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Characterizations of subnormal operators
by
JAN STOCHEL (Krakéw)

Abstract. Some necessary and sufficient conditions for a d-tuple of commuting operators to
have commuting normal extensions are formulated in terms of positive definiteness and conditional
positive definiteness, Then new characterizations of algsbraic normal operators are obtained.

1. Introduction. Among various characterizations of subnormal families of
bounded operators, there are ones which can be formulated in terms of positive
definiteness. In this paper we are mostly interested in the criteria of Halmos-
Bram-Tto (cf. [6], [2], [7]), Embry-Lubin (cf. [4], [9]) and Lambert-Lubin (cf.
[8], [9]). In Section 4 we show that all of them remain true if we replace the
positive definiteness by a weaker notion of conditional positive definiteness,
provided the operators in question are contractions (compare Theorem 4.1
with Theorem 2.1). This fact enables us to distinguish a wide class 55 of entire
functions ¢ having the following property (see Section.5):

(P) if #=(S,,.... Sp)is a d-tuple of commuting contractions on a Hilbert
space H such that the function Nisa— @ (|&]1)eC is positive
definite over the #-sermigroup $t, for every fe H, then & is subnormal.

In Section 6 we extend the class 3, to another one #, whose members have
property (P,) within the set of algebraic contractions. Using the results of that
section we prove in [16] that for ¢ in 3#, the composition operator C, f=fod,
fe2 (R, p(lx|*)dx), induced by an nx n matrix 4 is subnormal if and only if
A is normal in (R, {|-{)

In Section 3 we show that if & is a d-tuple of commuting operators on H,
X is a linear subspace of H consisting of the vectors f such that the function
NixNis(a, b) = {(¥°f,?f)eC is positive definite over Wi, and
H=\/{%X: acN¢}, then & is subnormal. This is not the case when
X consists of the vectors f such that the function NYaa— [&*f|%eC is
positive definite over M.

2. Definitions and background results. Denote by B(H) the C*-algebra of all
bounded linear operators on a Hilbert space H over a field F (we consider
cither the field R of real numbers or the field C of complex numbers). If
{H,: weQ} is a family of subsets of H, then we denote by \{H,: weQ} the
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closed linear span of the set | | {H,: we@}. Given a nonempty set G, denote
by F (G, H) the set of all funciions from G to H vanishing off finite subsets of G.
Fo(G,H) is the set of all f from F(G,H) such that ) . f(x) = 0.

A kernel B: Gx G~ B(H) is said to be positive definite (resp. conditionally
positive definite} if
(2.1)

2.2)

B(x,y) = B(y, x)*,
L (B0, f(x) 20, [feF(G.H) (tesp. feF,(G,H)).

¥
For this topic the reader may consult [11] and [12].

Let ® =(G,+,%+) be an additive *-semigroup. We say that a function
E: G— B{H) s positive definite over & (vesp. conditionally positive definite over
®) if the kernel B: Gx G — B(H) defined by B(x,y) = E(x*+y), x,yeG, is
positive definite (resp. conditionally positive definite). It is obvious that each
function which is positive definite over ® is conditionalily positive definite over
®. The converse statement is not true in general (see Example 5.4),

In the sequel N stands for the additive semigroup of all nonnegative
integers. The direct product N’ of d copies of the semigroup N, equipped with
the identity involution, becomes a *-semigroup. Name it N,. The set N¥ with
pointwise defined partial order relation < is an upward directed set. Denote by
e the member of N? with all coordinates 1. -

The product semigroup N*x N with involution (a, b)* = (b, @), a,be N, is
a *-semigroup. Denote it by 9,. Notice that the x-semigroups W, and 9N, are
not s-isomorphic, ‘

A sequence {w,};L of real numbers is said to be a Stieltjes moment sequence

il; there is a positive finite Borel measure u on the nonnegative reals R, such
that

(2.3) w,=[t"du(t), nz0.

