Contepts of Volume 97, Number 3

P. $Emmne, Quadratic functionals and Jordan x-derivations . . 157-165
M. Urnalsks, On the Hausdorff dimension of a Julia set with a rational y 1nd1[1"ercnt
periodic point . 167-188
F. PrzyTYCKY, M. UJRBANSKI mdA ZDUNIK Harmomc, Glbbs and ]-Iausdnrff measures
on repellers for holomorphic maps, I . 189--225
J StocHEL, Characterizations of subnormal operators . 227238
T. S1opwN, Weighted norm inequalities for Riesz pott.ntm]s and frdr.tmnal maximal
functions in mixed norm Lebesgue spaces . 239244
P. Domakskl and L. DREWNOWSKI, Uncomplcmcntablhty of thu qp‘\ws nl‘ norm
contimuous functions in some spaces of “weakly” continuous functions . 245-251
K. UrBANIK, Analytic stochastic processes II . e e e .. 2532265
Bditorial motes . . . . « v o . e e e e e e e e e e 266

STUDIA MATHEMATICA

Managing Editors: Z. Ciesielski, (Editor-in-Chief),
A, Pelczyiski, W. Zelazko

The journal publishes original papers in English, French, German and Russian, mainly in
functional analysis, abstract methods of mathematical analysis and pmbublhty theory. Usually
3 issues constitute & volume.

Manuscripts and correspondence concerning editorial work should be addressed to

STUDIA MATHEMATICA

Sniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, telex 816112 PANIM PL

Correspondence concerning subscriptions, exchange and back fascicles should be
addressed to

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES

Sniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, telex 816112 PANIM PIL

© Copyright by Instytut Matematyczny PAN, Warszawa 1991
Published by PWN-—Polish Scientific Publishers
ISBN §3-01-10223-3 ISSN 0039-3223

PRINTED IN POLAND

WROCEAWSKA DRUKARNIA NAUKOTWA

icm

STUDIA MATHEMATICA 97 (3} (1991)

Quadratic functionals and Jordan *-derivations
by

PETER SEMRL (Ljubljana)

Abstract. Let X be a lelt A-module where 4 is a real Banach x-algebra with an identity
alement, In this note the general Jorm of quadratic functionals defined on X is obtained; the notion
of Jordan s-derivations arises bere.

1. Introduction. In this note we shall consider only real Banach algebras.
An algebra is called a *-algebra if there exists an involution, that is, a linear
anti-isomorphism of period two. All algebras will have an identity element
denoted by 1.

Let 4 be a Banach =-algebra.

pDermNrrion 1.1, A function D 4 - 4 is a Jordan *-derivation if for all
a, bed

(0 D{a+b) = D(a)+D{b),
(2) D (a*) = aD (a)+ D (a)a*.

Usually, a mapping D: B — B, where B is an algebra, is defined to be
a derivation if it is linear and satisfies D (ab) = aD.(b)+ D (a)b. In the present
note we will not consider linear mappings We will be interested in additive
mappings which are not homogeneous in general. Therefore a Jordan deri-
pation J: B— B is defined to be an additive function satisfying
J{a®) = aJ (a)+J (@)a. Over a commutative algebra with the trivial involution,
a* = g, the set of all Jordan s-derivations is equal to the set of all Jordan
derivations as well as to the set of all (nonlinear) derivations [2].

A function D,: 4 ~ A, x& A, defined by D, (a) = ax— —xa™ will be called an
inner Jordan *- derwatmn‘ It is easy to see that the vector space of all inner
Jordan s-derivations on A is a subspace of the space 2 of all Jordan
wderivations. Tn two special cases we will find that the reverse inclusion holds
as well. For a gimilar result concerning linear derivations we refer to [1].

In the present note we will prove some equivalent characterizations and
useful properties of Jordan w-derivations.
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Let X be a left 4d-module. We always assume that Ix =x for all xeX.
A mapping Q: X — A will be called an A-quadratic functional if it satisfies the
parallelogram law

(3) O (x+y)+Q(x—y) = 20(x)+20(), x,yeX,
and the homogeneity
4) | 0(ax) =a@Qx)a*, xeX, acA.

