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Harmoenic, Gibbs and Hausdorff measures
on repellers for holomerphic maps, I
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FELIKS PRZYTYCKI (Warszawa), MARTUSZ URBANSKI (Torud}
and ANNA ZDUNIK (Warszawa)

Abstract. We prove the hard part of the Refined Volume Lemma, postponed from Part T,
leading to the following dichotomy:

For 2 simply connected domain € < C with the boundary 2@ preserved by a holomorphic
map defined on its neighbourhood, repelling on the side of Q, either 82 is a real-analytic circle or
interval or else a harmonic measure w on &2 viewed from £ is singular with respect to the
Hausdorff measure Ay, with Makarov's function &,(t)=texp (c\/log(lft)logloglog(l/t)] for
¢ > clw) = /20%/y # 0 (6% = 6% {w} a certain asymptotic variance and  a Lyapunov character-
istic exponent) and « is absolutely continuous for ¢ < c(w).

We alse prove the above for 02 a mixing piecewise repeller including the case of the limit set for
a quasi-Fuchsian group, the boundary of the “snowflake” and more generally Carleson’s fractal
Jordan curves.

Finally, we study complex l-parameter families of mixing repellers. In particular, if 802 is the
boundary of the basin of attraction to w for the iteration of z—z*-+a we prove that o*{w) is
a subharmonic and real-analytic function of «, compute its quadratic part at a = 0 and estimate all
other coefficients of the power series expansion with respect to a.

Contents

Part I

0. Introduction. Statement of main results.

1. Preliminaries: Gibbs measures versus Hausdorff measures on mixing repellers.

2. Harmonic measure versus Hausdorfl measures on the boundary of an RB-domain: The
expanding Jordan case.

3. Geometric coding tree. Harmonic measure versus Hausdorff measures: The expanding
non-Jordan case.

4, Gibbs measures on quasi-repellers. Harmonic measure versus Hausdorff measures: The
general RB-domain case,

Part IT

Introduction
5. Gibbs measures on quasi-repellers, continued.

1985 Mathematics Subject Classification: Primary 58F(8; Secondary 58F12, 58F11, 31A1S,
31A20.

3 — Studia Math, 97.3



190 . F. Przytycki et al

6. Harmonic measure on fractal Jordan curves. Mixing piecewise repellers.

7. The dependence on a parameter.

8. (Appendix). Bstimates of the asymptotic variance in the case of the boundary of the basin of
attraction to oo for the iteration of z++z%+4a.

This paper (except the Appendix} is a revised version of a part of the Warwick preprint, July
1986 (referred to as [PUZ-preprint}). Part I appeared in Annals of Mathematics. To make this
paper readable independently of Part T we recall in the Introduction the main theorems and
necessary preliminaries.

Introduction. We study the relations of a harmonic measure @ on the
boundary 9Q of a simply connected domain @ in the Riemann sphere

C (CardC\Q > 1), viewed from @, to various Hausdorff measures on Q. .

We recall the main definitions: Let ¢: R, — R, be an increasing con-
tinuous function, @ (0) = 0. We define an (outer) measure A, for 4 = C by

45(A) = lim (inf {3, ¢ (diom B))),
J

the infimum being taken over all countable coverings of A by discs B, of
diameter less than &, the diameter taken with respect to the standard metric on .
For every Borel set E its Hausdorff dimension is

HD (E) = inf {: Agw (E) =0}, where @™ (1) = t*.

For every probability measure p, HD (u) = inf {HD(E): p(E) = 1}.

If u is invariant and ergodic, for a holomorphic mapping F [rom
a neighbourhood in € of the support of u to €, we define the characteristic
Lyapunov exponent by x,{F)= [log|F/|du. Also, h, (F) denotes measure-
theoretic entropy. If h, (F) > O then the crucial fact is: HD (u) = h, (F)/x,(F}.

If 4 is an invariant ergodic probability measure for a map F on a metric
space X and ¥ is a square integrable function on X with [y dp = 0 and
2ainf (o FYdy < co, then we define the asymptotic variance

n—1 o
i@, Py =i =limn™' [(¥ deFdu={y2du+2 Y (v F)du.
n-kno =0 neml

A domain Q2 mentioned above is called an RB-domain (repelling boundary)
if there exists a holomorphic map f defined on a neighbourhood U of 40 such
that f(UNQ < UnQ, f(8Q) =82 and (2, /(U nelQ) = a2 (ie. 0Q is
repelling on the side of Q). Then f is called an RB-map. If R: D—Q is
a Riemann map from the unit disc then g =R 'ofoR always extends
holomorphically beyond éD and the last equality is equivalent to the
expa_nding property for g (ie. [(g")'| > 1, for n large enough). So g preserves
a unique ergodic probability measure I' on éD equivalent to the normalized
length measure I The radial limit of R exists almost everywhere so we may

con:vsider the harmonic measure & = R, (!). Then «' = R (I} is f-invariant and
equivalent to w.

icm

Harmonic, Gibbs and Hausdor(f measures, 11 191

The following is the main theorem of our theory:

THEOREM A. Let @ be an RB-domain in €. Then HD (cb) =1 and for
c(w) = /205 (. g)/x, where ¢ =logif e Ri~loglg|, x = xr{g) = xw (f), we

have the following possibilities:
df c(ew) = 0, then € is an analytically embedded interval or a Jordan curve.
If c(ew) = 0, then HD(0Q) > 1 and

') @l A‘Dc: for every ¢ > c(w),

() w<€ Ay, forevery c<cl(w) (c>0}

where &, () = rexp(c\/logﬂ /MDlogloglog(1/t)) (L means singular, < means
absolutely continuous).
Moreover, for l-ae. {&dD

(i) G# =limsup +log|R’ (rC)V\/logi—l—;log log 10g-1w~1wr = ¢ (w).
r—1

This theorem is a dynamics counterpart of general Makarov’s theorem (see
[MKk1, 2, 4, 5]). A part of Theorem A was proved in Part I A final step of
c(w) = 0 = 20 is analytic was proved in [Z2] and c{w) > 0=HD(6Q) > 1
follows from [Z13. More precisely, the case of f|sn expanding was fuily coped
with in Part I. In the general case (i) was also proved in Part I (§4) but to have
(ii) it remained to prove the upper part (i) of the Refined Volume Lemma (we
shall recall the statement below). This will be done in §5.

Consider 4 = (§;){ ;=1, a 0, 1-matrix, which is transitive and aperiodic (all
the entries of some power A" are positive). Then

() ={e=()ell, ..., J}*": 84, =1 for every n=0,1, ...}

is called a onme-sided shift space. By s we denote the shift on Z(4) to the left,
(5(2), = &u+1. We consider the metric dist (x,8) = exp(—inf{n: &, # 4,}). The
full shift space (when every &; = 1} is denoted by /. For the two-sided shift
space (where Z* is replaced by Z) we use the notation £(4), 3V, § Next,
P () — Z(4) denotes the projection #((0,)%.) = (,)§ . Finally, .« is the
partition of X(4) into cylinders 4, = {a: «, =j} and

by = \/ks‘i(w)= {.ﬂks“’(AfJ: Ajest}.
We add a tilde in the case of £(4), and write =" for o/} and " for &,
Let ¢ be a Hélder continuous function on Z(4). Then there exists a unique
Gibbs measure (equilibrivin state) g, on Z (). It can be defined as a measure
maximizing the functional 4, (s) + [ @ du. The maximal value can be considered
as the definition of the pressure P(s,¢). Also, fi, denotes an §-invariant
measure on X(4), the so-called natural extension of u,.
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There exists a “Jacobian™ function # such that for every Borel set E on
which s is injective, u,(s(B)) = {Jdu,. We write

-1
s = (Lol @) -

]

The function —log # turns out to be Holder continuous and homologous to
¢—P(s, ) (there exists a Holder continuous function A such that
—log F—@+P{s,¢) =hos—h).

This implies for every xe Aes/”

n-1
(L K<y (d)exp( Y G(s() < K
=0
{K >0 depending only on ¢), for G = —log # or ¢—P(s,¢).
For n large enough and every x we have

’ n=1
2 _ [T A (%) > 1.
B - j=0

Now recall our coding which allows us to transport y, from 2 to C. Let
f: U— & be a holomorphic map defined on an open set U — €. Choose
zef(U) and curves y*, ..., ! embedded into f(U), joining z to some d < 2
preimages of z, provided they exist. For every « = (a)%o€{l, ..., d}*" = ¢
we denote y* by y,(x) and the end point of v, (a) different from z by z,{x).
Assume that vy,(®) and z,(x) are already defined. Then define 7,44 (x)
s, ) (1) where £, 5t Y is the branch mapping z to z,(x). We define
Zn+1 (%) as the end point of y, (@) different from z,(x). (We assume that the
above-mentioned branches exist.)

We call the graph with the vertices z and z, () and edges y, () for all nand
aeX? a geometric coding tree (g.c.t.) and denote it by F (z;7%, ..., ¥%). Every
xeX? yields a subgraph b(x) called a geometric branch, composed of
z=12z_,(), z,(x) and y,(«), n = 0. The subgraph composed of z;—; (&), y;(),
j=n, is denoted by b,(x). The branch b{«) is called convergent if z,(o) is
convergent in clU. We define the coding map z,. @(z,)—clU as
2 (@) = lim,  z, (2} on the domain @ = @ (z,) of all «’s for which b(x) is
convergent.

It is sufficient for our aims to assumme that the 7/ are smooth and

4
B(jU P, Kn7?) A (" (Crityu f** (Asympt)) = &
=1 ’
for every n> 0 and a constant K > 0, where Crit = {xeU: J”(x) =0},
Asympt = {xeU: 3 a continuous curve y: R — U such that y(z)— 8U
and f(y(2) > x as t— o0},
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Such trees exist in the situations under consideration in Part I, namely for
f an RB-map or a rational map on C.

It is crucial that the sets Z™\Z and z3'(x) for every x are “thin”
(generalizing Beurling’s classical theorem about radial limits of univalent
functions). In particular, for every g, considered above p, (Z"2) = 0, which
allows us to define the measure (z,), (#,) (denoted in the sequel by h, ) and
h,,s)=h,, , () (provided f extends continuously to z. ().