It is well known (cf. [1], Theorem 6.2.5) that a sequence {w,}=.0 is a Sticltjes
moment sequence if and only if the sequences wee and {w,. 1} are
positive definite over N, . Notice that if {w,}%, is a Stieltjes moment sequence
such that limsup w,™ < 1, then {w,}% ¢ is decreasing. To see this take u as in
(2.3). Since the p-essential supremum of the identity function on R equals
lim ([ £ dpe ()" (cf. [13], p. 73), the closed support of g is included i-;x [0,17].
Consequently, by (2.3), the sequence {w,}io is decreasing. !
Supp_»ose we are given a d-tuple & = (S, ..., §,) of commuting operators
on a Hilbert space H over F. We say that & is subnormal if there exists

a d-tuple 4" = (N,, ..., N,) of commuting normal operators on some Hilbert
space K = H such that §;eN,j=1,..,d

Define functions E,; N?- B(H) and B,: N¢x N* - B(H) by
Eg(a) =(F*5°, aeN,
By (a,b) = (#V* 5%, (a,b)eN‘x N,

x,yeaq,
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where %° = §915% ... 8% for a =(ay, ..., a,)€N?. As the following theorem
shows the positive definiteness over 9, (resp. M,) of the function E . (resp. B)
completely characterizes snbnormality.

TreoREM 2.1. Let & be g d-tuple of commuting operators on H. Then the
following conditions are equivalent:

(8) & is subnormal,

{HBI) B, is positive definite over R,
{EL) E, is positive definite over W,
(WHBI)  for every feH, (B, ()f.f) is positive definite over IM,,
(LL) for every feH, (E,()f.f) is positive definite over RM,.

The equivalence (S) <> (HBI) was proved by Halmos and Bram in case d = 1
(cf. [6], [2] and [3]) and by Ito in case d > 1 (cf. [7] and [20]). The present
formulation of the Halmos-Bram-Ito condition (HBI) is essentially due to
Sz-Nagy (cf. [18]). The equivalence (S)<>(EL) was proved by Embry in case
d =1 (¢f [4] and [3]) and by Lubin in case d > 1 (cf. [9] and [20]). Next, the
equivalence (EL)<-(LL) was proved by Lambert in case d = 1 (cf. [8]} and by
Lubin in case d = 1 (cf. [93). Although ocur formulation of the Lambert-Lubin
condition (LL) differs a little from the original cne, they are still equivalent (cf.
[17], Theorem 11). Finally, the implications (HBI)= (wHBI) and (wHBI)
= (LL) can be easily verified by the reader.

3. Improved Halmos~Bram-lio criterion. Our goal in this section is to
strengthen the Halmos-Bram-Ite criterion for subnormality of d-tuples & of
commuting operatos on a Hilbert space H over F. To begin with notice that for
feH, the scalar function (B (-)f, f) is positive definite over M, if and only if

ze F(N*x N4, C).

L, M)z (p, 9)z (a, b) 2 0,

ab p.q
Therefore the result stated below can be regarded as a generalization of
Theorem 2 of [14] as well as of criterion (WHBI) of Theorem 2.1

Tusorem 3.1. Let & be a d-tuple of commuting operators on a Hilbert space
H over F. Let X be a linear subspace of H such that

) H=\/{#°X: aeN¥,
(ii) for every feX, (B, (")f.[) is positive definite over M.
Then & is subnormal.

Proof. Without loss of generality we can assume that all the operators
8,,..., 8, are contractions. Denote by H, the closure of X. Notice that
(B (), f) is positive definite over I, for every fe H,. Define the function
A: N*x N - B(H,) by

A(x) = PoBy (Mg, xeN'xN¢,

where P, is the orthogonal projection of H onto H,. Since each §; is
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a contraction, we have sup {|A(x)||: xeN?xN‘} < 1. Moreover, if feH,,
then (i) implies

(A +0)A0)200)1 1) = T By (5 + 1)/, A0 = 0.

¥ Xy ¥y
1t follows from Proposition 3.4 of [10] that the function A is positive definite
over M,.

Now we show that B, is positive definite over ;. Take fe F (NYx N4, Z),
where Z is the linear span of the set ) {5“H,: aeN"). Then for any
(a,b)eN‘x N there exists g, e F(N?, Hy) such that Jla,b) =Y Sy, (k) (f
f(a,b) =0, then we set g,, = 0). Define the function he F(N'xN* H,) by

ha,b)= 3 guwk), (a.byeN?xN¢

utk=a

Then, since 4 is positive definite over M,, we get

azb;,z;(By (0, @)* +(a, b)f (a,b). (2, @)= 2.3, (41 a, b), S+ f1p, q))

ab pyg

- Z Zz(yaﬁjqd-kgab(k)’yb+p+lgpq(l))

a4,b p.g k1

= 3 T A4+ g + @+ kD) g (), g5 ()

abk pg.l

=2 % (A{te.a)* + (@ D)h(a,b), h(p. ) > 0,
a0 g.q
This and the denseness of Z in H imply that B, is positive definite over n,.
Thus, by (HBI) of Theorem 2.1, & is subnormal =

As a simple consequence of Theorem 3.1 we get the following generalization
of Cerollary 1 of [22].

