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Amalytic stochastic processes U
by
K., URBANIK (Wroclaw)

Abstract. The paper ix devoted 1o the study of Bessel apalytic processes. it is proved that they
form a basis in the space of all analytic stochustic processes,

1. Notation and preliminaries. For the terminology and notation used here,
see [5]. Let us recall some concepts and deflinitions. Let (2, B, P) be
a probability space, Throughout this paper W= W(t,w) (w e 2) will denote the
standard Brownian motion on the half-line [0, o0). For any Te(0,00] the
space o7, consists of analytic stochastic processes. The topology in .o/, is
defined by the family of seminorms

{
[XH = (1] I 1X (@l P (do) du)'

02

where re(0, T). By T we denote the operation of Ftd integration

(X)) = [ X (n,0)dW (U, 0).

0
The [td derivative, denoted by D, is the left inverse of I. The Hermite processes
H, (n=0,1,..) are defined by the formula
(1.1) H,(t,w) = h,{t, W(t, @)

where h, are Hermite polynomials of two variables. In particular, H,{f,w) = 1
and H, {t,m) = W{t,w). The exponential stochastic process E(¢) is defined for
any complex number ¢ by the formula

(1.2) E(e)(t, ) = exp (e W (t, o) —4c?t) = Y ¢"H, (1,).

=0
For any Te(0, %] the space A, consists of all entire functions /' with finite
seminorms

s = (JI/@F &)
<

where ¢t (0, T}, C stands for the complex plane and the family of probability
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measures A, is defined by the formula

2nen

A (B) = —(mt)™ § § 1, (re ) Ei (—r?/t)r drdo.
¢0

Here 1, denotes the indicator of the set B and Ei is the integral exponential
function. If f(z) = Y pa,2" and g(z) = Y ob,z", then the bilinear form
{f,g>, imduced by the seminorm s, is given by the formula

o

n!
<f99>a: = Z ;1—;-"1-111"[3—”1".

n={

(1.3)

Let A be the standard Gaussian measure on the complex plane:

21w

ABY=n"1 [ [ Ly(re®ye " rdrdi.
o0

The randowm Fourier transform is an isomorphism from 4, onto .+, defined by

ft,o)=lim | E@)o)f(z)dz

= ey

([5], Theorem 4.1). Using the random Fourer transform one can defing
a convolution = of analytic stochastic processes. Namely, if X ey, Yeol,
X =Fand Y =g where feA,, geAy. then X Y = (fg)". Since fye Ay,
where 3 (T, U) is the harmonic mean of T and U, we have X % ¥ & Ayrp. In
particular, for Yeu/ , and Xeof, we have X xYe.of .

Using the random Fourier transform one can also define for any complex
number ¢ the translation T, by setting T, f = (¢,f)" for fe A, where

(14) (zf)E) =f(z+e).
it is clear that T,(%/;) = &/, and, by (4.7) in [5], T, = exp(cD)).
ProposiTioN 1.1. For any fe d, and te[0,T)

(1.5) ft, w) = 2nt)~ 2 Dj? [{iu+ W (t,w))exp (—u*/26) du.

For t =0 the right-hand side of the above formula is assumed 1o bhe f(0).
Proof. It is easy to check that the generating function of the sequence
oy
()7 @ue)~ 2 [ (it xYexp(~v*/2t)du  (n=0,1,..)
-

coincides with the generating function (1.14) in [5] of the Hermite polynomials
h,(t,x) n=0,1,..). Thus, by (1.1), we have

H,(t,w) = @)~ 2u} M [ (iu+ W, o)exp (—u?/2t) du,
Since H, = (n!)~* (z"* ([5], p. 279), this gives a special case of formula (1.5) for
fE =@t n=0,1,..).