In the special case A = R, (4) becomes Q(1x) = tQ (x) for all real ¢ and all
vectors xe X. S, Kurepa has groved the following theorem [5]:

TueoreM 1.2. Let X be a real vector space and let @ he a real-valued
guadratic functional defined on X. If {e,; aelJ} is an algebraic basic set in
X (Hamel basis for X over the field of real numbers), with J well ordered by <,
then

Q (Z thM) = Z bmﬁtutﬂ + Z (Dwﬁ (ru)tﬁ_Daﬁ (rﬂ)ta):
af

oed &< f

for all Zm t,6,6 X, where by, are real constants and t+— D, {t} is a derivation,

Our main result is a generalization of this thecrem. We will determine all

guadratic functionals on an arbitrary left A-module X, where A4 is a real |

Banach s-algebra. The approach in this general setting, specialized to the case
A =R, gives a shorter proof than the original one.
Recall that B: X x X — A is called an A-sesquilinear functional if

(8)  Blayx;+aszx,, y) = a;B(xy, ¥)+a,B(x,, ),
(6) B(x,b;y; +b,y,)= B(x,y) b} + B (x, y,)}b%,

Bach A-sesquilinear functional gives rise to an A-quadratic functional by
Q(x) = B(x,x). It is natural to ask whether for each A4-quadratic functional
Q there exists a sesquilinear functional B such that Q(x) = B(x,x). This
problem was treated by many authors [2], [3], [5]-[15]. Let us mention only
twa results. The answer is in the negative in the case 4 = R [5]. On the other
hand, if 4 is a complex =*-algebra then each A-quadratic functional can be
represented by an A-sesquilinear functional {11]. This last result can be
considered as a generalization of the Jordan-von Neumann characterization of
inner product spaces [4]. Our main result implies that Jordan *-derivations
arise as a “measure” of the representability of quadratic functionals by
sesquilinear ones. More precisely, it will be proved that each A-quadratic
functional can be represented by an A-sesquilinear functional if X is a free
A-module and the function F: A — 2 defined by F(x) = D, is onto. If F is also
‘one-to-one, then the assurnption that X is a free module can be omitted. We
shall also see that the answer to our question is in the negative if there exists
a Jordan *-derivation on A4 which is not inner.

X, X5, 56X, ay,a,€4,

X, ¥1,,€X, b, bye 4.
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2. Jordan =-derivations

TrroreM 2.1. Let A be a real Barach =-algebra and D: A — A an additive
function. Then the following assertions are equivalent:

() D is a Jordan =-derivation,
(i) for all invertible ae A

(7 D(a)= —aD(a”")a*,
(iii) for all a,beAd .
(8) D{aba) = abD (a)+aD (b)a* + D (ayb*a*.

Proof ()= (). (7) vields D(1) = 0. If a is invertible and [a| <1, then
1+a, 1—a, 1—a® are invertible as well, moreover (a—1)"*—(a*—~1)"!
=(a®~1)"'a. We will show that for such an a we have

D(a®) = aD(a)+D(a)a*.

Indeed,

D{a)+a *D(@a*"' = D{)—D(@ ) =D{a—a" ) =D(a " (@®—1)
) D((@*—1)"ta) (a2 —1)a*"1
= —a ' @-1D(a-1)" ) (a**—a*""

+at (@=1)D{@~ 1))@= 1)a*!
=a~ta+1)D@a—1){e*+ a* ' —a 'D(a®—1)a*~!
— (146" Y)D(@(1+a*")—a~ D (a})a* L.

Hence 0 = a~ 1D (a)+ D (a)a*~*—a~ D (a%)a*~?, which yields D(a?) = aD ()
+D(a)a*.

Consider now an invertible element @ with norm greater than 1. Then for
some positive integer n, n”'a is invertible with norm smaller than 1 and
certainly a = n(n~ta). Since D is additive, (2) holds also in this case. Now, let
a be arbitrary. Choosing an integer n > jal, we have

D(a?)—2nD (@) = D((a—n)*) = (a=n)D (@) + D (@) (a* 1),

'so that (2) is valid for this a as well.

= —a "t (a*—

{i) = (iii). In (2), replace a by a+b to get
9 D (ab)+ D (ba) = bD (a)+aD (b)+D (@)b* + D (b)a*

for all a, be A. Consider now x =D (a (ab + ba)+(ab + ba)a). Using (9) we see
that

x = aD (ab+ ba)+(ab +ba)D (a)+ D (ab+ba)a* + D (a) (b*a* + a*b¥)
= 2abD (@) +a*D (b)+aD (a)b* +2aD (b)a* +baD (a)
+ bD(a)a*+ 2D (@}b*a* + D (b)a** + D (a)a*b*.
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On the other hand,
x = 2D(aba)+ D{a®b)+ D(ba®) = 2D(aba)+ bD{a%)+ a*D(b)+ D(a*)b* + D(bya**
= 2D (aba) + baD (a)+ bD (a)a* +aD (b} + aD ()b* + D (a)a*b* + D(b) a*?,
Comparing the two expressions for x we arrive at (8).
(iii) = (ii). Take b=a"" in (8).