CoroLLARY 3.2. Let & =(S,,...,S,) be a d-tuple of commuting operators
on H and let X-be a linear subspace of H such that H = \VA{¥X: aeN%}, Then
the following conditions are equivalent:

(1) & is subnormal,

(i) for every feX, &,:= ((SDps +o-s (8)),) 15 subnormal,
where ($3,, j=1,....d, is the restriction of §; to \/{&“f ae N},

Proof. (i)=>(ii) is obvious, Assume (ii). Then, applyi [
. . . applying (wHBT) of Theorem
2110 &, we find that (B, ()£, f) = (B,, (), f)is positive definite over M, for
every fe X. Therefore the subnormality of & follows from Theorem 3.1. m

_Thf:orem 3.1 can be used to obtain a new version of Lambert’
terization of subnormal weighted shifts with operator weights (cf. [8]
3.2). For siml?licity we restrict our attention io a single operatm".

Given a Hilbert space H we denote by I, (H) the orthogonal direct sum of
countably many copies of H and by II,, neN, the isometric embedding of
H onto the nth summand of L,(H). Let {A )}z, be a uniformly bounded

s charac-
Theorem
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sequence of operators on H. Let A =0 and for n>1 let Ay =
Ap-1Ap-z ... Ao. Define § on I, (H) by S(fy, f1, ...) = (0, 4, f,, A, f1, ...). The
operator S is called a weighted shift with weight sequence {4,}2. . Notice that
S always satisfies the equalities SII, = IT,. 4, neN.

CoroOLLARY 3.3. Let S be a weighted shift with weight sequence {4} o such
that ker A¥ = {0} for all neN. Then S is subnormal if and only if the sequence
{{AmS1*tez0 is a Stieltjes moment sequence for every fe H.

Proof. If S is subnormal, then, by (LL) of Theorem 2.1, the sequences
{18 f1*}0 and {|S"" 11T, f]*}=y are positive definite over N, for all
feH. Since ST, fi* = |1, A fI* = | Awf|?, the sequence {| Ay f]*}o is
a Stieltjes moment sequence for all fe H.

Suppose now that {[| 4, f*}=, is a Stieltjes moment sequence for every
fe H. Fixing fe H we can find a positive finite Borel measure p on R, such that
[Awf]* = {t*du(®) for neN. Thus

(-BS (ma n}Hofa Hof) = (SmﬂofaSnHof} = 5m.n ll-"q-(rl)fﬁ2

= (2r)1 T j, (P12 (ei‘gtlfz)" du(t)d9,

0 g+

m,neN.

Using this formula one can show that (BS ("}h, h} is positive definite over IR, for
all he IT,H . Since ker A} = {0} for any neN, we get [, {H) = \/ {S"[I,H: neN}..
Thus the subnormality of S follows from Theorem 3.1 applied to X = I ;H.

It is a simple observation that Theorem 3.1 remains true if we replace the
linearity of X by the linearity of X, However, we cannot drop the assumption
about the linearity of X (or X) in general.

ExaMPLE 34. Let H =C?, f, = (1,\/5) and f, = (1,-\/5). Denote by A
the operator on H such that Af, = \/5 fi and Af, = —\/5, f,. Let S be the
weighted  shift  with = weight sequence A,=4, neN. Then
I,(H) =\/{$"X: neN}, where X = {II,f, I, f,}. Arguing as in the proof of
Corollary 3.3 one can show that the function (B (-)h, ) is positive definite over
9, for every he X. However, S is not subnormal, because A is not normal (use
Corollary 3.3 and then (LL) of Theorem 2.1). m

Notice also that Bg cannot be replaced by Eg in Theorem 3.1.