(L6)
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In the general case expanding a function f from A4, in a power series

a

fly= 3 ==

Rarg il

(1.7)

we conclude, by Proposition 4.1 in [5], that

(1.8) limsupn™Y/2 g |1 < (eT) " 12,

Moreover,

(1.9 f,w)= 3% aH,(, o).
n=0

Given te(0, T) we take a number s fulfilling the condition

(1.10)
From (1.8) it follows that

n \"?
]aniﬁa(a> n=0,1,..)

for some comstant a, This leads at once to the existence of a constant b for
which

A% (A2/(20)!, A f2hA+ 1)) < B2 7Fs ™ (k1)
Thus

t<s<T.

(k=0,1,..).

= la
5 el < bt +ihexp 1/29).

n={
Obviously, by (1.10)

]'O (1 +{iu -+ x|)exp (jin+ x|*/2s —u?/2t) du < 0.

-0

Now formula (1.5} follows at once from (1.6), (1.7) and (1.9) by the dominated
convergence theorem.

As an immediate consequence of the above proposition we get the following
statement.

Cororrary 1.1, For any fe A, and any complex aumber ¢
T,/ (¢, @)= @rty ™2 | flu+e+ Wi, w)exp{—u?/2t) du.

In particular, T.W = W+c and T,E(6) = ¢"E (a).
" PropOSITION 1.2. For any fed, and any complex number a

(E(a)*f"l)(t,m)=(2:rrt)"”2E(a)(t,m) Gj? fliu+ W, w)— at)exp (—u/2t) du.

o
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Proof. Taking into account the definition of convolution and the formula
E(a) = (¢”*)* we have, be Proposition 1.1,

(1.11)  (E(@=+f){t, )

= (2mt)" Y2 | fiu+ W, o))exp (iua+aW(t, w)—u?/2t) du
f

bl 41

for te[0,T). Since, by Propositicn 4.2 in [5],

fim sup log/f(z)|

o 22

<Q2T)1,

by an obvious application of Cauchy’s Theorem we may take the right-hand
side integral in (1.11) along any line parallel to the real axis. Thus, by a change
of variable,

(E@=f)t, o,
= (2qut) 2 Ujj Sliu+ W (t, ) —at)exp (—w?/2t) duexp (aW (¢, w)—}a%t),

which, by (1.2), completes the proof.

Qur goal is to define and study Bessel analytic processes, In order to realize
this we need a few results on Bessel functions regarded as elements of the space A,

2. Bessel functions in A... In this chapter we shall study the properties of
Bessel functions that can be described in the context of the space A;.
We set for any fed,

2.1 (K f)(z) = Te"z 5P f(zsinZep)ep.
0

LemMa 2.1. K is a continuous linear mapping from A, into A,.

Proof The linearity of K is cbvious. Moreover, it is clear that for any
feA, the function Kf is entire. Introducing the notation

9,(2) = (zsin’e),  h,(z) = &7
we have, by Proposition 4.1 in [5], for any ¢ e[0,n)
(2.2) 8,{g,) € 5,(f)  (ue(0, 7)),
(2.3) s, (hy) < 5,(he)  (we(0, 0)).

Moreover, the order of the function 4, is not greater than 1, which, by
Proposition 4.2 in [§], yields h,e 4, (cpe[O ). Let ¥ {u,v) denote the
harmonic mean of u and v. G1ven te(0, T) we can find a pair u, v of positive
numbers fulfilling the conditions u < T and ¢ < y (¥, v). We can now appeal (o
the proof of Proposition 4.4 in [5] and obtain the inequality

St (hfpg(p c (ID u’ U) Su (gq;) ‘SU (hr'n) {(p € [0! ﬂ::])
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where ¢ (t,u,v) = ¥ 2o (m+ D{tAF (u,v))". Thus, by (2.2) and (2.3),

f) g- Ist(h¢g¢)dcp g ch(t9u’u)su (f)Su (hO) (te(oa T))a
0
which shows that Kf & A, and the mapping K is continuous. This completes

the proof.