If [ extends holomorphically to a neighbourhood of zs (%) we call
X =z, (2) a quasi-repeller.

Now recall the above-mentioned

REFINED VOLUME LEmMA, RVL (Lemma 9, §4, Part I). Let X' be a guasi-
repeller for f, let ¢ be a Holder continuous function on 24 and
W =q@+xloglf oz l—Pls,¢), where x=HD (s). Then for c{tyy)

= /202, ()/1,,, (f) we have for every c with 0 < ¢ < c(Hpy) and pig -ae. x€X
() lim sup 2., (B(x,n)/ (r exp (c/log(1/r)logloglog {l/r))) =00,

On the other hand, there exists a decomposition [, = i+ U, into two
measures, with jt, (X) > O arbitrarily small, such that if ¢ > c{it,,,,) then for py-a.e.
xeX

(i) lim sup 1, (B (x, r))/(* exp e/ Jog (1/r) log loglog (1/1)) = 0.

r—+o

Recall that o on 8Q in Theorem A is an example of g, Indeed, we can
build a tree T = {z; ¥, ...,7) In Q close to 8Q. Then R™' ()=
TR (z); RT* (4, oo R7Y(y9) is a tree in D. We have o' = s, for
@ = —loglglo(R™ (2)e)-

Remark that p,, is ergodic, hence for every & > 0, x€ X and n large enough

@) X (1 (o ()= 8)) < 1) I < XD 11, (1) +)-

An intermediate step between RVL and Theorem A is Theorem 6, §4, Part
1. Here we shall refer only ¢in §§ 9—8) to its mixing repeller version, Theorem B.
Recall that a compact set X = C is a mixing repeller for fin Ruelle’s sense if
there exists a neighbourhood U of X such that (Nazo fTHU) = X, for every
open (in X) set V< X there exists n for which f*(¥) = X and f |y is expanding.

TueoreM B. Let X = C be 4 mixing repeller for a holomorphic mqp‘fi’qﬁdjlét
¢ be a Holder continuous function on X. Let yi, denote the Gibbs measure. Set
clt,) = /200, W), ), where = ¢ +ulog|f|—FP (f, ), = HD (i,). Then

the following dichotomy takes place:
If c(ptq,‘}'= 0 then p, is equivalent to A, and x = HD(X).

If c(ug) > 0 then for & ()= t*exp (c/Tog (17t log tog log{1/1))
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Uy L Ager  for ¢ < clyy),

o € Agen for ¢ > c(i),

In §6 we prove the above for mixing piecewise repellers. As an application
we prove the following:

THEOREM C. Lei @ be a simply connected domain in C with 802 a Jordan
curve. Let 8;,j = 1, ..., J, be a finite family of compact arcs in 682 with pairwise
disjoint interiors 5}. Denote | ) 8; by 0. (We do not assume that 0 is connected.)
Assume that there exists a family of conformal maps f; (which may reverse the
orientation on C) on neighbourhoods U, of 8. For every j assume that
H@QnU)cQ, {fi|>1 on U, and

(%) f;6enU) = .

Assume alse the Markov partition property. the existenice of a transitive and
aperiodic matrix A = (8,) ;-1 with 8;; = 0 or 1 such that £,(0) = {Jjer, 0, where
I={j: 6;;=1}.

Then there exists a transition parameter c(w, ) such that for the harmonic
meastire ¢ restricted to & the assertions of Theorem A: (i), (ii) (for every
0 <e<clw,d) and (i) are satisfied. If ¢(w,8) =0, then & is a real-analytic
curve.

Of course dealing with a mixing (piecewise) repeller X one is not forced to
use trees, one can define a Gibbs measure with the use of a coding n: Z(4) - X
given by a Markov partition (cf. §1, Part I). One considers m, (1.} or 7, (o)
depending on whether ¢ is defined on X(4) or on X, and writes simply p,,.
(Both ways of coding turn out to be useful, often they give the same.)

One example where the assumptions of Theorem C are satisfied with
d = 98 is of course any RB-domain, the Jordan expanding case, Another
example is where 9Q is a quasi-circle invariant for the action on € of
a quasi-Fuchsian group (for a pair of isomorphic, compact surface, Fuchsian
groups), as considered by R. Bowen [B2]. Theorem C is in fact motivated by
this example. Also the proof is based on Bowen’s ideas.

Other examples for which Theorem C vields c¢{w) > 0 are the celebrated
von Koch “snowflake” and its self-similar generalizations described by L.
Carleson [Ca2] or F. M. Dekking [De] (see [Fal] for more references). For
these examples 822 or almost all of 02 can be covered by curves 0 satislying the
assumptions of Theorem C.

-Finally, in §6 we note that Sullivan’s theorem [Su2], stating that for any
two nonlinear mixing repellers for holomorphic maps in C, a measurable
conjugacy between Gibbs measures of maximal Hausdorff dimensions extends

(up :co a change on a set of measure 0) to a conformal one, holds in the case of
mixing piecewise repellers.
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In §7 we prove that for a complex 1-parameter family of mixing repellers
X, with Gibbs measures p, being images of the same u, on X(4), provided
HD () is constant, (c(y,))* is a subharmonic and real-analytic function of A
We estimate the coefficients of the power series expansion at any A°. We apply
this to the harmonic measures @, on X; = 04, for , expanding RB-domains.
We also consider the question of the existence of a holomorphic choice of
Riemann maps R,: D — ; (cf. [PoRo]).

In §8 (Appendix) we make concrete estimates of the power series expansion
coefficients and compute the quadratic part at A = 0 for (¢ (w,))* for w, viewed
from the basin of attraction to oo for iteration of z— z®+ 4. (We write there
2% +a leaving A teserved to z” + Az according to Mandelbrot’s notation. In fact
we deal with ¢2 but (c(w,))® = 205/x, x =1og2)

Remark on the notation. The letter K will be used to denote various positive
constants, which may differ from one formula to the other.

Note. Sections S, 6, 7 are independent of each other and may be read in
any order.

5. Gibbs measures on quasi-repellers, continued

Remark 1. We shall rely in this section on the Law of Iterated Logarithm
(LIL)

limsupS,/./nloglogn= /26 ae.

in the following situations:

1. For §, = Yizd o s, on (29, p,) where g, and o2 are those from RVL
{see Introduction).

2. For 8, =Y"Z3 F &, on (8%, i) with o® = o} where F = y,—fi,(4),
y,=1on A, 0 outside, g% = lim,.,n™" f[S224F,03*dig,, and A is an
arbitrary subset of Z¢ with the following property: There exists a sequence of
sets A, ea(#™,) such that

(1 © i, (A + A,) < exp(nd,)
Here o(.7",) denotes the o-algebra generated by A,

for a constant 8, < 0.

LIL in case 1 was proved in §4, Part I, Lemma 7. LIL in case 2 follows
immediately from the LIL Theorem stated in §1, Part L

Most of this section will be devoted to Lemma 1 which is a strong~versi0n
of Lemma 8, §4, Part 1. Recall that & is the standard projection from 27 to x4,
For every aeX? such that 2 (w)e D (z,,) set

x(0) =25, (P (),  Xnla} =2, (@5 ™(@) for every meZ.
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Lemua 1. In the situation of the Refined Volume Lemma (see Introduction)
theré'exists a set 5 < %* of i, measure arbitrarily close to 1 and satisfying (1),
with o% >0 arbitrarily small, such that for a constant R > 0 for every wel,
m=<0,

(2) there exists a branch f;iJ of ™™ on B{x(x), R) such that f7(x(x) =
X—m (%)

(caution: this notation of branches is consistent with that of the Introduction or § 3,
Part I, only up to #8 ™),

3) [(fielY] < K exp{—md)
Jor some constants K, & independent of «;
@) F<IAY QIAEYOI<2  for every x,yeB(x(a), R);
there exists a positive integer N (independent of aeZ) such that

(5) by (2 (®) < B(x(x), R/2)

(the subgraphs b, were defined in the Introduction and in §3, Part I).

Remark 2. Recall after §4, Part I, that this lemma follows from Pesin’s
theory [Pe] except for the approximation condition (1) and the possibility to
have o% arbitrarily small. We cannot get on without these properties of = in the
proof of RVL, the upper part (ii).

on B(x(x},R)

Prooi_‘ of Lemm a 1. We shall construct & by consecutive removals of
“bad” cylinders from 2. As in (18), §4, Part I, consider the set
(6) B =EWM=272\ YU
nzN

where o, = {Aeof": diamy,(o) > exp(—nd), ze A} for a fixed § > 0.
Recall (§3, Part I) that Card o, < Kexp(3n).
Consider R satisfying the equality

") R(2 = exp(— N&)/(1 - exp(~5))

for some N to be specified later on.

By (1), (2), Introduction (or § 1, Part 1) there exists § < 1 such that for every
Aed”, u,(A) < Kf". Take & such that
8 - Bexp(68) < 1.

Consider ¢}, above with this 4. Then (7) immediately implies (5) for evefy
a&Z,. Also (1) is satisfied becanse

po({ded™ AnD(E)#BNP(E)) < 2 (U )
< Y, Kffexp(3j6)— 0

. i=n
exponentially fast as n-— co.
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Now the idea will be to remove from every cylinder 4 e.#} cylinders from
o~} whose number grows exponentially very stowly, with the rate indepen-
dent of the choice of 4, as n — co. This will ensure (1) and we shall remove just
awkward cylinders to ensure (2)-{4) for the o’s not removed. We shall use an
idea from [FLM]. Some technical difficulties to overcome are caused by the
fact that f is defined only on a neighbourhood of X rather than on all of the
Riemann sphere {cf. Remark 3).

First restrict f to a smaller neighbourhood of X than the original domain
so that we can assume that f is defined on a neighbourhood U of X and
extends holomorphically to a neighbourhood of ciU. So for every r > O there
exists L, > 0 such that for every xeX, r = r and every connected component
V of the set f~!(B(x,r)) we have

® diam V< L+
' Moreover,
{10) Lr—0 asr—0
Fix &y, &, & such that
(1 BX, ey U, gL, <ty &< (le(fS)3/1{)00)2

(the constant K (8) will be defined by (20) later on).