ExAMPLE 3.5. Let H =C2? and f, =(0,1). Define SeB(H) by S(x,p)
= (a+4,0) for a,feC. Put X=Cf,. Then H=\/{§"X: neN} and
{I8"h|*}2y is a Stieltjes moment sequence for heX (which implies that
(ES(-)h,h) is positive definite over R, for he X). However, S is not subnormal. m

We close this section with the observation that Theorem 3.1 can also be
formulated for d-tuples % composed of invertible operators on H such that
H=\/{¥"X: acZ’}.

4. Conditional positive definiteness and subnormality. Recently M. Thill has
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proved (cf, [21], Prop. 7} that if the sequence ¢: N-»C is conditionally
positive definite over %, and ¢ satisfies the inequality |p ()| < va”, neN, for
some nonnegative reals v and « <1, then ¢ is positive definite over N,.
Though this is not true for bounded sequences, it is true, as the following
theorem shows, for contractive operator-valued functions E, and B,. As
a consequence we obtain new criteria for subnormality of contractions.

THEOREM 4.1. If & = (S, ..., 8,) is a d-tuple of commuting contractions on
H, then the following conditions are equivalent:

)y & is subnormal,

(i) By is conditionally positive definite over M,,

(iii) E, is conditionally positive definite over Mi,, ,

(iv) for every feH, (Eg(}f.f} is conditionally positive definite over 9.

The following lemma plays a crucial role not only in the proof of Theorem 4.1.

Lemma 42 If & =(S,, ...
then

() all the nets {Eg(a): acN%}, {E,(2me): meN} and {E,{b+me):
meN}, beN’, are convergent in the strong operator topology to the same
positive operator D, eB(H),

(i) if E, is conditionally positive definite over M,, then

Zb(Ey(a+b)f(b)=f(ﬂ)) = DT S@)P. feFN, H),

(iil) if (E()f, f)? is conditionally positive definite over R, for some fixed
integer j = 1 and fe H, then
(42 Y(E,@+Bf.f)z(®)z(@) > IDFf|¥[L 2@, zeF(N',C).

a,b a

~ Proof. () Since 0< Eplay) < Egplay) for ag < ay, the net {E, (a): aeN¥}
15 convergent in the strong operator topology to some positive operator
DgeB(H) (cf. {19], Prop. IL3.1, for d = 1). Since the sets {2me: meN} and
{b+me: meN} are cofinal in N, the sequences {Eg(2me): meN} and
{E (b+me): meN) are convergent in the strong operator topology to D, for
every beN?.

(i) Take fe F(N“ H). Then there exists k€N such that Jfvanishes off the set
{aeN": a< ke}. Let m > k. Define the net f,e F (N4 H) by

, 8,) is a d-tuple of commuting contractions on H,

@.1)

flay for a < ke,
fu@ =< =3 f(b) for a =nme,
0" otherwise,
Then '
E(Ey(a+b)fm(b)sfm(a)) = Zp;(Ey (@+b)f(b),f (a))

—2Re . (Ey(a+me)f(B).£(@)+(E, (2me) (T f(@), ¥ 1 (a).
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Since Y, f,,(@) =0 for every m >k, one can use (i) to obtain

Y (Ey(a+B)f (B).f (@)~ (Dy (T f (@), Y f(a))

a.b

= lim } (Eq(a+b)f, (), fn{a)) = 0.

m=too g

Thus we have proved (4.1). The proof of (4.2) is similar. This completes the
proof of Lemma 4.2, =

Proof of Theorem 4.1. (i)= (i), (ii) == (iii) and (iii) = (iv) are obvious.
(iv) = (i) follows from (4.2) and (LL) of Theorem 2.1. =

Arguing similarly to the proof of (4.1} one can show that if ¥ = (S, ..., 5y
is a d-tuple of commuting contractions on H which satisfies
(HBL) Y (@), () =0, feF, (N H),
abh=0
then & is subnormal, provided at least one of the contractions S, ..., S, is of

class C,. (a contraction § is of class Cy. if S*—0 in the strong operator
topology).
5. Positive definiteness and subnormality. In this section we introduce

a class of entire functions ¢ having property (P,). Denote by #,j =1, 2, ...,
the family of all entire functions ¢ such that :

d"o

7 —(0) 20, for every nzj+1 and 1 =0,
Z

dip

Wdzf(0)>0’

d*@ 1
dzn(0)=0, for every n=1,...,j—1.