In what follows we shall use the following formulae for the Bessel functions
J, (n=0,1,..):

1 2n
{2'4} J” (Z) —_ 21-[: elzmnqa i d(ﬂ
0
_ o (_1)kzzk+n
(25) J"(Z) - Z 22k-i-nk|(n+k)1’
2.6) J, (2} = J e (sin @) dop

2/l (n+1/2) n+1/2)0
([1], Chapter 7). Since the order of J, is equal to 1, we conclude, by Proposition
42 in [5], that J,eA,..

We say that a function f from Ay has Neumann expansion in A, if for some
sequence of coefficients by, by, ... it can be represented by a series

@7 f@=§§hm

convergent in A,. Notice that the convergence in Ap yields the uniform
convergence on every compact subset of the complex plane ([5], p. 276}
Consequently, by the Nielsen formulae the coefficients by, by, ... in (2.7) are
uniquely determined. More precisely, taking the power series expansion of f,

(2.8) flz) = iﬁ a,z",

we have the formulae
W2 (g — g — 1)1

(2.9) b() = lp, b" = nd" Z ""*'—4}:%?-‘“‘“ £ ("1 = 1, 2, ‘..),
fe= 0 M
and
1 WA n
an:'iﬁ;;“szo(mll)k(k)bnwzk (n=0,1,..])

where the square brackets denote the integral part ([1], Chapter 7.10).

Lemma 2.2. An entire function f belongs to the range K (Ay) if and only if it
has Neumann expansion in A |

= 3 bdu(@)
n={
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with coefficients fulfilling the condition
(2.10) limsupn™ 12 [b,['" < 2(eT) /2.

This condition guarantees the convergence of the series in Ap.
Proof. Starting from formula (2.6) we have, by (2.1},
K (2"
T far(n+172)
of coefficients fulfilling condition (2.10) we put
b
¢, = m——-~—_—2nﬁrzn+ 7 (n=0,1,..).

Tt is easy to check the inequality

(2.11) 1,(2) (n=0,1,...).

Given a sequence by, by, ...

lim supn?|c, |/ < (T~ *e)*?,
no oo
which, by Proposition 4.1 in [5], shows that the series g{(z) =y g,
converges in A, and, consequently, geA,. By (2.11) and Lemma 2.1

K@ = T by, (0

where the series converges in A,. In other words, ¥ gb,J, € K(A4y).

Suppose now that a function f belongs to A, and has power series
expansion (2.8). By Proposition 4.1 in [5] the coefficients a,, a,, ... fulfil the
condition '
2.12) lim sup n/2 |a |*" < (T~ te)t/?.

H+ o0

Setting b, = 2"./nl(n+1/2)a, (=0, 1,..) we can easily check condition
(2.10). Moreover, by (2.11) and Lemma 2.1,

KNG = 3 502

where the series converges in A,. This completes the proof.
LEMMA 2.3, K(Ap) = Ap. '

Proof. Suppose that f belongs to 4, and has power series expansion (2.8).

By Proposition 4.1 in [5], the coefficients a,,aq, ... fulfil condition (2.12).
Define by, by, ... by (2.9). Then f has Neumann expansion in 4, provided
aeob,J, (2) converges in A;. To prove this it suffices, by Lemma 2.2, to show
that the coefficients b,, b,,... fulfil condition (2.10). By (2.12) for any
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q> (T 'e)* we can find a positive number & such that
2.13) la,| < be™"2 ()" 12qr  (n=0,1,...).
Observe that for k=0, 1, ..., [n/2]

((n—k)1?  (n=2k+1)(n—2k+2) ... (n—2k+k)
(n—-2k)n! (ks n—k+2) ... n—k+k)

=<1

and, consequently,

(n—k=1)t < (a7

((h—2k) 72 (k=0,1,.... [#2]).

Combining this with (2.9) and (2.13) we get the inequality

fnf2] 6112 )~ 1)
b, < mb(n) e~ 122g0 S LlﬁlL_
E=0 !

Now a standard calculation shows that

limsupn™ 121 11" £ 2¢ge™?,

Hr o0

" which, by the arbitrariness of ¢ > (T '¢)*/?, yields (2.10). The lemma is thus

proved.