Remark 2.2. In [15] it has been proved that am additive function
f defined on a complex Banach *-algebra which satisfies f(a) = —a f{a” Ya*
for all invertible aeA is an inner Jordan =-derivation. This is a direct
consequence of our theorem: just substitute a in (8) by i. So in this special case
the function F': A —» @ defined by F{x} = D, is onto. But it is also one-to-one.
Indeed, if x # y, then D () = 2ix # 2iy = D, (i).

Let us complete our discussion of Jordan #-derivations with a lemma which
will be needed in the sequel.

LEMMA 2.3. Let A be a real Banach #-algebra and D: A— A a Jordan
w-derivation. Then for all a,b,c and invertible de A we have

(i) dP(d~1@)d* = D (ad)—aD (d)— D{d)a*,
(i) D{chbca) = ¢D (ba)c* + cbD (ca)—cbD (a)c* + D (ca}b*c* —cD (a)b*c*.

Proof. {i) Define e = ad, which yields a = ed™'. Thus,
dD (d~'a)d* = dD(d~ted™ Y)d* = eD (d~Y)d* + D (&) +dD(d™ *)e*
— adD(d~Yd* + D (ad)+dD (d~ ) d*a*

by (8). Using (7) completes the proof.
(i) Consider first an invertible ae A and arbitrary b,ced. We have

D(cbca)y = D(ca(a™'b)ca) = cbD (ca) +caD (o~ 'b)a*c* + D (ca) b*c*
by (8). Now (i) implies aD (a”*b)a* = D (ba)—bD (a)— D (a)b*. Inserting this in
the previous relation gives (i1) in this case.
Next, let a be an arbitrary element of 4. For an integer n > ||a| the element

n—a is invertible so that (i) is valid for n— a, ¢ and b. Using (8) and the relation
D(n) =nD(l) =0 we get the desired result. '

3. Quadratic functionals. In this section we will find an explicit expression.
for a quadratic functional Q defined on a left A-module X where A4 is a real

Banach =-algebra. For this purpose let us solve a certain system of functional
equations.

TreoreM 3.1. Let A be a real Banach s-algebra. Suppose that f,g: A — A
satisfy

10) 2f(@)+2f () = 4f (3 (a+ b))+ (a—1b) g (0)(a*~ b%),
29 (a)+2g(b)= 4g (3 (a +b)) +{a~B)f (O} {a*~b*),
fle)=eg(c™ec*
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for ali a,be A and all invertible ce A. Then there exist (and are uniguely
determined) an element xeA and a Jordan =-derivation D such that
f(a) = ag(0)a* +ax+xa*+ f(0)+D{a) for all ac A,

Proof. Set x =4{f(1)—f(0)—g(0) =4(g()— f(0)—g{0)). Define D,E:

A—- A by
. fla} = ag{®)a* + ax+xa*+ f(0)+D(a),
(D g(@y= af(0)a* +ax+xa*+¢(0)+E(a).

The relation f(c) = cg{c™*)c* and (11) yield D(a) = aE (@™ Y)a* for all
invertible ae A. Putting b = 0 in (10) we get 27 (a)+21{0) = 4f{(;a)+ag (0)a*.
Together with (11) this implies D (a)} = 2D (4). On the other hand, using the
first equation of (11) in (10) we get 2D (3(a+b) = D(a)+D(b). The last two
relations yield the additivity of D.

Consider now an invertible element a€ 4 such that llafl < 1. Then 1+ais
invertible and (1+a)~! = 1—(1+d)~'a. From the definition of x and (11) it
follows that D(1)=E(1)=0. Using additivity of D and the relation
D(a) = aE{a” V)a* we get

D(a)=D(l+a) = (1+a)E{(L+a) ") {L+a*) = —(1+a)E((1+a) ta)(1+a%)
= —aD(a” (1 +a))a* = —aD(a" "' +1)a* = —aD (@™ YHa*.
Since D is additive, D (a) = —aD(a”)a* for all invertible a < A. The proof is
now complete,

Suppose now that X is a left A-module and Q: X —+ A an A-quadratic
functional. Let a pair of elements {x,y} generate X. We define
fla)=Q(x+ay) and gla)=Qlax+ y). For an invertible aeA we have
fl@y=Q(al@ 'x+y). Using the homogeneity of O we obtain
f(a) = ag(a~")a*. The parallelogram law implies _
2(a)+ 2 () = 20 (c+ay)+2Q (s-+by) = Q (2(x+ 1@+ D))+ L (e —B)y)

— 40(x+3(a+b)y) +a—b)Q () (* —b*) = 4/ (k (a+b)+(a—b)g O)(a* —b%).