Fix some positive integer M, to be specified later on, depending only on
structural constants related with f and ¢, on the chosen & and on an arbitrarily
chosen constant with which we want to bound 1—pu,(Z). Set

M+1
12) = U f(Crit).
Since f extends holomorphically beyond cl U, the set Crit (f) is finite. We have
Card {,, < (M +1)Card(Crit (f)) < co.
From now on we shall work for some time with
(13) R = 100R.

(The coefficient 100 is chosen here to yield the distortion in (4) bounded by 2.
Demanded an arbitrary bound > 1 in (4), one must modify this coefficient
accordingly) In view of g, (B(x,r)) < Kr® for a constant t> 0 and every
xeX, r>0 (see Lemma 4, §4, Part I) we get

(14 tos (B ({a3R) < (Card [ KR < R
if, say,
(15) R < exp(—MJ)

and M is sufficiently large. (Just to know that g, (B(C w»3R)) can be arbitrarily
small if R is small enough one could again refer to “thinness” of the
z,-preimages of points (see Introduction or (6), § 3, Part I). The exact estimates
(14), (15) will, however, be needed to estimate ad).



198 F. Przytycki e al

For every ae =, if z,, (Pa)¢ B (L), 3R), then by (5), zy(#a)¢ B((,,2R). So
(16) 5, = {ae 2, dist(zy(@), {) = 2R}

has p, measure close to 1, since &, has had. (We have removed from Z, some
cylinders from .&7j, intersecting it.)

Let us now specify R (and R), as promised after (7), as satisfying (15) and
additionally small enough that for every uef,, k=1,..., M,

17 I (Blzy(@0),2R)) < B(X &).

This is possible due to (10). (Later on to estimate 0% we shall need an estimate
for R from below as well; now we do not bother about it.)

Fix for some time a cylinder A e #% containing « = w(d)e E,. We shall
define by induction on n = M a sequence .of (4, n) < ). (These will be
families of cylinders not to be removed, in other words, “good” backward
brztnchcs related to 4.) All the time when A is fixed we shall denote .o/ {4, n) by
o (n).

Define .of (M) = 7 -} Suppose that for some k = M, & (k) is already
defined and for every Aes/{k) and every deAn A with 2{g) = # (), the
following properties (18) and (21) are satisfied:

(18} Sy is well-defined on the ball B{zy(Pa), R,), where
k—M

(19) R, = 2R [] (A=K (8)exp(—;d),
j=0

(20) K(8) = %(1 —exp(—0));

and

(21) ﬂ?&’g(B(zN(g*a),Rk)) < B(X,¢,) and contains no critical value of f.

_ Observe that by (11}, f,7! is well-defined on £ (B (zN(g’oc),Rk)) and maps
it into B(X,s,) for every branch f;! involved in the definition of 7.

Define now o/ (k+1). This will be the set of all cylinders €./}, such
that 4 = | ) o/ (k) and that for every ded with 2 (%) = #(a) the following
conditions {22) and (23) are satisfied:

(22) LA (B2 (), R))) < o, 0xp(— 66 (k+ 1 — M))

(this makes sense because R < R, for every n; I, is the 2-dimensional Ricmann
measure on C);

(23) fv‘(&"“)(B (zy (P, Rk)) contains no critical value of f.
We need to prove (21) for k+1. By (22) for every de Ae o (k+1) there

exists x € B(zy{#a), R) such that [(£,c5 1) (x)I* < &,R ™2 exp(— 65 (k+1~M))
hence

(24) (™Y (ol < &K (6)° (1000R) ™~ *exp (—36 (k-+ 1 — M),
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By (19) and (20), Ry = 3R. The Distortion Theorem of Koebe (see [Hil,
Theorem 17.4.6) applied to univalent functions on the disc B(zy(#), R,} gives,
with the use of (19), the following estimate for every dedess (k+1),
yeB(zy (@), Ris1):

2 8
(1—Ryy /R 1—R/R,

(25) a2 W Y ()l <

< 48K (8) 2 exp (3(k+1~M)4).
This and (24) yield for ye B(zy (%), Ryt 1)
(26) WA Y 0)l < 8,/(3R),

hence (21) for k-+ 1. (We needed more in the denominator of the right-hand side
of {26) than merely 2R, or more exactly R, ., since there was no reason for
FolerV(z(Pm) to be in X. We only knew that 7. (Pa)e X; hence
frETN(z (Pale X and we have used z,,(P0)& B(zy (P, R/2).)

The above distortion consideration is formally correct if U, the domain of
£, is in C and the derivative is in the sense of the BEuclidean metric on C.
However (in case we need to consider the wholé Riemann sphere), the sets we
consider have small diameters so the factor by which (25) changes under
changes of metrics is close to 1. .

Defining o (4, k+1) = o/ (k+1) for every k> M we have removed from
s “{+1) a finite number of cylinders not satisfying (23). This number is
bounded independently of a cylinder 4 and number k by the number of critical
values of f, since any two sets like in (23), for any two different cylinders A, A’
with ded, Z(d) = 2 (&) = 2 () and #'e A', are disjoint. Also by disjointness
we remove ai most
@7 Q= (1 (U)/ea)exp (66 (k + 1 — M)
cylinders not satisfying (22). .

By (1), (2), Introduction, for every AesdZ}, A" e &l and every k,[ = 1 we
have

A (4 0 A7) < KPR, (4")

(B the same as in the line preceding (8)). Thus, for every Ae Y intersecting =,
we have

(28) A, (4 0 (U o CNU o (k+ 1)) < 2K Qv 1 (A).

(The factor 2 stands here because of the removal of cylinders containing critical
values.)
Let us define

(29) - 5= (U= .K)n A).

k>M

[es]

sz
A
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We obtain

B30y £, (B) = A(E)— ), 2K("Q,.
n>M
This is close to 1 because if M is large, then 3 . "0, is small (see (8).

Finally, for every n, 2= M, n, 2 N '

61 g (J{desrm,: AnE#ON\E)< }, Kffexp(3kd)+ } 2KB'Q,,
k>na k>ny
so we obtain also the property (1) of fast approximation by cylinders for Z.

For fixed acE, from (5) we obtain B{x(a),R)) « B(zy (#a),3R). As
3R < R < 2R < R, for every k > M, by the delinition of & we obtain (2). By
Koebe's Distortion Theorem for every x,yeB(zy (Q’a),%R) we have the
estimate

ey GO O < (L+3R/GR(L —3R/GR)Y,
which together with (13) gives (4).

Meanwhile for x,ye B(zy (%), R) we have the estimate by (1+%)%/(1-%)*
< 1000. This and (24) give (3). The proof of Lemma 1 except for the estimate of
2 is finished. (For a suspicious reader we summarize the order of choices: the
constants &y, &, &, B, T and J depend only of f and ¢, then an arbitrary
number with which we want to bound 1—f,(Z) is chosen, then we choose
consecutively the numbers M, R and N.)

SUBLEMMA 1. There exists E as constructed above with f,(X\E) and
o% arbitrarily small (> 0).

Proof Step 1. We shall prove that for a constant T arbitrarily large, for
M large enough (depending on T) there exist N, R and R related with each
other by (7), (13) satisfying (15), (17) and on the other hand satisfying

(32) M > TlogN.

Denote by d, the number of critical points of f in ¢1X, by d, the maximal
multiplicity of critical points plus 2. No trajectory (f” (x)) in X hits the set of
critical points for more than 4, times. Otherwise it would contain a periodic
sink so (see (7), §3, Part I} it would not belong to z, (%), a contradiction. So
given T, there exists &5 > O such that g; < g, (see (11)) and for every xeU

(33)  fA(B(x,23))n B(Crit(f) n ¢l X,s,) # @ happens for at most d, integers
jfrom {j: 1<j< T}

We can assume that there are no f-critical points in B(X, 2e;)\clX . Let
Jo= (inf{|f' (0)l: xeB(X,es\B(Crit(f) nclX, e}}) ™.
Let £ > 1 be defined by the equality ’
(34) T—2d, =logd,flogé.
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Choose a constant &, with 0 < &, < &, such that ir < r*~" for every r <e,.
Thus, to have (17) satisfied, it is enough to have for R the estimate

(35) (@R < g, where L = dy¥iTg-Ma-am,
This is so because for ae&,, in (17)
(36) diam ;70D (B (2 (#), 2R)) < (diam £,5§ B{zy (@), 2R))"

where a = d; * for at most 2d,/T per cent of time (see (33)) and 2 = £ for the
rest of time and because the sets whose diameter we measure intersect X. (A
precise estimate would give the right-hand side of (36) multiplied by a constant
but the exponent would be a = (d,—1)"* rather than d; *. Replacing d, —1 by
d, allows us to omit this constant if ¢, is small enough. We put the percentage
of time to be 2d,/T rather than d,/T because with the latter (36) would be true
only for M a multiple of T) '
The inequality (35) is equivalent {due to (34)) to

(—M{2d4,/T)—M (1 —2d,/TT —2d1)‘1)logd2 2 log(loge,/log 4R),
then to

T logloges® Tloglog(4R)™*
2,41 logd, (2, +Dlogds.

Thus, to have (15), (17) and (32) satisfied, it is enough (in view of (7) and (13)) to
take M equal to the right-hand side of (37). (Of course T in (32) is not the same
as in (37) but it is also large)
Step 2. By (31) we have already [, (A< pr  for n= N, where
1o | J{dest”,: AnE#ONE, By <1is a constant, N is large enough.
We shall now estimate I, (4%) for n < N. Unfortunately we do not know
about any part of Z\F to belong to &Y 1. (Recall that we removed the sets
AnAsal® ;44 for j= M, for. Aesf (A,j+1) depending on A.) So to cope
with n < N we cannot help but estimate the whole 7, (£\E). By the estimate of
Card 7%, (14} and (30), we have

A,E\E) < Y Kpexp(3j8)+ R+ 3, 2KFQ;.