As an immediate consequence of Lemmas 2.2 and 2.3 we get the following
statement which can be viewed as a representation theorem.

TuECREM 2.1. An entire function f belongs to Ay if and only if it has
Neumann expansion in A,

f@ =3 by

n=0
where Bmsup, ., n~ 2| M < 2(eT) ™2,

The above theorem and the uniqueness of Neumann expansion yield the
following corollary.

CorOLLARY 2.1. Suppose that an entire function f admits the classical
Neumann expunsion

@) = 3 bl,(2)

ne ()

where the series converges uniformly on every compact subset of the complex
plane. If in addition f & A, then this series converges in Ap and, consequently,
gives the Neuwmann expansion of f in Aq.

Applying the above rule to the classical formulae ([1], Chapter 7) we get
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examples of Neumann expansions in A4,:

]

(2.14) L =Jo(2)-+2 3 Jula),
k

=1
n-k k-~ DI{n+2k)
k!

@i ser Yl Fansl®  (n=1.2,...),
k=4

and for any complex number ¢

(2.16) &% = J, (2)+ ’L ((c+ /e 1 e — S+ 1), (2).
e=1
For the further discussion we need an estimate for the seminorms of Bessel
functions.
LEMMA 24, For any te(0, o) we have the ineguality
5,01} < 27" ((n+ 1)) Y2 Ra ()
Jor some function a(t).
Proof. From (4.1} in [5] and (2.5) we get the formula
B i (k- n)lgetn
Ko A 2k 1Y (K -+ )Y
Using induction on & one can prove the inequality
(2k -+ m)! < i
4 Qk+n+ 1) ((k+m1)> ~ (n4 1)1
which yields

s¢ (1)

(ke=0,1,...),

sE(S,) AT ((n D) R (1)
with a®(f) = Y 5,4 7% (k)" %3 This completes the proof.

Given ae(0, ) we denote by B, the Hilbert space of entire functions
g x:vﬂh 5.(g) < co. It is clear that B, < 4,. We keep a nonnepative integer
r fixed. For any geB, we define the sequence ¢q(g), ¢,(¢), ... by setting

(2.17) co(@) = <Jy, g,

(2.18) g} = e 0o+ (= 1 (ins 90

(2.19) lg) = (=0T ks @2 (= 1 s 40,
where the bilinear form {f, g}, is given by (1.3).

k=1,2,...,0,

(owsret 1, rb2, 000

LemMa 2.5, For any geB, the series

ol

(2.20) o)) = 3 ¢ (a)],(2)
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converges in A, and the order of the function Lg is not greater than 1.
Proof Starting from the Schwarz inequality
e (@} € KTim s @Oal 1 0 9] S 5009) (50 (T ) 5,0 r))
for k > r and applying Lemma 2.4 we get the estimate
leg () = B2 %25 (g)  (k=10,1,..)
with some constant b, which together with the well-known estimate
(2.21) Wz < 278k Yizlfexplzl  (k=0,1,..}
([11, Chapter 7) yields

3 lee (@l (2) < bs, (glexp((1+47a" ) ).
k=10

Consequently, the series (2.20) converges uniformly on every compact subset of
the complex plane and the order of its sum Ly is not greater than 1. Applying
Proposition 4.2 in [S] we conclude that Lge 4, which, by Corollary 2.1,
shows that the Neumann expansion (2.20) converges in A4 ,. This completes the
proof.

LimMma 2.6, The mapping L from B, into A, is one-to-one.

Proof Suppose that ge B, and Lg = 0. Then, by the vniqueness of the
Neumann cxpansion we have ¢,(g) =0 (k =0, 1,...). To prove that g =0 it
suffices to show that ¢(J,.g>, =0 for all k=0, 1, ... because ye A, and, by
Theorem 2.1, the above equalities yield s,(g) = {g,¢>, = 0, which, by (1.3),
implies g = 0.

