966), 1049-1056.
- [4] P. Jordan and J. von Neumann, On inner products in linear, metric spaces, Ann. of Math. (2) 36 (1935), 719-723.
- [5] S. Kurepa, The Cauchy functional equation and scalar product in vector spaces, Glasnik Mat. Fiz.-Astronom. 19 (1964), 23-36.
- [6] -, Quadratic and sesquilinear functionals, ibid. 20 (1965), 79-92.
- [7] -, On quadratic forms, Aequationes Math. 34 (1987), 125-138.
- [8] C. T. Ng, The equation F(x) + M(x)G(1/x) = 0 and homogeneous biadditive forms, Linear Algebra Appl. 93 (1987), 255-279.
- [9] J. Röhmel, Charakterisierung quadratischer Formen durch eine Funktionalgleichung, Aequationes Math. 19 (1977), 163-168.
- [10] P. Semrl, On quadratic and sesquilinear functionals, ibid. 31 (1986), 184-190.
- [11] -, On quadratic functionals, Bull. Austral. Math. Soc. 37 (1988), 27-29.
- [12] P. Vrbová, Quadratic and bilinear forms, Časopis Pest. Mat. 98 (1973), 159-161.
- [13] J. Vukman, A result concerning additive functions in hermitian Banach *-algebras and an application, Proc. Amer. Math. Soc. 91 (1984), 367-372.
- [14] —, Some results concerning the Cauchy functional equation in certain Banach algebras, Bull. Austral. Math. Soc. 31 (1985), 137-144.
- [15] -, Some functional equations in Banach algebras and an application, Proc. Amer. Math. Soc. 100 (1987), 133-136.

DEPARTMENT OF MATHEMATICS E.K. UNIVERSITY OF LJUBLJANA Jadranska 19, 61000 Ljubljana, Yugoslavia

> Received August 30, 1988 Revised version July 18, 1989

(2475)