JzN i=M

(37 M<

The first two summands decrease exponentially fast with the growth of N. To
estimate the last one we use (32) and obtain

‘ KZﬁing KﬁM < KﬁTlngN — KNTIoss ¢ N8

if T>8/logf™* and N is large enough. It is convenient to write down the
estimates for n» N and n < N in a joint formula

(38) 7, (4% < (max (N,n) ™%

Step 3. Having the uniform (independent of 5} estimate (38) we can.
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estimate o3. Suppose that f,(2\5) <é. Recall that

0-.%' = j‘(F:__-)2dﬁ¢+2 Z Hu

n=1

where 4, = [ Fo(Fgo$"df,, Fy defined in Remark 1.2. A straightforward
computation (which we omit) and the use of (38) give

(IFzldp, <2 [(Fodi, <2
(39) )
J(E(Fg| ") —F5)* dii, < 3(max (N, )
To estimate #, decompose F: in a standard way (see [B1] for example):
(40) FE=(Fs—E(FE|J;"3’?1/3))+E(Fs|&?"—f?:fs)-

We need also the following {cf. [B1], 1.25). There existg A < 1 such that for
any functions F and G measurable with respect to &}, s/ respectively,
psr<s<t, we have

(FGag,~|Fdi,[Gda,| < K2~ [|F|di, [|Gldg,.
The inequalities (39), the inequality above and the Holder inequality give
M, < 100042 (max (N, n)) ™2 + KA"3¢2 + 1000 (max (N, 1)) ™%

The conclusion is that o2 < Ke' +KN™*. This proves the Sublemma
(hence Lemma 1) because ¢ can be arbitrarily small and N arbitrarily large. =

Remark 3. The proof of Lemma 1 would be much simpler if we assumed
that f extends to a holomorphic (hence rational ) function on €. An arbitrary
M satisfying {15), in particular M == N would fit to the construction of 2. One
still must remove “bad” branches f,”" for each Ae.«/}, n > M, as in [FLM],
but the construction with the use of the sequence R, is redundant. In the
Sublemma Step 1 is also redundant and the approximation (38) turns out to be
exponential ,

Proof of the Refined Volume Lemma, the upper part (i) Let
= <:.~f‘*, N,R, & be sets and numbers provided by Lemma 1. Consider any
ae X? such that the LIL for the sequence of random variables Fg 0§ at o holds
(see Remark 1.1). So if j=m and j=m" are two consecutive times when
HFa)eZ and say m <m we have

m -1 I

L el @)= (1, Fold @) = =m—1)7,(8)

=
and, if m and m' are large enough,

Fg(¥(a)) <2./oimloglogm,

0

m' =1

Y Fo(¥(a) > —2./cimloglogm.
j=0

13

J
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The conclusion is that if say [, (Z) > 4/5 and m, m' are large enough, then

(41) m'—m < 5,/ozmloglogm.

Assume that o2 = o7, () > 0. The case o> = 0 can be dealt with similarly.
Only ¢? in the estimates should be replaced by n > 0 arbitrarily small. This
concerns also the estimates above with 52. Given an arbitrary & > 0 there exists
aset Q<2 (0 < Pz,), of u, measure arbitrarily close to 1, on which the
upper part of the LIL in Remark 1.1 holds uniformly, namely there exists
N, > 0 such that for every «eQ and nz N,

@) 'Y (s rlogTogn < (1+6) /222, ).

=0
Denote f, restrfcted to #7MQ) by f, p, restricted to Q@ by u and
(Zoo)y (W) = (26%), (@) by pty. This p; will be the measure standing in the
assertion of the Refined Volume Lemma.

Take an arbitrary o2~ *(Q) for which the LIL for Fge§" and (3),
Introduction {or (23), § 1, Part ) for x = z,#(«) hold. Take any small r > 0.
Let n(r) = 0 be the largest integer such that, for every j with 0 <j<n(r),

(43) ) (x @) < RA2).

Let m(r) be the largest integer less than or equal to n(r) such that
§™ (e H. Set

Bour) = Fritian B (Xmen (@), R}.
We have by {43) and (4)
(44) By = B(x(a),r).
The consideration which follows the inequality (2) in the proof of Lemma
4 in §4, Part I, implies that s™ on Bj,(r) = 2., (Bmy) N @ is injective. This is so

because f™® is injective on B, and has no critical points there. Herice for
F# the Jacobian (see Introduction or (6), § 1, Part 1) we have

m{r)— 1

b @) = 1 (5 @), ().

E j=0
So, as —log # is homologous to @—P(s,¢) in bounded functions (cf.
Introduction or Remark 5 in §1, Part I), we obtain
mir)—~1

1 (Buie) = o (Bin) < K sup exp( Y @ (s*@)-m) P s, )
k=0

&Bm )
and by the definition of , by (42) and by (4),
(45) 10ty (Bya) < —wl0gl(f™Y (x (&)
. +{1+ 5)\/2‘75@ (ym(r)loglogm(r)+logkK.
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With the use of (44), the inequality opposite to (43) for j=n(r)+1,
replacing under the square root m{r) by n(r) in (45) and also applying (3),
Introduction {(or (23), § 1, Part I) we obtain (as in the proof of (28), §1, Part I)
for » small enough

46)  tog{a; (B(x(@),n)/r*) < wlog [(f* " (xey ()]
+(1+22),/ (202, (W) (x —28)) log (1/r) log, (1/r)
=I+1I.
(The coefficient 2 before & absorbs all constants,) With the use of (41) we obtain
I < x(log(suplf)(n(r)—m)
< % (log(sup D) 5/ (0 3/(x— 2¢)) log {1/ 1ogs,(1/r.

Since ¢ and ¢% can be taken arbitrarily close to 0 (by Lemma 1) this proves
RVL(ii). w '

Remark 4. Let us come back to the inequality (i) in RVL and explain the
trouble we cannot overcome with proving it for ¢ = c(u,,). In §4, Part I we
arrived, with the use of Kolmogorov’s test as in § 1, (33)-(36), at the inequality

log (,u(,* (B (x (oc),r))/r”) = /20*m(loglogm+3log,m)+ Z“: l/J(fJ (x (oc)))

j=m

=14+

for fi,-a.e. « and a sequence of *'s converging to 0. Here m depends on r and n is
the first time after m when §"(z) hits a “good” set 5. We would arrive at

log (#-p* (B(x (Ot),r))/r") > /Q2o*/log(1/n)log (1/r)

if we knew that m—n < n®, § < 1, which would allow the error terms in I to be
absorbed by the term 3logym as in (33)4(35), § 1, Part I, and if we knew that
IM<n’, 6 <4, in order for I to be also absorbed. To get I <n*? the
approximation property (1) for £ and the uniform upper part of LIL for the
sequence Y «§7, j— o, on & would be sufficient. Unfortunately we cannot
agsure both the properties at the same time.

6. Harmonic measure on fractal Jordan curves. Mixing piecewise repellers.
We shall hete prove Theorem C and discuss the examples mentioned in the
Introduction. We shall divide the proof into steps in the same way as in §§1
and 2, Part I. Along the proof we shall often draw attention to the importance
of the assumption # ((16), §0, Part I). In examples, where we want to apply
Theorem C, we need to construct sophisticated Markov partitions rather than
the natural ones in order to have 4 satisfied (see the snowflake example). On
the other hand, we obtain the conclusion about the relation between o and
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Hausdorff measures easier than Carieson [Ca2] and Makarov [Mk3] (cf.
[Mk4T).

Proof of Theorem C. Step 1. For every j there exisis a conformal
extension g; of the map R™'of;°R beyond D, by the Symmetry Principle
(analogously to g, see Introduction). Denote the domain of g; by V. Due to
4 every V} is a neighbourhood of R 1(a ;- By construction g;(dD w ¥;) = dD.
By [P23,§7, or [B2], L. 3, the family g, is expanding, namely there exist n > 0,
4> 1 such that

n— i

IT lgila* () > 2> 1
k=0
for every xe();R™!(#) and j, such that g*(x)&d,,.
The partition {9}} = {R™'(?)},j =1, ..., ], together with the maps g; on-
V; satisfies the similar Markov partition properties as {;}. R conjugates the
two Markov partitions. So, as in §1, there exist coding maps 7, and =, from
Z{4) onto the sets & = | ] &} and 8 = | J&; respectively, n, = Rem, and =,, m,
semiconjugate the shift s with g = g;, f = f; on the cylinder {a, = j} for every j.
Step 2. Let p, be the (Gibbs measure on Z(d4) for the function

¢ (@) = —logl(gL,) o 7, (). (The function ¢ is Holder continuous because =, is,
due to (1)) Set (7)), (1t,) = Mpi, for i=1, 2. Then
m le1 is equivalent to [, on &,

hence p,, is equivalent to w on & (with bounded densities).
(1) follows from (1), Introduction, up to one detail: (1), Introduction,
implies that for every “cylinder” curve y = 7, (A) for Aesf™, 0ed and ae. {ey

2 K< 0o -0 0 O < K
so by the bounded distortion property for iterations K~ < p,, (9)/1, (7) < K.
Here #({,g" denotes the Jacobian d(((g'alﬂn...ogr,,to)_l),‘= (Mm))/dp,,,l(z:).

However, we need to know this for § an arbitrary arc in & The trouble is
that even if § is an extension of our “cylinder” y on which g, o...2g,, is still
defined we cannot write (2) for {e7\y because #({,g") involves a sequence
Gy, -+s &, which may be different from oy, ..., &,.

We cope with this by observing that, by the bounded distortion property,
for every arc nem, (") divided into arcs 7y, ..., n.em, (") we have
inf; diam#, > K~'diamn for K >0 independent of n and 5. So i contains
a “cylinder” # with diam # > K~ *diam{ and can be covered by a finite number
of “cylinders” y,en (™), t=1,..., T, diamy, € Kdiamj, with pairwise
disjoint interiors. So we arrive at

K~ diamy < ppq () < ¥ s () € 3 diamy, < Kdiamy.
t t
(The last inequality is true because we work inside the circle D where the
diameter of the union is roughly the sum of diameters. However, it turns out

4 — Studin Math. 97.3
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that this inequality is also true in a more general situation, because T is
bounded by a constant independent of 7, see Remark 3 after the proof of
Theorem C.)

