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On a proof of the boundedness and nuclearity
of pseudodifferential operators in R”

by JAN A, ReMPALA (Warszawa)

Abstract, A simple proof is given of the boundedness and nuclearity of pseudodifferential
operators in R” with symbol bounded with derivatives up to order 2n+2. The proof is based on an
identity for symbols which replaces the group representation approach of Howe [5].

In a very interesting paper, R. Howe gave a proof of the boundedness on
I*(R") of a pseudodifferential operator with symbol bounded with derivatives
up to order 2n+1 ([5], Theorem 3.1.3). This theorem was first proved by
Calderon and Vatllancourt [2] in a slightly stronger form and is known as the
Calderon-Vaillancourt (0,0) I?>-boundedness theorem. Now it is a classical
result in the theory of ¥DOs, and a starting point for various generalizations
([3]). The novelty of Howe’s proof lies in some group representation theory
arguments. In this paper we show that in fact representation theory is not
needed in Howe’s approach (to the above-mentioned theorem!). It turns out
that the main estimate in Howe’s proof follows from an identity for symbols
(Theorem 1). Also, this identity leads to an easy proof of nuclearity of an
operator with an integrable symbol. By standard interpolation arguments one
can deduce that an operator with symbol in I?, | € p < o0, is p-nuclear ([1],
[4]).

We shall use the following notation and terminology: R" is the standard
n-dimensional Euclidean space and R, is its dual. The value of a functional
£eR, on a vector x € R" is denoted by x¢&. The Lebesgue measures in R" and R,
are denoted by dx and d¢. We also write d¢ = (2n)""d¢.

For any finite-dimensional Hilbert space ¥, &(V) denotes the Schwartz
space of rapidly decreasing functions and &'(V) the dual of #(V) with the
weak topology.

The Fourier and inverse Fourier transforms are defined by

F. L(R)->Z(R), F(NQ):=[e ™ f(x)dx =:1 (&),
F~l PR)- SR, F g (x):=[e*g(&)ds.

We shall also use the symplectic Fourier transform:
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s¥: $(R"xR,)—+ F(R"xR,),
*F (@) (x, &):= [ " a(y,n)dydn
=F, ®F Li(a(,n) =:d(x,E).
The following properties of *%# are obvious:
‘F ("# (a)) = a,
(1) F:2,(@(x, &) = F (a0, ),
2) F anl(@(x, &)} = Fy-ela(y, m).

The Fourier transforms are extended by duality to &',
We deline the injection ¥(R"xR,) ¥'(R"xR,) by

a[b] = [fa(x, &) b(x, &)dxd, a,beS(R"xR,).
As usual we denote by C§ the space of compactly supported smooth
functions and by &' the space of compactly supported distributions.
For a given ae%'(R"xR,), we define the operator A =:0pg(a):

Z(R")— &' (R") with (exotic) symbol a:= az(4) by

Ao[Y]l=alJ;(¥®9)]l, o, YeF (R
with

Je(W®0)(x,8) = [e” Y () o(—x+y)dy

= 2n)"F " (Y (0) €),

where 7,(¢) () = ¢(—x+).
If ae #Z(R"xR,) we have

Ap(x) = ffe*"a(x~y, M () dydy, @ePL(R").

The usual (Mikhlin-Giraud) symbol of 4 is then equal to & (see (6] for the
definition of various symbols).

If a continuous linear operator A: S (R"—+%'(R") is given and
A e (R"xR") is its Schwartz kernel, then

(3) aE(A)(x’ E) = -gy-’{(d(yn—x"'y))'
Let %, Ae #(R"). We denote by »® 1 the operator
x®@Xp):=(el)x%, @eZ (R,

where (¢|4) is the I*-scalar product.
By (3) it follows that

o(*®A)(x,8) = [ e " x(y) l(—x+ y)dy

=F (21, (D) = Jo(x@ 1) (x, £).
PROPOSITION 1. For any x, ie $(R")

"JE("®1)“L’(dxac) = |Joe]] .2 1A 2.
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Proof. This follows easily from the Parseval equality.
The next result permits any group-theoretic considerations of Howe’s
.papet to be avoided.