Put J = | )7 ). ) )
The following theorem states that the class #, consists of the functions
@ that have the property (P,).
TuroreM 5.1. Let @ed#,. Then a d-tuple ¥ =(8,, ..., S;) of commuting
contractions on H is subnormal if and only if (p((E LT )) is positive definite
over M, for every feH.

To prove Theorem 5.1 we need the following

LeMMa 5.2. If pe s, for some fixed j 2 1 and b: Gx G~ Cis a kernel stch
that ¢ o (th) is positive definite for every t > 0, then the kernel B is conditionally
positive definite.

Proof It follows from the dcﬁnitiqn of #; that ¢ has the power series



234 J. Stochel

representation

o0
ple)=ap+ . az", zeC,

n=j

where a; > 0 and a, >0 for every n 2 0. Thus for every z& F, (G, C) we have

Y hix, Wz ()z() = lim a7 ' ¥t (o (th (x,y)— ¢ (0))z(x)z(3)

+
%,y =0

a;lrlilgl t™ Y o(th(x,M)z(x)z(y) 2 0. a
~0 oy

Proof of Theorem 5.1. Assume that % is subnormal and take fe H.
Then, by (LL) of Theorem 2.1, (E (-)f, f) is positive definite over R,,. It follows
from the Schur theorem {cf. [1], Theorem 3.1.12) that all its powers
(E, ()N, j= 1,2, ..., are positive definite over 9. Since @ .47, ¢ has the
power series representation

e(@= 3 a2, :zeC,
=0

with all @, being nonnegative. Thus qa((E PIgIA f)) is positive definite over N,
for every feH. '

Assume now that (p((E SIS )) is positive definite over R, for every fe H.
It follows from Lemma 5.2 (put b(x,y) = (Ex(x+))f, f)) that (E,.()f.f) is
conditionally positive definite over R, for every feH. Thus, in virtue of
Theorem 4.1, & is subnormal. u

Consider now a single contraction S on a complex Hilbert space H and the
function @ = expe #,. Let #(H) = @ ¥ 2, %, (H), where &, (H) is the n-fold
Hilbert space symmetric tensor product of H with itself and Fo(Hy = C.
Denote by #(S) the vnique operator on #(H) such that #(S)(EXP (/)
= EXP(Sf) for every fe H, where EXP(f) = @® Y o(n)~ 127 € (¢f. [5] and
[15]). Under these circumstances, Theorem 5.1 can be reformulated in terms of
quantum field theory as follows.

CF)ROLLARY 53. If S is a contraction on H, then # (8) is subnormal if and
;nl;l if the sequence {||# (SYEXP(f)]*}%, is positive definite over W, for cvery
eH.

Notice 2tha‘c t.here are nonsubnormal operators A for which the set
{h_: {[lA™ >} is a Stieltjes moment sequence} is total in the underlying
Hilbert space (see Example 3.5).

We end this se.ction with an example which shows that Theorems 4.1 and
5.1 are not true if we replace contractions by arbitrary operators,
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ExaMpLE 5.4. Let S be a weighted shift operator subordinate to an
orthonormal basis {f,}2., of H with weights (n+2)(n+ 1)}, n> 0, ie.
Sf,=({n+2)(n+ 1)—1)”2f;1+1.,

Then an easy calculation gives us

exp (18"/11%) = exp (L fI*)exp (c ()",

nz0.

nelN,
where

o) = 3 eI AP

This means that {exp(|S"f||*)}:Z, is a Stieltjes moment sequence with
representing measure exp (|| £ |*)8 expiery) (3 Stands for the point mass probabili-
ty measure concentrated at zeC). In other words, qo((ES(-)f, f)) is positive
definite over M, for every fe H, where ¢ = exp. However, S is not subnormal,
because the sequence of weights of § is not increasing (cf. [3], Prop. ITL8.6).
Moreover, one can show that ||S|| = 212 and the spectral radius of § is less
than or equal to 1.

Notice also that S satisfies condition (iv} of Theorem 4.1, Indeed, since

e and ¢ ((E sCILf )) is positive definite over M ; for every fe H, Lemma 5.2

implies that (Eg(-)f, f) is conditionally positive definite over 3, for all fe H. u

6. Positive definiteness and normality. In this section we restrict our
attention to a single operator. We show that Thecem 4.1 remains true for
functions ¢ from the class 5, provided the operator in question is assumed to
be algebraic.

