ON THE TOTAL POSITIV!TY OF THE TRUNCATED POWER KERNEL

BY

BORISLAV BOJANOV (SOFIA)

A kernel K(x,t) is said to be *totally positive* on $X\times T$ if there is an $\varepsilon=+1$ or $\varepsilon=-1$ such that

(1)
$$\varepsilon \det\{K(x_i,t_j)\}_{i=1,\ j=1}^N \stackrel{N}{\geq} 0$$

for each choice of the points $x_1 < \ldots < x_N$ in X and $t_1 < \ldots < t_N$ in T. The truncated power kernel

$$(x-t)_+^{r-1} := \begin{cases} (x-t)^{r-1} & \text{if } x-t \geq 0, \\ 0 & \text{if } x-t < 0, \end{cases}$$

is totally positive on $X \times T$ for each $X, T \subset \mathbb{R}$ (see Karlin [4]). This fact plays a fundamental role in the theory of spline functions. The purpose of this note is to show that the relation (1) remains true in a more general setting involving Birkhoff type matrices $\{K(x_i, t_i)\}$.

1. Preliminaries. B-splines with Birkhoff knots. Consider a pair (\mathbf{x}, E) with $\mathbf{x} = (x_i)_{i=1}^m$, $x_1 < \ldots < x_m$, and with an incidence matrix $E = (e_{ij})_{i=1, j=0}^m$. Denote by |E| the number of 1-entries in E.

We shall say that the pair (x, E) is regular (respectively, s-regular) if:

- (i) E is conservative;
- (ii) E satisfies the Pólya condition (respectively, the strong Pólya condition).

All notions used above are well known in the theory of Birkhoff interpolation (see [5] for details).

Let (x, E) be a regular pair with |E| = r + 1. Then, by the Atkinson-Sharma theorem [1], the Birkhoff interpolation problem

(2)
$$p^{(j)}(x_i) = f^{(j)}(x_i)$$
 if $e_{ij} = 1$

has a unique solution $p_f \in \pi_r$ (π_n denotes the set of all algebraic polynomials of degree n). Equivalently, there exists a unique linear functional

$$D[(\mathbf{x}, E); f] = \sum_{e_{ij}=1} c_{ij} f^{(j)}(x_i)$$

satisfying the conditions:

$$D[(\mathbf{x}, E); f] = 0$$
 for $f(x) = x^k$, $k = 0, ..., r - 1$, $D[(\mathbf{x}, E); f] = 1$ for $f(x) = x^r$.

 $D[(\mathbf{x}, E); f]$ is called the *divided difference* of f at (\mathbf{x}, E) . Note that $D[(\mathbf{x}, E); f]$ coincides with the coefficient of x^r in the polynomial p_f which interpolates f at (\mathbf{x}, E) , i.e., which satisfies (2).

LEMMA 1. Suppose that the pair (\mathbf{x}, E) is regular, $\mathbf{x} = (x_1, \ldots, x_m)$, $E = (e_{ij})_{i=1, j=0}^m$ and |E| = r + 1. Then $c_{m\lambda} > 0$, where λ is the order of the highest derivative of f at x_m , appearing in the expression $D[(\mathbf{x}, E); f]$.

Proof. Let φ be the polynomial from π_r that satisfies the interpolation conditions

$$\varphi^{(j)}(x_i) = \delta_{im}\delta_{j\lambda}$$
 if $e_{ij} = 1$.

Then

$$c_{m\lambda} = D[(\mathbf{x}, E); \varphi].$$

On the other hand, $D[(\mathbf{x}, E); \varphi]$ is the coefficient C of x^r in the polynomial φ . Thus

(3)
$$\operatorname{sign} c_{m\lambda} = \operatorname{sign} C = \operatorname{sign} \varphi^{(r)}(x_m).$$

Now a very careful study of the behaviour of the sign changes in the sequence $\varphi(x), \varphi'(x), \ldots, \varphi^{(r)}(x)$ when x runs from $a := x_1$ to $b := x_m$ shows that $\varphi^{(\lambda)}(b), \ldots, \varphi^{(r)}(b)$ does not contain a sign change. Therefore $\operatorname{sign} \varphi^{(r)}(b) = \operatorname{sign} \varphi^{(\lambda)}(b) = 1$, which, in view of (3), completes the proof.

For regular (x, E) with |E| = r + 1, the function

$$B[(\mathbf{x}, E); t] := D[(\mathbf{x}, E); (\cdot, -t)_{+}^{r-1}]$$

is said to be a B-spline of degree r-1 with knots (\mathbf{x}, E) . This natural extension of the original Curry-Schoenberg B-splines was introduced and studied in [2]. Many of the crucial properties of the extended B-splines $B[(\mathbf{x}, E); t]$ were proved there. It is known, for instance, that $B[(\mathbf{x}, E); t]$ has a finite support and does not change sign on R. This could be derived from a general theorem about the number of zeros of polynomial splines with Birkhoff knots (see Theorem 7.13 in [5]). We give here a new, simple direct proof of this fact.