First consider the case r = 0. Then, by (2.17), {(Jq, ¢, = 0 and, by (2.19},
Ty, =0 for k1.

Suppose now that r 3 1. By {2.18) the equality c,.(g) = 0 yields

(2.22) [T g22al = K 2r g2l

Further, for n = 1,2, ... and m = 0,1, ..., setling k = n+2m+ 1)r in (2.19) we

get
(223) |<‘]u1 g)ul = E<Jll'|' s .(">u| o, |<JH 4 2mrs H>al .
Observe that, by Lemma 2.4, limy....8, (/) = 0, which yields

lim {J, I‘Z!‘PJ?“!Q)(! = 0.

o

Consequently, from (2.23) we get {J,,¢D, = 0 for n = 1, which, by (2.22), gives
{Jootid, = 0. The lemma is thus proved.

We are now in a position to prove the following theorem.
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THEOREM 2.2, Suppose that 4 sequence Cy, Cy, ... of distirct nomzero
complex numbers fulfils the condition

w

Z leg] 77 =

k=1
for some p > 1. Then for everyr =0, 1, ... and T &0, o] the linear span of the
functions J, (z+c) (k=1,2,...) is dense in Ay.

Proof. Let / be a continuous linear functional on A, vanishing on all
functions J, (z+¢,) (k = 1,2, ...). To prove the assertion it suffices to show that
[ vanishes 1dent1ca11y on Ap. Using notation (1.4) we have

(2.24) Mo, J)=0 (k=1,2,..).

By the Mazur—Orlicz Theoem ([4], p. 119) the functional ! is of the forim

(2.25) )= {figu

where ae(0, T) and ge B,. We start from the Neumnanp—Schlifli identity ([6],
p. 357)

r

()0 = oG, @+ £ SO @ 1P dal2)
k=1
DRACIEUICEREI T

and observe that, by (2.21), the sequence of coefficients J,(y} (k=0,1,...)
fulfils condition (2.10) with T = co. Thus the above series converges in A,,.
Consequently, by (2.20) and (2.25),

(2.26) 1y ) = (Lg) ()

for any complex number y. Suppose that the entire function (Lg)(z) does not
vanish identically. By (2.24) the numbers ¢, ¢, ... are its zeros. By Lemma 2.5
the order of (Lg)(z) is at most 1. Taking into account the relation between the
order and the convergence expoment of zeros of an entire function ([2],
Theorem 2.5.18) we get the inequality > 7%, l¢,] ™% < oo for every ¢ > 1. But this
contradicts the assumption, Consequently, (Lg)(z) vanishes identically. Ap-
plying Lemma 2.6 we conclude that g vanishes identically too, which, by (2.25),
shows that I =10 on A;. The theorem is thus proved,

Notice that the assumption p > 1 in the above theorem is essential. In fact,
setting r = 0 and taking as ¢, ¢,, ... the zeros of the Bessel function J, we have
le,|~* = oo ([1], Chapter 7). Taking as g in (2.20) the constant function equal
to 1 we get the formula (L1) (2) = J, (2). Put I(f) = {f, 1>, where a(0, T). The
functional | does not vanish identically because [{1) = {1,1>,= 1. On the
other hand, by (226), I(tJ)=Jo{y) and, consequently, Iz, Jy)=0
(k=1,2,...}, which shows that the linear span of the translates J,(z+c,)
(k=1,2,..) is not dense in A,.
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With the above background prepared we can now proceed to the study of
analytic stochastic processes.

3, Bessel analytic processes. In the literature there exists the term “the
Bessel process” referring to the radial motion associated with a multidimen-
sional Brownian motion ([3], Chapter 2.7). Here we shall give a definition of
a different kind of processes which can also be regarded as a random analogue
of the Bessel functions. Namely, the stochastic processes defined by the formula

@n 1 1B

4]

J,(l,w) = E(ising)(t,w)e” ™ dep (n=20,1,..)

are called Bessel analytic processes. 1t is clear that they belong to &/ ,. Using
representation (1.2) we have the formula

2
@m)~1 | exp(iW(t, w)sing +4isin® ¢ —ing)de

0

J (t, @) = (n=0,1,..).