Recall that an operator SeB(H) is said to be algebraic if there exists
a nonzero polynomial p with coefficients in F such that p (S) = 0. The following
proposition will be useful in the second part of this section.

PROPOSITION 6.1. An algebraic operator N on a Hilbert space H over F is
normal if and only if the following condition holds true:

() i feH, t>0 and Hmsup,-,|(NYS|Y" <1, then the sequence
{1ENYf}eo is decreasing.

Proof. Suppose that N is normal and limsup,.,[[(¢NYf]'* < 1, where
t>0. Since tN is normal, the sequences {J(N)YfI*}ii, and
{lieN)" (EN)1?}i% o are positive definite over 9, (use (LL) of Theorem 2.1).
Thus {|(tNY'f]|>}&2o is a Stieltjes moment sequence. This implies that
{II(EN)"f | }so-0 is decreasing (see Section 2},

Assume that N is algebraic and satisfies condition (i). First we consider the
case F = C. Let p be the minimal polynomial for N. Then we can split p into
factors as follows:

p(@) =@E—z)" ... (z—z, ), zeC,
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where z; are the distinct complex roots of p of multiplicity n sJ=1,...,m
Denote by H; the kernel of the operator (N —2z)™ and by N; the restriction of
N to its invariant subspace H,, j=1,...,m. Then N is the direct sum of
Ny, ..., N,,. Moreover, N, satisfies condition (i) and (N ;—z)" = 0 for every
J=1,...., m. The proof of the normality of N will be split into two steps.

Step 1. If N satisfies (i) and (N—2* =0 jor some k= 1, then N—z =0,

We use induction on k. Assume that k = 2. If z == 0, then N2f = 0 for every
feH. It is easy to deduce from (i) that in fact Nf must be 0 for every fe H. If
z #0, then (N-—-z)* = 0 implies

N"f:((N_z)—bz)"fzz"j'+nz“'1(N~—z)f, nzl, feH.

ThuE limsupy . lE7INY S < 1. In virtee of (i), the sequence
{lz" " N)y"f|?}%0 is convergent. This fact, combined with the equality
NP1 = 1124+ 2nRe (27 (N —2) . f) + 22 (22 N —=2)f |2, 1,

implies that |(N—z)f|| =0 for every feH. Consequently N—z = 0.

_ Assume now that k > 0. Denote by H the closure of the range of N—z, If
H= ;{0}', then N—z = 0. Suppose that H + {0}. Denote by N the restriction of
N to its invariant subspace H. Then (N ~z)*~! = 0 and N satisfies (i}. It follows
from the induction assumption that N—z =0, or equivalently (N—z)? = 0.
This in turn implies that N—z = 0.

Step 2. The spaces H; and H, are orthogonal for j # k.

Without loss of generality we may assume that j =1, k = 2 and lz,] < |z,
In virtue of Step 1, N, = zh, hyeH, j=1, 2. This implies that

6.1) limsup |3 ANY (b + I < 1, ByeH), j=1,2.

First we consider the case 0 < |z,| < |z,|. It follows from (6.1} and (i) that
17, )* = Jim 22 NP (B + )P < [y by )2, hyeH,, j= 1,2
Consequently

(6'2) ”hzﬂz "<- ”h1+h2”2= hjeHja j == 1;2

One can deduce from (6.2) that H, is orthogonal to H,.

Suppose now that 0 # |z,} = |z,|. Using agai and (i ‘
_ e nOV . gain (6.1) and (i) we conclude that
lim, ~ o, (22 "NY' (h, +h,) | exists for all h,eH, and h,eH,. Since

Iz "NY (g + o) |2 = by |2+ |, )* + 2Re [(z,25 VY (hy, b)Y,

t}‘lor h,eH, and hyeH,, we find that lim,_, (7,25 Y|(hy, hy)| exists for ali
1€H, and h,eH,. Since z,z7" 5 1, we have necessarily (h, , h,) = 0 for all
hyeH, and h,eH,. This completes the proof of Step 2.
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Steps 1 and 2 together show that N is the orthogonal sum of normal
operators N, ..., N,,, Thus N is normal too.