PROPOSITION 1. Let a pair (x, E) be s-regular and |E| = r + 1. Then

(5)
$$B[(\mathbf{x}, E); t] = 0 \quad \text{for} \quad t \notin [x_1, x_m],$$

(6)
$$B[(\mathbf{x}, E); t] > 0 \quad \text{for} \quad t \in (x_1, x_m).$$

Proof. The equality (5) is clear since the function $g(x) := (x-t)_+^{r-1}$ vanishes on (x_1, x_m) for $t > x_m$ and g coincides on (x_1, x_m) with the polynomial $(x-t)^{r-1}$ for each fixed $t < x_1$.

Let us prove (6). According to the remark after the definition of the divided difference, $B(t) := B[(\mathbf{x}, E); t]$ is the coefficient of x^r in the polynomial $p \in \pi_r$ which interpolates g at (\mathbf{x}, E) . Note that $p \not\equiv 0$ and $p \not\equiv g$ in (x_1, x_m) , and consequently, in any subinterval of (x_1, x_m) . Therefore p(x) - g(x) has only isolated zeros in (x_1, x_m) . Since p(x) - g(x) vanishes at (\mathbf{x}, E) , we see by Rolle's theorem and the s-regularity assumption that $p^{(r-1)}(x) - g^{(r-1)}(x)$ must have at least two sign changes in (x_1, x_m) . This is possible only if $p^{(r-1)}(x)$ is an increasing linear function, i.e., if p has positive leading coefficient B(t). This completes the proof.

Our further considerations are based on the total positivity of a certain matrix of the form $\{B[(\mathbf{x}_i, E_i); t_j]\}$. In order to formulate the result we need some definitions.

Given an integer r>0 and a pair (\mathbf{x},E) such that $x_1<\ldots< x_m$, $E=(e_{ij})_{i=1,\ j=0}^m,\ |E|=r+N$, we defined in [2] the (r+1)-partition of (\mathbf{x},E) to be a sequence of pairs $\{(\mathbf{x}_i,E_i)\}_{i=1}^N$ obtained from (\mathbf{x},E) in the following way. Order the elements of E row by row, i.e., in the manner $e_{10},\ldots,e_{1,r-1},\ldots,e_{m0},\ldots,e_{m,r-1}$ and number the 1-entries in this sequence from 1 to r+N. Let $\mathbf{e}_p,\mathbf{e}_{p+1},\ldots,\mathbf{e}_q$ be the rows of E which contain r+1 consecutive 1-entries starting from the ith one. Suppose that the first row \mathbf{e}_p (respectively, the last row \mathbf{e}_q) contains n_1 (respectively, n_2) 1-entries of this (r+1)-sample. We denote by E_i the matrix $\{\mathbf{e}_p,\ldots,\mathbf{e}_q\}$ in which all 1's in the sequence $e_{p0},\ldots,e_{p,r-1}$ (respectively, in $e_{q0},\ldots,e_{q,r-1}$) except the first n_1 (respectively, n_2) are replaced by 0. Finally, define $\mathbf{x}_i:=(x_p,\ldots,x_q)$.

We say that the (r+1)-partition $\{(\mathbf{x}_i, E_i)\}$ of (\mathbf{x}, E) is s-regular if each (\mathbf{x}_i, E_i) is s-regular.

PROPOSITION 2. Let $\mathbf{x} = (x_0, \dots, x_{m+1}), x_0 < x_1 < \dots < x_{m-1},$ $E = (e_{ij})_{i=0, j=0}^{m+1}$ and |E| = r + N. Suppose that the (r+1)-partition $\{(\mathbf{x}_k, E_k)\}_{k=1}^N$ of (\mathbf{x}, E) is s-regular. Then

(7)
$$\Delta := \det\{B_k(\tau_j)\}_{k=1, j=1}^N \stackrel{N}{\underset{j=1}{\sim}} \ge 0$$

for any $\tau_1 \leq \ldots \leq \tau_N$ satisfying $\tau_j < \tau_{j+r}$, $j = 1, \ldots, N-r$, where $B_k := B[(\mathbf{x}_k, E_k); \cdot]$. Moreover, Δ is positive if and only if

$$\tau_k \in \operatorname{supp} B_k$$
, $k = 1, \ldots, N$.

This extension of the Schoenberg-Whitney theorem (see [6]) was proved in [2].

2. Main result. A spline function of degree r-1 with knots $\xi_1 < \ldots < \xi_n$ of respective multiplicities ν_1, \ldots, ν_n is any expression of the form

$$s(x) = p(x) + \sum_{k=1}^{n} \sum_{\lambda=0}^{\nu_k - 1} a_{k\lambda} (x - \xi_k)_+^{r - \lambda - 1}$$

where $\{a_{k\lambda}\}$ are real constants and $p \in \pi_{r-1}$.