Hence according to Theorem 3.1 we have Q(x-+ay) =‘aQ (a* +ac+caj" +
O (x)+ D (@), where ¢ = %(Q (x+ Y—0(x)—Q () and D is a Jordan -deriva-
tion. For a,be A, where a is invertible, we get

0 (ax+by) = Q(alx+a*by) = a@ (x+a~"by)a*
— bQ (y)b* ++bea* + ach* +aQ (x)a* +aD (a” *b)a*.
Using Lemma 2.3(i) we find that
(12) Qlax+by) = aQ (x)a* +ach* +bea*+bQ(y)b* + D {ba)—bD (a)— D (a)b*.

Finally, let @ and b be arbitrary clements of 4. According to (3) we have for
gvery integer #

20 (ax + by) +2Q (nx) = Q({n+a)x+by)+Q({a_n)x+ by).
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If » is large enough then n+a and n—a are invertible, so that we get using (4)
and (12)

Q(ax+by) = —-n*Q(x)+3 (e +mQ () (a*+n)-+(a+npch* +be(a* +n)
+5Q (y)b* +nD (b)+ D (ba) — bD (@) — D (@) b* +(a — 1) @ (x) (u* —n)
+(a—n)cb* +be(a*—n)+ b0 (nNb&*+ D (ba)—nD (b}—bD (a)—D(a)b*).

A straightforward computation shows that (12) holds in this general case as
well.

On the other hand, if for ¢,d,eed and a Jordan s-derivation D, the
functional Q: X — A given by (12) is well defined, then @ is a quadratic
functional. This is an easy consequence of Lemma 2.3(ii) and the fact that D is
additive.

Generalizing this result we shall obtain an extension of Theorem 1.2.

THaEOREM 3.2. Let A be a real Banach =-algebra and Q@ an A-quadratic
Junctional defined on a left A-module X. If a subset {x,; xeJ} < X generates X,
where J is well ordered by <, then
13 (X ax,)= ;I Captf + Y. (Dop(aga,)—asDapy (@) — Doy (a,)af)

w,fie. a<p

aeS

Jor all Y yeyi,x,, where c.p€A are constants, Cy = cpy, and Doy are Jordan
*-derivations.

Remarks 3.3. In the sum ) ,.a,x, as well as in other sums of this paper
only a finite number of terms may be nonzero. It should be mentioned that the
EXPression x = ) ,.;a,X, is not unique in general and that also constants Cap 88
well as Jordan #-derivations D,, are not uniquely determined. One can easily

prove that if Q: X — A4 given by (13) is well defined, then Q is a quadratic
functional. '

Proof First consider the case that X is generated by a finite set of
elements {x,, ..., x,}. Choose constants ¢;;e 4,i < j; and Jordan *-derivations

Dy;,i < j, such that _
Qlax;+bx)) = aQ (x)a* +ac;;b* + beya* - bQ (x ) b*
+Dy;(ba)—bD;;(a) — Dy;{(a)b*
foralla,be A and all integers 1 < i < j < n. Denote { (x,) by ¢;; and set ¢;; = ¢

for i>j. Suppose that for all subsets K < {l,...,n} of no more than
k elements, 2 <k <n, the restriction Q|y is of the form

(14 0 (Z _aixi) = Z acaf + Z (Dy (a,a)—aDy;{a)—Dy{a) “T) s
ek’ - iLjek i<)ijek

wherf; Y is the submodule generated by {x;; ieK}. We will show that the
restriction Qf, to a submodule Z generated by k41 elements is of the same
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type. Assume that Z is generated by {X1s ey X, Xp 41} Define

k+1 k

b, = Q( z aixi): by = Q( aixi“ak+1xk+1),
=1

i=1 i
-1

by = O Z A% — WXy — Bt 1 X 1)
Coa=a

The parallelogram law (3) gives us
k

by+b, = 2Q( aixi)+2Q (a4 1 X+ 1)-‘
=1
E—1
by+by =20 Y ape;~ap X )20 (@xy),
=1
E-1
by+by= 20 aixi)+2Q (@ + At 1%+ 1)

1

i

Solving this system of equations we obtain

K
b, = Q(Z ap;)+ Q@ (a+ X 1)+ O (@6 Gpt 1 Xps 1)
=1

k-1 k—1
+0( ax)—Q( Y, a2~ g1 X+ )= 2lax)-
i=1 i=1 .
Using (14) we complete the first part of our proof. The theorem is proved in full
generality by a simple use of Zorn’s lemma.