Since E (ising) = {¢”*"*)~, we have, by (2.4}, a very useful formula connecting
Bessel analytic processes and Bessel functions:

(3.1 Jtw={,@)" (=01,.)

Using this formula we get from {2.5) the expanmon of Bessel analytic processes
in series of Hermile processes:

o __1k n '
Jn(t,(ﬂ) = Z (ﬁﬂ];(k)HZk+M(E:w) (” = 0; 1, -)
k=0

Moreover, by Proposition 1.1,

u?/2t) du

J,(t, @) = 2rer) "1z T J, (it + Wi, w)jexp(— n=0,1,...).

Further using the formula nlH, E(icosp) = (2"¢*°*)" we get, by (2.6) and

Proposition 1.2, another expression:
g (t,w) =
| x
5 \/‘...In 1/2 [ by (¢, W (¢, w)~—itcos p)sin*pexp(iW (1, w)cos ¢ +$cos?@)do.
" n~l»- 0

It is easy to check using (4.7) in [5] and (3.1) that the process J, (i, ®) fulfils the
equation
W2 % DEX + Wi DX +(W*2~n%)x X =0

and each analytic process fulfilling the above equation is proportional to
J, ¢, ).
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We say that a stochastic process X from ./, has random Neumann
expansion if for some sequence of coefficients by, by, ... it can be represented
by a series

[74]
(3.2) X{t,w) =3 b (t,0)
n=0Q
convergent in o7 p. We can now appeal to Theorem 4.1 in [5], Theorem 2.1 and
formula (3.1) and obtain the following statement which can be viewed as
a representation theorem for analytic stochastic processes.
THEOREM 3.1. A4 stochastic process X belongs to .y if and only if it has
random Newmann expansion (3.2) with coefficients by, by, ... filfilling the condition
limsupn "2 b, | g 2(eT) 12,

I Radiv )
The coefficients by, by, ...

From (2.14)-(2.16) we get the following examples of random Neumann
expansions:

are uniquely determined.

I = JO(C,QJ)'}'Z E‘J_u{t,(l)),
k=1

Wi, @) =25 2k+1)Jye: (t @),
k=0
< Ck+nint+k

H, () =2"
) ,Z:O n+k \ k

)JZic-I-ﬂ(ram) (n=2,3,..).

E(©)(t,w) = J,(t,0)+ i (c+ A+ 1o~/ + 1)), (t, ).

=1
Further, from the formulae

d d
EJO(Z)= _‘Il(z)’ E;Jn(z)u%‘:(Jn—l(z)_Jn+1(z)) (n= 1127"')

([1], Chapter 7) and (4.7) in [§] we get the following rule for 1td integration and
differentiation:

o o kA
I X bely(tw)) = 2bod (t ) +2 5 (Y b)Jy(t,w),
k=0 k=2 =1

D, (Y bJ (t,w) = 1b,J, (t, )+ @b, —~by)J, (¢, w)
k=0

+5 2, (b1 —b)J, (1, ).
k=2

In particular, 7 (Jo(t,w)) = 2J, (t, ) and

icm
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I, (tw)=2 i Jhw) (m=1,2,..).

k=n+1

By Corollary 1.1 and formula (3.1) the translates of Bessel analytic
processes have a representation

(T J )t o) = 2r0y™ Y2 [ J (u+c+W(t, w)exp(~12/2) du.

o

As a consequence of Theorem 4.1 in [5], formula (3.1) and Theorem 2.2 we get
the following statement.

TuporEM 3.2, Suppese that a sequence ¢, ¢, ... of distinct nonzero complex
numbers fulfils the condition

0
Yoled P=c
k=1

for some p > 1. Then for every r =0, 1, ... and T e(0,00] the linear span of

translates (T, J)(t,w) (k=1,2,...) is dense in &7,. Moreover, the condition
p>1 is essential,
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