Step 3. The formula (1) from [P2] is valid, namely for p,,-ae. (e the

nontangential limit

) log |R' {x
® ¥ (R) (0) = lim gg?tan_—f]glg—‘_)jcl = s s 9)
exists, 2 d — & is defined as f; on every 2;, ¢ is g; on &}. The choice at the
end-points is of no importance. ((3) is true for the Gibbs measure iy Of any
Holder function ¢ on Z(4) in fact)

Indeed, the idea from [P2] works, Given a point x inside a Stolz cone at
{=m; (2} for a = (2)eZ(4), map it forward by g,,, ga,, and 50 on until the
image x' is well inside D, then map R{x) backward by f,', ..., /-

This uses ¢;(V;n D) « D and the bounded distortion property for the
iterations. This allows us to replace log|R'(x)| by an expression containing
flog (/Y (R(0)| and logl(g"y (¢)) which can be replaced (roughly) by Pliags ()
n¥u,.(9) giving (3). The reader will find details in [P2].

Step 4. By Makarov’s theory [Mk2]

(4) RO =90 for l-ae, {cdD.
(See also Remark 6.) Hence
I = xu(,;l (g) = X,u.ﬂz(f):-

so for (@) = —loglge, = 7y ()] +log|fs, o my (@) We have [ydu, =0 and we
consider the asymptotic variance ¢* = aﬁw (%) as in §2, Part L

Now one proceeds as in § 1, Part I. The proof that‘c(w, 8) = ./2a%/y is the
transition parameter for which (i)-(ili) of Th. A ((8)-(11), §0, Part I) hold
reduces to the proof of the Refined Volume Lemma (RVL) (Lemma 2 in §1,
Part I, or RVL in Introduction with g, replaced by Hoz and ¢ 2 ¢ (fp,) in (i),

For xen, (w), a = (x)e Z{4), one considers a ball B{x, r) and its images,
first under £, then under f,, etc, until f; = ... < f,, (B(x, 7)) becomes large (it is
almost a ball by bounded distortion). One can relate n to r as in (24),§ 1, Part L.
So one has

) Kt/ _]f[o (Y (P ) < K,
) K-t <1 (R (Bix,n))/ 3 @Y (@R ()| < K,
i=0

by bounded distortion for the iterations Junooio fogand g, o .0 g,.. (By the
continuity of R and R7* on clD and cl® the sets f, ... f,, (B (,r)) and
Y (R‘l (B (x,r))) come out with large diameéters for the same j = n,
This n is also the same if instead of the set R~1 (B(x,r)) we consider only its
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component containing n, (x).) Thus one obtains the RVL as in § 1, Part I, by
using the LIL (or Kolmogorov’s test if ¢ = c{w)) for the sequence yros”,

Step 5. Consider the case o> = 0. Then by Lemma 1, §1, Part I, ¥ is
homeologous to 0 in Hélder functions, in particular in bounded functions in this
case. So R and R™* on & and @ respectively are Lipschitz continuous, due to
estimates similar to (5) and (6). In particular, we conclude that 8 is rectifiable.

Consider a Riemann mapping R: &\dD — {\clQ and g, the conformal
extension of R~ 1o fjoﬁ. Let us hat also all other symbols in the construction
analogous to those for R. We claim that

(7 6* =cl, (N =0.

Otherwise, by the part of Theorem C already proven applied to the domain
C\le we would have & L A, on d. On the other hand &, being rectifiable, can
be extended to a rectifiable Jordan curve ¢¥ < clfi. Denote the harmonic
measure on 3¥ viewed from o by @". Since the component of €\&Y
containing co contains C\cl@2 we have »" > & on §. By the F. and M. Riesz
Theorem ([Go], Ch. 10,81, Th. 2), ®" is equivalent to A,, 50 & < A, on §. We
have come to a contradiction.

By (7), R and R~! are Lipschitz continuous on & and 4 respectively.

Now one proceeds as in [P3] (see also the references given in §2, Part I).
R~15R is absolutely continuous and the measures (m,), (u,) and (%), (4,) are
equivalent to I, and ergodic, so (R™! = R), maps the former to the latter. These
measures have real-analytic densities with respect to /; on the closed () arcs
&y and @} for every j, by the argument similar to Krzyzewski’s [Krz]: Lift
everything from a neighbourhood of 8D to a neighbourhood of R in C and
consider, on a neighbourhood of { = n,{a)ed,,, iterations of the Perron~
Frobenius operator on the function say I, namely the functions P*{1) =
Npesmy=a (g o---0gp)) " . (In case gy, »...og,, reverses orientation, by
(Gpo_.°-.-°gp,) we mean the holomorphic function —(gs,_,°...2gp)") The
sequence P"(1) converges to a complex-analytic funetion, real and positive on
R, which is just the density.

The conclusion is that » = R 'oR {and its inverse) are real-analytic on
every &) (5} resp.). Hence, for arbitrary j, r extends to a complex-analytic,
injective map on a neighbourhood of . If R on a neighbourhood of 4;in C\D
is replaced by K = Rer on 2 neighbourhood of &) in C\D, then R and K are
equal to each other in a neighbourhood of &; in #D. They glue together to
a holomorphic map H, so a neighbourhood in 822 of ;= H (&) is an analytic
curve. The conclusion is that # (and even its neighbourhood in &) is
analytic. m

Remark 5 One can generalize the notion of the mixing repeller for
a holomorphic map of § 1, Part I, and consider a mixing piecewise repeller in C.
This is a compact set X < € for which there exists a covering &/ = {4}/, by
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compact sets with pairwise disjoint interiors such that cly(intyd)} =4,
together with conformal injective maps f;, each defined on a neighbourhood U,
of 4;, such that f;(4) is a union of elements of &, |fjl > 1 and

8) LU,nX)CX.

(The index X at cl and int denotes the closure and interior in X

We also assume that for the standard coding ny: 2 (4) — X by a one-sided
shift space, the matrix A is tramsitive, aperiodic.

For a mixing piecewise repeller Theorem B stays true. To see that, it is
enough to prove the Refined Volume Lemma with the assertion as in the
version from the Tutroduction (including the case ¢ = ¢ (g,,), with ¢ a Hélder
function on X (4) and p,,, = (), (1,) and to prove p,, <€ Aupy, if the function
() = @ () +xlog |}, (my ()| — P(s. @) is homologous ta 0.

The only delicate place in the proof is an estimate corresponding to (27),§1,
Part I. This relies on the following lemma told us by Caroline Series.

LemMA 2. Every ball B{x,r)in X for xe X, r > 0, can be covered by at most
M cylinders A,e ™ with K™'r < diamd, < Kr, for constants K, M >0
independent of x and r.

Proof. By the definition of the open set for every 4,e of there exists a set
V; open in C such that

) inted; = V,n X

and clgV; = U,

Fix a;eintyA; for every j. Set D = mindist(a;, FreV)).

Consider an arbitrary ball B(x,r) in X with xe X, r > 0. For every « such
that n,(a)e B(x,r) choose n =n(x) such that

K™t <r(fine-. o fud (mg@)| < K.
Then by the bounded distortion property
{10) K~'r < diam(fy,o...of, ) 1 {(V,.,) < Kr.

One can choose a finite number of sets ,ir, t=1,..., T, of the form
F.(Ag ), where we have set F,=(fgo..of)™! for n=n() with
my(a') € B(x,r) which cover B(x,r) and whose interiors are pairwise disjoint in

X. This is so because the only possibie relations between the interiors of
cylinders are inclusion or disjointness.

By the bounded distortion property and (10), for 4, = F, (a, )e A, and
Vi=F,(V; ) we have "

dist(d,, Fr V) > K~ ' D diam P/diam Ve, > K7

(thé_ latter term with another K),
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By (8) and (9), ¥, X = inty 4,. So for every t # ¢/, dist(d,,d,) > K~ 'r. So
the balls B(4,, 4K ~'r) are pairwise disjoint and are contained in B (x,r (K + 1))
{here the balls in €). So

T < n(K+ )3k %) <4(K+1)*. m

This lemma was used in fact in [B2] in the proof that the measures
(Txds (- D) 10g | fonxl) A0d Agp(x) are equivalent. We put the detailed proof
here as the corresponding consideration in [B2] seemed to us obscure. Let us
remark that in the case where X is a Jordan curve, in particular Bowen’s
quasi-circle, one can have T =2,

The above considerations prove the following geometric theorem lying half
way between the abstract Theorem B and the concrete Theorem C.

THEOREM 1. Suppose that (X, o/, f) and (Y, %, g;) are two mixing piecewise
repellers in C conjugated by a homeomorphism h: Y—X. Denote by
Ay: 2(d) = Y, ny: Z(d)— X the corresponding codings with the property
homy = my.

Denote by i the Gibbs measure for the function o on X(A) defined by

@ (@) = —HD(Y)-log |95, ° 7y (=)l
Jor a=(a)eZ(d). Set py = (ny) (1), px = (@x)y (1), % = HD{uy) and
¥ (@) = —HD(Y)-log|ge, » my (@)l +310g | fz, o mx ()]
Then py is equivalent to Agpey, and the following dichotomy appears:

L If a® =02(y) >0 then uyl A,, more exactly there exists a nonzero
transition parameter c(uy) for the family of functions @ given by the formula

¢(ix) = /207 Yux-
Geometrically, for Aupy-a.e. y; € Ythe set of limit values as y, — y, (y,€Y)

for

o (dist(h(y), B (¥))" / \/ 202

1 1
- 0 - lo -
sty ya )™ [\ 0n(@) sty ya) SO dist (v, 7,)

is the interval [—1,1].
2. If ¢® =0 then » = HD(X) and the measure b, (1ty) = px = hy (Anp ) is
equivalent to Agpe.