THEOREM 1. Let ae S (R"xR,) and %, A, o€ ¥ (R"). Then

0P5(“°'5(“®D) ¢ = OPE(E 01-:(40@"{)) x.

Proof. We shall use the well-known properties of the Fourier transform
and convolution:
For y € #(R") we have

(Ope(ace (@) @) [Y] = acy(x@D[J (Y ® )]
= @05, O F g0, D) &) [F 54 0)]
= F (a5, O F e (e D D) [ 7:(0) )]
= F i (ale, &) (D) 0)) [V @) 0]
= #3,(a(x, 8) [0, () * (Y1) W] -
Next we have
(o) » Y7 @) ) = felz— N A(=x+2= Y)Y (@) p(— x+2)dz
= (@7, (M) #¥7,(0) (x).
Thus using (1) we obtain
(OPE(a op(x® 1)) CP) v]
- #4E0m) [0 5, 0)" +(45,(0)0)]
= @&, m) [# 72,(07,(D) () F 2y ((05,00)(x)]
= 80 1) [F a7, (D) () I 5V @) 0, 1)]
= a0 (e@N [y (¥ ®x)] = (OPE(E og(e®@AN)x) Y]
It is easy to lgcncralize Theorem 1 to k x ! matrices.

THEOREM 1. Let ae #(R"xR)®L(C', CY, %, ie Z(R"), peSL(R") % C'.
Then

Opg(acg(x®1)) ¢ = Opg(@ ox (0@ D).
Write 1,(x) = n"2e*"/%; obviously A€ ¥ (R").

LeMMA 1. [[Aolls = 1 and 65(A,®7) (x, &) = e¥4~ /4= 15412 does not vanish
for all (x,£)eR"xR,.

Prool. The formula for a5(4,®%,) follows easily from the well-known fact

that | e *dz=n"2
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Moreover, |[All2: = a5(A,®4,)(0,0) = 1.

From now on we fix 1e %(R") with |[Alj2 = 1 and o4-(A®4) # 0 for all
(x,t)cR" xR,

The following observation results easily from Theorem 1.

COROLLARY 1. For ¢e % (R") define
I(x,&:= [ o) H(—x+y)dy = 05(0®N)(x,&) = (9@ (x, ).
Then for any ac&'(R"xR,)
Ops(a)p = Opgl(@l;')"1,) A

Remarks. (1) We take ae # instead of ac &' since I; ! is in C* but need
not be a multiplier in &

(2) By Proposition 1, [I[ ]2 = l|Allzz ll@llez = lielLa-
Now we can prove the results which were the aim of the paper.
THeoreM 2 ([51, 3.1.8). Let acé'(R"xR,). Then

lOPe@lllo < sup @Iz )" (6Ol =:li@I~)"Il,

xeR",éeRp,
where |||*||l, denotes the norm in L(L*(R").

Proof We use Theorem 1 and Proposition 1:

[tOpe(afll, = sup Opge(a) ply)l

ol llvll , <1
= sup|(Opgf(a 15 )T )AIY)
= sup [0p((a 17 )" L)ALY]|
= supl(@ Iy ") L, [J (P @A)]| = supl(a ;)" I, T,]|
<@ I o sup L Meall Iy N = l(al ™ )" .
For an operator 4 in I(R") the p-nuclear norm (1 < p < o0) may be defined by

1411, = sup { ,,21 A [pe) e,

where the supremum is taken over all orthonormal bases {¢,}, {¥,} in L%,
For an operator 4 with [|A|||, < o the trace

TrA:=) Ag,[3,].
is defined.