An A-module X is free if there exists a set # = X having the property that
every xe X is uniquely expressible in the form x = Y- ax;, where n is an
integer and ;e A, x,e4%. Such a set # is called a basic set.

COROLLARY 3.4. Let A be a real Banach »-algebra. All Jordan =-derivations
defined on A are inner Jordan »-derivations if and only if for each free A-module
X and each A-quadratic functional Q defined on X there is an A-sesquilinear
functional B: X x X — A such that Q(x) = B(x,x) for all xeX.

Proof. Suppose first that for each Jordan x-derivation D on A there is
xc A4 with D{a) = ax—xa*. Let X be a free A-module and Q: X —+ A4 an
A-quadratic functional. If {x,; «€J} is a basic set in X well ordered by <, then
there are constants ¢,y = ¢g. €4, %, f€J, and Jordan *-derivations Dgg, o < f,
such that Q is of the form (13). For each pair o, fe J, o < B, we can find d,ze 4
such that D,y(a) = ad,gz— d,ga™. Set

clld’ mzﬁl
o< B,
o> f.

caﬂ - daﬂ:
Cn:ﬁ + dﬂa:

Lap =
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Then Q is of the form Q@ (¥ sa,%,) == 2 apes@ubapaf- From the definition of
a free module it follows that the functional B: X x X — 4,

B(Y ax,, ¥ bpxgd = X, a.eqbf,
i wet ped o, e
is well defined. Moreover, it is A-sesquilinear and Q (x) = B (x, x) for all xe X
Suppose now that there is a Jordan -derivation D on 4 which is not inner.
Define Q: AxA— A4 by 0. b)= D (ba)—bD(a)—D (a)b*. If there is a ses-
quilinear functional B which generates Q, then B is of the form B((a,b), (c.d)
= ged* +bfc* for some e, feA. The relation Q((a,b)) = B((a, D), (¢, b)) with
b = 1 gives us D (a) = —ae—fa*. Since D (1) = 0, we have ¢ = —f, so that D 1§
an inner Jordan #-derivation. This contradiction completes the proof.

COROLLARY 3.5, Let A be a real Banach =-algebra. Suppose that the
mapping F: A—@, F(x)=D,, is one-to-one and onto. Then for each
A-guadratic functional Q defined on an arbitrary A-module X there is an
A-sesquilinear functional B: X x X —» A such that Q(x) = B(x, x) for all xeX.

Proof Let X be generated by a subset {x,; «=J}. As before one can prove
that Q is of the form Q (Y 4eya,%,) = Y e pesttaapdl, Where e,56 4. The relation
Y Xy == 0 yields for every Y .b.x,eX '

Z baetﬂb.?_!— Z baeﬁﬂa?'}' Z aaedﬁb?;'l' Z aaedﬂa?

a,fet x,fed x,flef a,fet
= Q (Z (ba+aot)xa) = Q (Z buxa))z Z bueﬂﬂbg‘
weJ aet o, fat

Since Y, per@Lapaf = 0, we get

(15) Y beewalf+ Y. aeabf =0.

a,fef a,fet

Fix yeJ and choose b, =1 and b, =0 for a#y. We get f+g =0, where
f=2 entf, 9= 2 acu

BeJ aeS
On the other hand, if we setin (15) b, = ¢, c€ 4, and b, = 0, a 55 y, we obtain
¢f+gc* = 0. Together with ¢f+cg = 0 this implies cg—ge* = 0 for all ceA.
Since the mapping F is one-to-gne, this yields g = f=0, or (with the same
definition of B as in the previous proof)
B(Y a,%,:x,) = 0=B(x,, ) a,x,)

ast aet

for all yeJ. Thus, B is well defined. This completes the proof.

ExAaMPpLES. Two special cases have been extensively studied. The first one is
that 4 is a complex Banach =-algebra. In [6, 10~15] it has been proved that in
this case each A-quadratic fonctional is generated by an A-sesquilinear
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functional. This is an immediate consequence of our results. According to
Remark 2.2 the mapping F: 4 — % is one-to-one and onto in this special case,
so that the result follows directly from Corollary 3.5. The same result was
obtained in the case that A is the field of quaternions [6, 10]. This shows that
all Jordan s-derivations defined on the field of quaternions are inner.
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