Geometrically

_, _ dist(h(y),h(y )"
< ~ FFTTOREEAN
(dist(yy, ¥,))

for a constant K >0 and every y;, y,€¥

Note. In [PUZ-preprint] we asked whether ¢* = 0 implies h extends to
a holomorphic map. Shortly afterward we got acquainted with an answer by



210 F. Przytycki et al.

D. Sullivan [Su2] (for continuvous f,g). Adapting Sullivan’s theorem to our
piecewise expanding case we obtain the following

THEOREM 2. For (X, s/, f)) and (Y, B, g)) as in Theorem 1 and a measurable
one-to-onie map h such that h(#) = o, h, (uy) = uty and h conjugates g and f
ae, if e =0 and if (X, o, f) or (Y.#,g) is not linear (see Def. below) then
HD (X) = HD(Y) and h|p, and h™!|,, extend to conformal diffeomorphisms on
ne_ighbourhoods of B;, A; in Cforeveryj=1,..,J (after a change on sets of
measure O if necessary). -

DEFINITION. We call a mixing piecewise repeller (X, . »f)) linear if there
exist conformal charts ¢;,: U}, — C such that [ ),U;, is a neighbourhood of 4 ;
for every j=1,...,J and all the maps @i Pis Py fyow;, are affine.

In the situation of Theorem 2 it can be proved that if (X, =, f3) 1s not linear
then (Y, 4, g J:) is not linear, If both the repellers are linear then the assertion of
Theorem 2 is false {even if we assume h to be continuous; see [MkV7).

ExXAMPLES. 1. The snowflake. To every side of an equilateral triangle, in the
middle, we glue from outside an equilateral triangle three times as small. To
every side of the resulting polygon we glue again an equilateral triangle three
times as small and so on infinitely many times. The triangles do not overlap in
this construction and the boundary of the resulting domain € is a Jordan
curve. This €2 is called the snowflake (see Fig. 1). It was first described by Helge
von Koch in 1904.
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Denote the curve in 0Q joining a point xedQ to yedQ in the clockwise
direction just by xy. For every 8; = 4,4 1 moa1ny = 682, i=0,..., 11, we
consider its covering by the curves 12, 23, 34, 45, 36 in 0Q (see Fig. 2). This
covering together with the affine maps

12, 34 — 16 (preserving orientation on 3Q)

23— 61 (reversing orientation)

56 — 36 (preserving orientation)

45> 63 (reversing orientation)

gives a Markov partition of 2, safisfving the assumptions of Theorem C.

Fig. 2

Because A2 (and every subcurve) is definitely not rteal-analytic
(HD (6Q) = log4/og3), the assertion of Theorem C is valid with ¢(w,dy) > 0.

We may denote c(ew,d) by c(w) because it is independent of &; by
symmetry.

PropLEM. Compute ¢{w).

Remark 6. In the proof of Theorem C applied to the snowflake {and also
to Carleson’s domains described below), one does not need to refer to [Mk2]
to have (4). Indeed, ¥ (R) is {,-a.e. constant on each R™* (4;4;.,) by (3). Denote
it by y;. We have (cf. [P2] and (3))

0 =1lim [ log|R’ (:)|/(log (1 =n}dl, () = | xR Q) dl, ()
210}

rrlan

11
= Z %0 (A1)
i=0
with the first equality true because log|R'| is a harmonic function, the second
one due to the Distortion Theorem of Koebe, which allows us to change the

order of lim and |. .
Since the conformal maps: the rotation by the angle n/3 and the reflection
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transform £2 onto itself we deduce that y, and w(4,4;, ) are independent of i,
hence y(R) =0 ae.

0 1 f - d
Fig. 3

2. Carleson’s domain. We recall Carleson’s construction from [Ca2]. We fix
a broken line y with the first and last segments lying in the same straight line in
R?, with no other segments intersecting the segment 1,4 —1 (see Fig. 3). Then
we take a regular polygon Q' with vertices Tys -+ T, and glue to every side of
it, from outside, the rescaled, not mirror reflected, curve y so that the ends of
the glued curve coincide with the ends of the side. The resulting curve bounds
a second polygon £ Denote its vertices by 4,, 4,, ... (Fig. 4), Then we glue
again the rescaled y to all the sides of @ and obtain a third order polygon 2°
with vertices B, B,,... Then we build Q* with vertices Co. Ci, ..., ° with

%
Ay=B,

Aga=Byg

Tinn
Ad b=

Fig. 4
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Dy, Dy, ... etc. Assume that there is no selfintersecting of the curves 80" in this
construction, moreover assume that in the limit we obtain a Jordan curve
P =Z 2y = a0
The natural Markov partition of each curve T;7T;.; in % into curves
A;A;vq with f(4;4;41) = T;T; 1, considered by Carleson does not satisfy the
property # of the Introduction ((16), §0, Part 1) so we cannot succeed with it.
We proceed as follows: Define

f(Bd(j-1)+lej—1) = AlAd—l

for every j=1,...,4d.

Divide now every By, 4 forj=1,...,d,and A;Bs;;,forj=0,...,d—1,
into two curves with ends in the vertices of the polygon Q*: CleBy—14;,
Cle A;By;., tespectively, the closest to A;(#A4). Let, for j=1,...,d—1,

f(CIA) = Bgj1A;,  f(Baj-1C) = 44— 1Bp_y,
f(AJéf) = Adej+1, f(édej+1) = BlAl'

This gives a transitive aperiodic Markov partition of B, By_;.

We can consider, instead of the broken line y in the construction of £, the
line 4*® consisting of d* segments which arises by glueing to every side of
v a rescaled y. Consecutive glueing of the rescaled y® to the polygon Q' gives
consecutively @°, Q° etc. The same construction as above gives a Markov
partition of D Dy, in T, T 4. '

By continuing this procedure we approximate T; T;.; so from Theorem
C and from symmetry we deduce that there exists a transition parameter
¢(w) =0 (independent of T;T;; ) such that the properties (i-ii) of Th. A
{8)y-(11), §9, Part I) are satisfied.

Observe that Carleson’s assumption that the broken line 1, ..., d—1 does

not intersect 1,d—1 (except for the ends) has not been needed in these
considerations. Also the assumption that A' is a regular polygon can be
omitted; One can prove that c(w) does not depend-on T; T;4; by considering
a transitive, aperiodic Markov partition which involves all the sides of Q!
simultanecusly.

7. The dependence on a parameter. One can ask about how ¢ (w(4)) depends
on a for a family of domains €2 (a) (and respective harmonic measures @ {a))
analytically depending on a complex parameter a. In particular, what can be
proved if Q(a) is the basin of attraction to oo for a polynomial z*+a? How
large ¢(w(a)) can be? '

Let us start by considering an abstract situation as in Theorem B (see
Introduction or §1, Part I). Recall that if f; U— M is a C'-map defined on
a neighbourhood U of a mixing repeller X and ¢: U — M is sufficiently close to
f in the C'-topology then, in a small C%neighbourhood of the inclusion of
X into U, there exists a unique injective map h,,: X — U such that
gohy,=hy of The maps hy, and hi;; are Holder continuous. These facts are



214 F. Przytycki et al

well known: see [Sh] (structural stability of expanding maps), [P6], p. 72, and
[Sul] (telescopes). hy ,(X) is of course a mixing repeller for g so Theorem B is
applicable to it. Finally observe the one-to-one correspondence between the
Gibbs measures of Holder continuous functions on X and on h, ,(X), namely

(hf,g)* (fuqy) = p'qauh;.;‘

ProrposiTION 1. Let X be a mixing repeller for a holomorphic mapping
f U—C and let ¢ be a Hélder continuous function on X (us in Theorem B),
Consider a family of mappings f;: U—=C for a complex parameter } in
a neighbourhood V of 0 C, such that f, = f and f, (x) is a holomorphic function
of A, x. Assume that » = HD ({h,), (u,)) is constant (does not depend on A); here
h, denotes hy,;,. Then c2 = (c((h,)x (4,))? is a subkarmonic and real-analytic
function of A. The domain in C*® to which ¢ extends complex-analytically
contains for each A° = (23,03 eV the set

{(Ag,A5)€C2: |A; — A9+ Ay —AZ| < dist (2, 8V)}.

Proof Remark first that h,(x) is continuous in A, x and that for every
xeX, h;(x) is a holomorphic function of A, The latter follows from
Oh; = lim,.., f;""f" (for appropriate branches f; ™), the limit of holomorphic
functions of 1 for every x. (One could also refer to Mafic-Sad—Sullivan’s
A-lemma [MSS]. Indeed, h, (x) is holomorphic for every periodic source x by
the Implicit Function Theorem and periodic sources are dense in mixing
repellers.)

- We recall that cf = 203/y,, where 63 = 0,140, () = 02, (F,), where v, is
a function on h, (X) defined by

= @ohit+ulog il —P{(filn, e @ = hi' 1),

W, =0h, = p+xloglfioh,| —P(f, @) is the corresponding  function on
X and x; = Yoy, e (filhsn). Observe, however, that y, 15 constant, indepen-
dent of 4, because y, = k,/» and the entropy b, = Bina el i Inagxs) 1S constant,
equal to h,_ (f). Thus it is enough to study o*. Recall that
.on=1
of = limn™* [(S,¢) du,, where S, = Y §,of,
n—on j=0
lThc function S, (x) is a harmonic function of A for every xe X, n > 0, hence
Its square, as a composition with the convex fanction ¢+ 2, is subharmonic

(sce [HK], Th. 2.2). In consequence the average (integral) and the limit o7 are
subharmonic too. ‘

Now 1et us pass to the analyticity question. We shall rely on the following

Lemma 2 (see [H], Th. 2). Let u be a harmonic function on the disc
D, =B(0.r) = R* = {(z,,2,)e C*: z,,z, are real}, continuous on cl D,. Then
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u extends to a complex-analytic function on a neighbourhood of B, in C* and

o

1 ul(z, 2= ) byzizb

1,j=0

with  |byl < sup ful-2 (’?)rﬁ*ﬂ.

In particular, the series is absolutely convergent in |z,|+|z,} <.
Proof Suppose that r=1. Write the Poisson formula wu(z) =
my~ 1 [P(z,Duil)d|l| with the kernel P(z,l) = Re{{+z)A{—z). We have

o i==]

P(z,{)—1=12Re Y (z/{)"=2Re ¥ (1/{(Rez+ilmz)'

n=1

oMV re" " Reof @may—+
k o] C" CZ mz .