Theorem 1 allows us to estimate the trace norm of an operator.
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THEOREM 3 ([4], 3.5). Let ae&'(R"xR,). Then
10p£@)lly < fl(a 171" (x,&)ldxd¢ =:[|@I7 ) I,
Proof. Observe that for any orthonormal basis {¢,} in *(R") we have

;l I, (%, 817 = Y l(@ules T D) = legze(Mliez = IAllez = 1,
where e,(y) = e”*, Now

lIop@ll; = sup ¥I0pg(a) o, [¥,]]
(@) (¥

= sup ) [Ope((@ 1 )" L, ) ALY, ]|
= sup Y |(al7 )"y, [1y,J| < sup 3 ffla Ly ) I, - I, dxd&

< sup ffla 17 *)" (3, OI X Mg (x, B2 (X 11y, (x, E)12)M2 dxdé
= {fl@ Iz ") (x, &) dxat.
Remark 3. Arguing as above one gets

TrOpg(a) = );Opa(a) @e[@:] = @IT )" [XMal?] = [f@I7 ) (x, &) dxd.

Remark 4. By the standard interpolation argument it follows from
Theorem 2 and 3 that

10pe(@ll, < ll@ I3 ') Iz
(see [4], 3.7).

To make the paper self-contained we give a sketch of Howe’s proof of the
Calderon—Vaillancourt theorem (cf. [5], Theorems 3.1.1-3.1.3; [4], 3.6-3.8).

PROPOSITION 2. For any compact set K c R x R, there exists a constant
cg > 0 such that for ae &'(R, x R") with suppa <K

llopg(@ll, < Cilldll, p=1,0.

Proof We choose fe C3(R" xﬁR,,) with f=1I;! on K.
Then al;! =fa and (fa)" = f *4.
By Theorem 2 and the Young-inequality we get

10P&@lll < @17 o = IIf #8lle < ISz, 18]l

and we may take C, = || f]|.:.
Similarly for p=1 (or 1 < p < oo according to Remark 4) we have

lops(@)ll, < 117 *all, < IIf Izt 11,

and as before we may take Cy = ||fll.:.
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We also need the following easy result
LEMMA 2. For (x,£)eR"xR,, ae ¥'(R"xR,)
OPE(Tx,g(a)) = ¢;00pg(a)or,,
where 1, ((a)(y,1) = ay—x,n—¢), (egw)(y) = e**u(y).
Since v, and e, are isometries in I we have the following fact:

COROLLARY 2. [[|OPgx,(@)lll, = ll0OP£@)lip 1 <P < oo

LEMMA 3. Let ae &' (R" x R,) with a{§):= 05 %G (y,n} in I?, 1 € p 0, for
|+ 1B| < 2m, where m is a positive integer. For any fe C§(R"x R,) there is
a constant C such that for all (x,{)eR" xR,

(el Na) ], < CA+IxP+1ED™ max (@G,
la| + |8l <2m

Proof. We have
(cse() @) () = [~ S5 (3,0) B (y—2,n—{) dzdl

e—lx;-Hzc — (1+|x|’+|af|2)""(l—Ac—A,)"'e""*"‘.

and

Integrating by parts and using the Leibniz formula we get the assertion.
Now we can prove the most interesting result.

THEOREM 4. Let ae &' (R" x R,) with dff}e I*(R" x R,) for |of +|B| < 2n+2,
1 < p < . Then the operator Opg(a) on I* (R") is p-nuclear if 1 < p < 0 and
bounded if p = .

Proof. We give a complete proof for p=1 and p = o0; the case
1 < p < o follows from the unproved Remark 4 (see [4] for details or [1] for
another proof).

Let fe CP(R"xR,) with [f dxd¢ =1 and
K,={(x.6)eR"xR,: 0< x,§< 1, i=1,2,...,n}

For k,1 < Z" define

S = (f flx—k—y,E—I—n)dydn.

(y -")‘KO

Then f,,€C¥, fir = Tx1fo.00 z Sea =1, and thus

k,leZn

as= kz;fu.t(fo.o)a = Efk.a(fo.o f-k-"(a»'

In view of the previous results we have for any integer m > n
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llope@l, < EIIIOPE Tra(So.0 Tk~ 1(@))|[|,
=§ llope(fo.0 Tt - @)l < ;c,‘o (fo.0 7=k, —1(@))",

=Cxugll(fu.n(fo.o)a)"ll,,sC...kZ(1+Ik|2+le)'"' max || @@l
' A

laf +18]<2m

n
=C, max |[a@l,
lal + 18l € 2m
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