Suppose now that F =R, N is algebraic and N satisfies condition (i).
Denote by H (resp. N) the complexification of H (resp. N). Notice that N is
algebraic and satisfies (i). Since Proposition 6.1 was proved for F = C, N is
normal. Conseguently N is normal too. This completes the proof of Proposi-
tion 6.1 w

The following proposition extends the Lambert characterization of subnor-
mal operators within the class of algebraic operators.

ProrosiTion 6.2. Let j = 1 be a fixed integer. Then an algebraic operator
N on a Hilbert space H over F is normal if and only if the following condition
holds true:

(i) for every feH, the sequence {{N"f{*}, is positive definite over N,.

Proof If N is normal, then the sequence {|N"f|*}i% is positive definite
over R, (use (LL) of Theorem 2.1). Thus, in virtue of the Schur theorem (cf. [1],
Theorem 3.1.12), so is its jth power.

. Suppose that N is algebraic and satisfies condition (i). To prove that N is
normal it is enough to show that N satisfies condition (i) of Proposition 6.1. Let
t >0 and fe H be such that lim sup,. o [(EN)"f| " < 1. It follows from (i) that
the sequences {J(tN)"f1%}2, and {J(ENY'S1|*}5= 0 are positive definite over
%,. Thus {||ENYf|*}5o is a Stielties moment sequence such that
1 $UP,— o (JENY S [#)*" < 1. This implies that {{(tN)*f[};=0 is decreasing
(see Section 2). This completes the proof of Proposition 6.2. m

Now we are in a position to prove the main result of this section.

THEOREM 6.3. Assume that N is an algebraic contraction on a Hilbert space
H over ¥ and @e#. Then N is normal if and only if rp((EN(-)f, f)) is positive
definite over M, for every feH.

Proof. Assume that (p((EN(-) f, f)) is positive definite over 9t, for every
feH. Since @ e #, there exists j > 1 such that ¢ € o). It follows from Lemma
5.2 that (Ey(-)f, f) is conditionally positive definite over R, for every fe H.
Since N is a contraction, we can deduce from inequality {4.2) of Lemma 4.2 that
the function (E,(")f, f) is positive definite over R, for every fe H. This and
Proposition 6.2 imply the normality of N. .

The converse staterment can be proved similarly to the “only if” part of
Theorem 5.1. m

"We conclude the paper with the following open question.

Let j =2 be a fixed integer. Is it true that an operator § on a complex
Hilbert space H is subnormal if and only if for every feH, the sequence
{I8"f |} is positive definite over 3,7
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Weighted norm inequalities for Riesz potentials
and fractional maximal functions
in mixed norm Lebesgue spaces

by

TORD SIODIN (Umed)

Abstract. We prove a norm inequality between the Riesz potential R, f and the fractional
maximal function M,f in RY, O<a<d. The norm is a weighted mixed Lebesgue norm
Lrs  (R™=R"), where 0 <p,q<co and d=m+n, with weights in 4_,. Our proof makes
extensive use of the concept of independence of weights in A, It is shown that many of the well
known properties of Muckenhoupt weights are true in this more general form, aniong them the
P. W. Jones Factorization Theorem for A4 -weights,

0. Introduction. Let RY be the d-dimensional Euclidean space. The Riesz
potential of order a, 0 <o < d, of a function f is defined by

R f(&) = [lE=n*""f () dn.

For 0 < @ < d we also define the fractional maximal operator M, f(£) by

M, f(&) =sup|QI**~* [ |f ()l dn,
Q

where the supremum is over all cubes Q with sides parallel to the axes and
containing & When « =0 we get the usual Hardy-Littlewood maximal
operator.

Muckenhoupt and Wheeden [MW, Theorem 1] proved that if 0 < p <
and 0 < o <d then

©.1) IR fOIPw(O)dE < CM f{EPw(E)dL,

where w is a weight in the Muckenhoupt class 4, and the constant C is
independent of f. The purpose of this paper is to extend (0.1) to certain
weighted Lebesgue spaces L%, (R%) with mixed norm (see Defiition 1.2).
More precisely, we prove that

(02) ”Raf”p.q,wo,w1 g C HMuf”p,q,WD,WU

where 0 < p,q < o0, 0 < a < d and wy, w, are weights in the Muckenhcupt
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