Integrating according to the Poisson formula gives {1). =

Proof of Proposition 1 (continued). Take an arhitrary A°cV. Let
r >0 be such that cIB(1%,7) < V. Set 4 = SuPyex sepiaon ¥ (4, X)i. (We write
F(,x) = ¥,(x)) Then by (1), $(A%+A,x) =3 by(x,A% (Re A (Imiy with
by, A0 < A2("1)r~4* 7. Consequently for every k= 0 the function

fy (4) = j‘p).'(‘pl"fk)d#.p
is real-analytic with the coefficients of the power series expansion at A°
satisfying
- L4 (N G-+
(b (A°) < ALy~ P, where Lj;=4 3, Z( )((I D=l _D).

i—t
As this estimate is independent of k, all n, are defined on a common

neighbourhood of 1° in C2, {(A;,A,): |4, —AS|+ |4, — A3} < r}.
For AeV (in RY the series

@ ot = +2 3, m®)

is uniformly (exponentially fast) convergent because of the uniform Hdlder
continuity of 7, on X. To know that o7 is real-analytic one wants to know that
the convergence of (2) holds also for every 2 in a neighbourhood of ¥V in C?. It
is sufficient to know that ¥, is Holder continucus on X,

We have .
G, =F A+ 2,0)— A%+ 4, ) < Kix—yl°

for every A = (A,,4,)e B(1°,7) = V and x,ye X. With the help of Lemma 2 we
deduce that

o LN
Gig,hy) = Y by(A% %, A3 A, with b (2%, x, )l € K |x—yl 2( ; )?‘ @D,
r.

So Gy, 4y) 2K (1—F/r) tx—yP if |14, —Af|+14,— A2 € F <
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Remark 7. The real-analyticity part of this proposition immediately
follows from [R2], we can even omit the assumption that x is constant and
consider ¢ depending on A (i.e. instead of (h,), (p,) consider on h, (X) the Gibbs
measures for @,y with @,(z) a real-analytic function of (4, z), 1eR").
Indeed, by [R1], p. 99 (¢f. Remark 3, Part I),

2

=L P oy By 1= PUpehelogl o)

t t=0 dat (=
and by [R2], P above is a real-analytic function of Z, ¢

A reason we prove Proposition 1 instead of referring to Ruelle’s theory is
that Ruelle used a machinery of {~functions while our case is rather trivial. By
the way we get concrete estimates of the coefficients of the power series
expansion. Our method will give concrete estimates of ¢ in §8.

k)

One can reformulate Proposition 1 in the language of a coding either
through a Markov partition or a geometric coding tree (g.c.t.) {or a “unified”
Markovian g.ct., see Remark 9 in §3, Part I). Let us do this for the g.c.t. case:

ProrosiTiON 2. Let f, be a family of holomorphic maps on a neighbourhood
U of a mixing repeller X as in Proposition 1 (and Theorem 4, Part 1). Suppose
that U is small enough that for every A, cfi*(U)cintU,
ofiMU)y=h,(X) and U contains no critical value for f,. Let
FTo=T(z; v*, ..., 7" be a get. for fy in U, Let z;eU be a holomorphic
function of 1. Then there exists a family of gct's T, =9 (z;; v}, ..., 73)
corresponding to f, with the vertices z; , continuously depending on A. Consider an
arbitrary such family & ,. Then the functions z, , and the family of coding maps
Za,e0 = UM, 73, are holomorphic with respect to A. For ¢ an arbitrary Holder
continuous function on the shift space Z* the assertion of Proposition 1 holds, with
h, replaced by z, ., and h,(X) replaced by z; . (Z%).

Proof. The function z,,(x), for every aeZ? is holomorphic by the
Implicit Function Theorem applied to f7(x)=z,. Bach function z,. is
holomorphic by the convergence of z;, to z,, holding by the expanding
property. The rest of the proof is the same as for Proposition 1. =

COROLLARY 1. Let. Q be an RB-domain with closure in C (maybe not
Jordan!) with flaq expanding. Let f,: U — C be a family of holomorphic maps

defined on a neighbourhood U of 0Q, holomorphically depending on 1, with fy = f

Jor Ain a neighbourhood of 0e C small enough that h, exist. Denote h, (882 by
9Q,, the corresponding simply connected domain by Q, and the harmonic measure
on 0%, by ;. Assume finally that there exists a continuous choice of Riemann
maps R;: D - 2, such that the mappings

(3) g, =Rj'of,aR, are independent of A.

Then (c(w,))* is a subharmonic, real-analytic function of A (with domain in C*
described in Proposition 1). .
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Proof. Take z, holomorphically depending on A, z; €, close to d22,. (The
assertion of the corollary is local so we can consider 4 from a neighbourhood of
0 small enough that z, is constant, independent of 4.) Then there exists a family
of trees F; == F (z,; v}, ..., ¥5) satisfying the conditions of Proposition 2.
Consider the preimage family 7(Z,;73,..., 7% in D for g =g, where
2, = R (z,), A = Ry ' (y2). By the continuity of R,(z), the Z,,, continuously
depend on J, so the coding maps Z, , are independent of A (because the
diameters of £, , shrink to 0 as g " contract exponentially). Denote £; , by Z,.
Take ¢ = —loglg'| o Z,,. Observe now that (Z.).(,) = I' (recall that ! is a g-
invariant measure on OD equivalent to the length measure) We have
Ryofy,=12;,80 Rjef =2, 80 (23,0)4 () = (R () which is equivalent to
the harmonic measure w,. In particular, % = HD((z;, )4 (1)) = 1 (is indepen-
dent of A). Thus by Proposition 2, (c ((z2,000% (pq,)))2 = (c{w,))* is a subharmonic
real-analytic function of A.

Remark 8 If 202 is a Jordan curve then Corollary 1 follows from
Proposition 1. Namely from the fact that R,Ry* conjugates f;, with f; in Q we
can deduce the same on 8Q, more precisely that R, Ry ! = h,. This can be done
as in [DH], Bxpos¢ VIII, Proposition 3 (Stabilité). The above g.c.t. method
corresponds to Douady—Hubbard’s idea.

ExampLe. Consider a complex-analytic family of polynomials f, (A€ C)
such that for every f; forward orbits of all critical points {except oo) converge to
petiodic sinks different from co. It is known (P. Fatou, G. Julia) that in this case
Q,, the basin of attraction to oo, is connected, simply connected and f; is
expanding on 82,. So by Corollary 1, (c(wy))* on 6Q; is a subharmonic,
real-analytic function of 1. One takes R, (z) = lim,~ ., /3 "(z"") (an appropriate
branch of f;"") and obtains g(z) = z* (d = degf;).

Let R; be a continuous family of Riemann maps R;: D — Q,, where the @,
are RB-domains with closures in C for a holomorphic family of maps f,
expanding on 82, and the conjugacies h;: 82, —» 40, as in Corollary 1. Then
the following fact helps to understand the meaning of the condition (3):

ProrosiTioN 3. The following conditions are equivalent:

() the maps g, = Ry of,oR, are independent of 1,
(B) b, is the boundary function of RyeR3?,
(y) R, holomorphically depends on A.

Before proving this recall that each g, extends holomorphically beyond éD
and that we denote this extension by the same symbol g, (cf. Introduction).

Observe that the continuity of the family R, implies the continuity of g,.
Indeed, R,(z) continuous with respect to z,4 implies the continuity of g, (2)
with respect to A for ze D, hence by the Symmetry Principle the continuity for
zeC\cID, hence by the Cauchy Formula for zedD.

Another observation is that
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) Zreo =hy°20,00

for a choice of gct’s 7, as in the proof of Corollary 1.

Indeed, z; ,, gives a factorization of (2%, s) to (92,,f) so each trajectory
5" () is mapped under z,,,, to a tiajectory z, ,, (s"(«)) for f,, moving continuous-
ly with A (because z, ., (f) for fe 2% is a family of holomorphic functions of 4 by
the proof of Corollary 1, equicontinuous because uniformly bounded). The
only choice is hl(zo,m(s"(on)%.

Remark that if we interpret z;, as a “dynamics Riemann map” then the
analogues of (x)}-{y) are automatically true: g, translates to s on ' so (x)
translates to z;,05 =f0z; 041, (f) to (4), (7) to the holomorphy of z,,.

Proof of Proposition 3, ()= (y). Consider the trees 7, in 2, and
T 7%, ..., 7)) in D as in the proof of Corollary 1. Let {edD. We have
{=7_(ax) for an oeZ? Next

_ R (0) = 23,0(®) = hy(z0, () = b, (R (),
which is holomorphic with respect to A. (The first and third equalities follow
from definitions. The second one is (4).) Now with the use of Cauchy’s Formula
we prove the holomorphic dependence of R, (z) on i for zeD (cf. [PoRo],
Th. 5). (By the way we proved (x)= ().

(¥)=(B). This follows from Mafié-Sad-Sullivan’s i-lemma [MSS] in view
of which the holomorphic motions R,R5* and h; are compatible (cf. [PoRo],
Th. 4).

(f)=>{x). We have on oD, R,eg,=f«R,. Then bi'R,g, =
by 'R, = fohi 'R, so Ryg, = fyR,. But for every { e 0D the R,-preimage of
Jo Ro({) contains no arc (Fatou’s theorem) so g, () is constant. Thus g, = gy 0N
dD hence by the analyticity g; = g, in D.

() == (&} is immediately visible directly. Indeed, g 1(2) complex-analytic with
respect to 1 for every z¢dD implies the same for zedD. But for zedD,
9,(2)e 0D, which is a nowhere dense set, hence g,(2) is constant.) m

Remark 9. From the improved i-lemma ([SuT], [BeR]) it follows that
the only holomorphic motion 8Q, —+ 822, is h, (see [PoRe], Th. 1). A question
arises: are all holomorphic curves A — z () with z(l)e 0Q; of the form h, (z,)?

Remark 10. Of course the condition (3) in Corollary 1 (or (x)-{(y)) may not
be satisfied. Take for example Q, to be the basin of attraction to 0 for iteration
of z*+1z. If the condition (3) is skipped in Corollary 1, we do not know
whether the assertion {c(w,))? is real-analytic is true in general. In particular,
we do not know this for the above example.

8. (Appendix). Estimates of the asymptotic variance in the case of the
boundary of the basin of attraction to oo for the iteration of 2 — 22 +a. The aim
of this section is to study o2 for Q, the basin of attraction to oo for the
polynomial f,(z)=2"+a, a inside the “cardioid” (24472, 12 = 1)
bounded region M = C. Recall (§7) that
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2 11 ¢ k)2 -
(1) o2 = lim — = [ (¥ (" O it = no(@+2 ¥, n,(a)
RTY 2 rd k=1

where  m{a)= 2m)7 [, (O ()AL, 9= FO =@ =
log |f {1, (0))|—1og2 = log|h,({)}. Here h, is the conjugacy between z? on
JD = §&, and f, on the quasi-circle 04,.

First let us compute the quadratic part of the power series expansion of
o7 at a =0 (analogously to Ruelle’s HD (822, [R2]). We shall do this for
[y =2"+a, g < 2, keeping the same notation as for z%+a.

ProrosITION 4. For f,(z) = 2%+a, ¢ = [a*/2+ 0 (la®).

(Remark that this is independent of g, unlike Ruelle’s HD(3Q,) =
|ai?/(4logg)+ O (lal).) o

Proof. (It mostly repeats Ruelle’s arguments but we give it complete for
the convenience of the reader.) First compute {, = h,({) for every { cdD. We
have {, = lim,-, fi "{{*") (for the appropriate branches of £, so

dCa T "—ld(fl)—k) s _dfo*l KRl
% a=0 B nlirg EZ:U dZ (iq ) dz (Cq a) ( l)
=1 —{k+1) o0
= — [im z dfO (qu+1) — 1 Clqu+1,

k1
iy To Az k=04

o

L= C—C( 2 %(C"l)“")aJrO(lalz),

n=1

)

7.0 = (a— 1)log-(1c| - ‘1 -( ial;(c-l)f‘)a+oua|2)

o

~(g— 1)Re(z %(c"*)q"a)wuam,

n=1

San= Nil V) = (a—1) i t,Re(a{{ ")+ 0 (lal?),
k=0 n=1

where _
(a)(1-/qy) for n < N,
P = 1—1/g
" n=N+101 _ 1/,
W =)
1-1/q
To compute o2 = lim,. ,(2neN)™* [S, 5> d|{| observe that

0 if n#m,
Qm! J’Re(a(C-‘l)Q")Re(a(C"1)'1"')dlf| = {|a|2/2 L

if B=m.
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Thus
= lim (2nN)~* jNil ((g—1DtRea(l” hn2 d g

+ hm @nN)y" ' Z ((g— Dt ReaC ¥ P diL].

n=N
The second summand is obviously 0, the first one is equal to |a|*/2. =&

Now it would be desirable to compute all other coefficients of the power
series expansion of 62 at a = 0; we hope to do this in future (something is done
in that direction for HD{@Q,), see [WBKS]). Here we shall only estimate these
coefficients from above using the methods from §7. This together with the
knowledge about the quadratic part of o2 (Proposition 4) allows us to give
some estimates of a2 from below.

We restrict the considerations to {|a| < 1/4}, the largest disc in M with
centre at 0. (Considering the family z%+ 1z, 4| <.1, did not lead us to better
estimates.)

One can check that if A,—e<lzl<A4, or A <|z < A+e for
A, =(1+./1—4r)2, A, = (1+./1+4r)/2, & > 0 small enough, then for Ja| = r,
|f. (@) < iz] or 1£,{2)] > iz respectively. So

) 0Q,c P, ={z: A, <7 € A4}

It is crucial that r < 1/4 implies [f;| = 24, > 1 on P,.
Define

¥ (r) = sup {|J,(Of: lal <7, (D},
Val’lﬁ(r)= Sup{l'ﬁ 1) ‘p (Cz}l la| <7, CuCzeaD!'
Let #* denote the partition of &0 into arcs mk/2" <
n=0, 1,... For an arbitrary n = 0 set
4,0) = sup {10, () ¥, Co): la} <7, £}, (e Bed).

Lemma 3. (i) ¥ (r) < log(1/4,), var§(r) < log(4,/4,).
(i) 4,(r) < min.Elog (4:/A,), log(1+71,, (ZA,)“"/A,.)), where

Tn= min /(n-27%4+ 20, )2 42 +(d.~A
0€ksEn

Proof. (i) follows immediately from (2) and from log 4, < log(1/4,). To
prove (i} we shall estimate distp, (h,({,), h,(£;)) for £, {, belonging to the same
Be#*. Here |a| =r and disty(...) denotes the length of the shortest curve
joining h, () to h,({,) inside the annulus P,, homotopic to y, # y, * y, where 7,
joins &y to {; in B, ¥, (1) = he (), v, () = by ~palls).

Suppose that o < /2. For every {edD} set

AL o)={z: A, <zl € 4], Arg{—n

< Argoe € ek +1)/2°,

(24, o, = arcsin(r/A4,).

< Argz < Arg{ +a}.
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Observe (Fig. 5) that

inf {|z, —z,|: Argz, = Arg{*>+ 20, Argz, = Arg{®+a, A4 < 4;} = A,sina.

r é |Z2| =
The analogous observation holds for Argz, = Arg{*—2u, Argz, = Arg{*—a.
So if « is such that r < 4,sin« then f, (# ((,a)) = o ({%,4) with 8 ({, )
mapped by f, outside 2 ({*,« ) going once around it. (The sequence 24 ({2", )
forms “telescope” for f,, see [Sull) Hence h, (e ({,x), for
o > o, = arcsin (r/4,). '

Fig. 5

So for every {,,{,e Be #*
(3) disty, (h, (1), h,(,) < diam " (B, o),
where " (B,«,) = {z: A, < lz| < 4}, exp(iArgz)e B} and diam is measured in
the euclidean metrlc restricted to £ (B,q,).

We have
) diam " (B, a,) < /(27 + 20,2 A7 + (4, — AF.
(This is not the best estimate but we want to have in Lemma 3 something
congrete.)

Now as |fj| = 24, on P,, using (3) we have for every {,, {,e#" and
O<kgn

(2d,) " distp, (b, ({377, b, (63"
< (24,) 7" (diam o (3 7% (B), @) A, ).

lha{C1)—h(E)l <

This in view of (4) giyes (ii). =

Remark 11. We can give now a concrete estimate of g from above. Let
la] = r < 1/4. To use (1) observe that for k1

3 — Studia Math. 97.3
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(@) = 2m)* [(f, — EQF, | 87 (F, 2 YD AN < 21 () ().

{E(-]} is the conditional expectation value.)
So

®) < PP+ Y. 4,0)

One computes for example:

r= 02 0205 021 0215 022 0225 023
o? £ 1.504 1701 1.924 2196 2527 2955 3.524

0.235 024 0245
435 573 8.62

Of course when |a| - 1/4 the estimate tends to co, 0 it gets worthless because

of the universal estimate o2 < 18log2 (which follows from ¢ () = /26%/y, 3 =
log2 and ¢ (w) < 6C where C is the universal Makarov constant C < 1, [Po]).

Now the time is to use Lemma 2, § 7. For every { €D, a = (a,, a,)eC?,
fayl+la,| < 1/4, n2 0 we obtain ,({) = 3 F=0 by ;(()alal, where

inf  var J(r)-(z-:__'f)r-ﬂﬂ) = M,

0<r<1/4

(6) boo =0=Mqo, |byl <
(We got rid of the coefficient 2 due to the replacement of u =, ({) by
#—3{(SUP, <, ¥ +infly <, 1)) We have

Gl =T, O-E@ BV = 3 bip)aial,
ij=0
where
(7) boos = 0 = Mg%:

. i+ .
byl < inf A,,(r)( if)r-(HﬂEMg;ﬂ.

O<r<1/4

’[thus', Writ.ing ¥, () and (£, n) in the power series expansion forms ©), (7),
multiplying, integrating along ¢D and summing according to the formula

ot =0 (T ORA+2 Y @m L b O W —EW, 12" )4
- n=1
we arrive at

PROPOSITION 5. a7 = ¥ g c;ahab, where

P o0
(8) lcij' s Z Z Mrs(Mi—r,j—g"I‘z Z Min_),.'j_.s) = NU
Q

r=05=0 n=

and M,;, M%) are given by (6), (7).

Remark 12. Observe that Ny = N, and that ¢, = 0 for every j odd. The
first assertion follows from the definitions, the latter from the fact that

7@ =£,(@), bence o? = o2,
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COROLLARY 2. For every acM < C =R?

) oy =a?/2— Y Nilal'.

i=3
(This is valuable only if {a| is small enough, otherwise the right-hand side is
negative or even divergent.)

Proof. Fora={a,,0), (%) immediately follows from Propositions 4 and 5.
To cope with an arbitrary a we should suitably rotate the coordinates on R?
before writing the power series expansions. m

COROLLARY 3. For a imaginary (a, = 0)
o0

(10) o2 = |al*/2— Y. Nyolal*.

i=2
Proof Use Propositions 4 and 5 and Remark 12. =

Remark 13. Leszek Zdunik computed (with the help of PC) that in
Lemma 3 the minimum in T;, is taken for k=1 if r <013, for k=2 if
r < 0.255, and for k = 3 if r £ 0.2425. (Of course k — oo if » — 0.25.)) The integer
n for which the second term in min in the definition of 4, (r) gets less than the
first one also gaes to oo if r — 0.25 and is for example equal to 6, 6, 7, §, 9, 11
for r =0.2, 0.215, 0.225, 0.235, 0.24, 0.245 respectively.

For each M{? and M; the infitmum over r in (7) and (6) is taken for
a different r=r(n,i,j), r(,j} respectively {for example for n=0,
i=1,2,...,we have r =0, 0.2232, 0.2393, 02443, 0.2464, 0.2476, ... The
results for n < § are the same because of the domination of the first term in min
in Lemma 3(ii)).

Finally, for i=13,4,5,..., Ny < 11.959-4%  20.698-4% 35308 43,
49.438-4%, 64.89-47, 81.512-4% ... This gives in (10} the maximum at
lal = 0.00655. Then o2 = 0.00001074 (a poor result).
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