Let (\mathbf{x}, E) be a given pair with $\mathbf{x} = (x_0, \ldots, x_{m+1})$, $a = x_0 < x_1 < \ldots < x_{m+1} = b$, and with an incidence matrix $E = (e_{ij})_{i=0, j=0}^{m+1}$ such that |E| = r + N. Consider the Birkhoff interpolation problem

(8)
$$s^{(j)}(x_i) = f_{ij} \text{ if } e_{ij} = 1,$$

where $\{f_{ij}\}$ are given values and p(x) is written in the form

$$p(x) = a_0 + a_1(x-a) + \ldots + a_{r-1}(x-a)^{r-1}.$$

In what follows we define $s^{(j)}(x)$ as $s^{(j)}(x+0)$ in case $s^{(j)}$ is discontinuous at x. Denote by $V = V[(\mathbf{x}, E), (\xi, \nu)]$ the matrix of the system (8) with respect to the unknowns

$$a_0,\ldots,a_{r-1},a_{10},\ldots,a_{1,\nu_1-1},\ldots,a_{n0},\ldots,a_{n,\nu_n-1}$$
.

We shall show that

$$\varepsilon \det V[(\mathbf{x}, E), (\xi, \nu)] \geq 0$$

for each x and ξ with some $\varepsilon = (-1)^{\sigma}$ where σ depends only on the structure of E. In a fairly general situation, including quasi-Hermitian E, we find the explicit value of σ and thus provide a new proof of a fundamental result of S. Karlin [4].

We start with an auxiliary lemma.

Denote, for simplicity, by

$$\begin{bmatrix} \{u_1(t),\ldots,u_n(t)\}^{(j)}|_{t=t_i} \\ e_{ij}=1, e_{ij}\in E \end{bmatrix}$$

the matrix consisting of the rows

$$u_1^{(j)}(t_i),\ldots,u_n^{(j)}(t_i)$$

ordered according to the position of the 1-entries e_{ij} in the sequence of consecutive rows of the incidence matrix $E = (e_{ij})$.

LEMMA 2. Let (y, G) be a given pair with $y = (y_1, \ldots, y_k)$ and with an incidence matrix $G = (g_{ij})_{i=1, j=0}^k$ such that |G| = r. Let

$$A = \begin{bmatrix} \{1, x - a, \dots, (x - a)^{r-1}\}^{(j)}|_{x = y_i} \\ g_{ij} = 1, \quad g_{ij} \in G \end{bmatrix}.$$

Suppose that (y, E) is a regular pair. Then there is a positive integer σ depending only on G such that

$$(-1)^{\sigma} \det A > 0$$

for each $a \leq y_1 < \ldots < y_k$. Moreover, if the 1-entries of $\mathbf{g}_i := (g_{i0}, \ldots, g_{i,r-1})$ remain in the lowest $|\mathbf{g}_i|$ positions of the 1-entries in the coalescence of \mathbf{g}_i and \mathbf{g}_{i+1} , for $i = 1, \ldots, k-1$, then $\sigma = 0$, and if this holds for $i = 2, \ldots, k-1$, then

$$\sigma = p(p+1)/2 + i_1 + \ldots + i_p,$$

where i_1, \ldots, i_p are the positions of 1's in g_1 .

Proof. Since (y, G) is a regular pair, by the Atkinson-Sharma theorem [1], the interpolation problem

$${a_0 + a_1(x-a) + \ldots + a_{r-1}(x-a)^{r-1}}^{(j)}|_{x=y_i} = 0$$
 if $g_{ij} = 1$

has a unique solution. Thus $\det A \neq 0$ for each $a \leq y_1 < \ldots < y_k$. One can even find the sign of $\det A$. In order to do this, note that for fixed y_1, \ldots, y_{k-1} , $\det A$ is a polynomial function of $x := y_k - y_{k-1}$. Denote this function by $A_k(x)$. By Taylor's formula,

(9)
$$A_k(x) = \sum_{j=0}^{k} A_k^{(j)}(0)x^j/j!.$$

Let $A_k^{(\lambda)}(0)$ be the first nonzero coefficient in (9). It is not difficult to see that $A_k^{(\lambda)}(0)$ is equal (up to a positive integer factor) to a determinant A_{k-1} that is obtained from $A_k(x)$ by replacing its last $n := |\mathbf{g}_k|$ rows with rows of the form

$$\{1, x-a, \ldots, (x-a)^{r-1}\}^{(j)}|_{x=y_{k-1}}$$

for $j=j_1,\ldots,j_n$, where j_1,\ldots,j_n are the positions of the first n 0-entries in the sequence $(g_{k-1,\mu},\ldots,g_{k-1,r-1})$, μ being the position of the first 1-entry in \mathbf{g}_k . Clearly,

$$\operatorname{sign} A_k(x) = \operatorname{sign} A_{k-1}$$

for sufficiently small x > 0.

Now A_{k-1} is a determinant corresponding to $y_1 < \ldots < y_{k-1}$ and an incidence matrix G_{k-1} which is obtained from G by coalescence of the last two rows \mathbf{g}_{k-1} and \mathbf{g}_k .

Repeating this procedure with respect to A_{k-1} we get A_{k-2} , and so on. Finally, we come to the relation

$$\operatorname{sign} A_k(x) = \operatorname{sign} A_1,$$

where A_1 is a Taylor matrix

$$\begin{bmatrix} \{1, x-a, \ldots, (x-a)^{r-1}\}^{(j)}|_{x=a} \\ j = j_0, \ldots, j_{r-1} \end{bmatrix}$$

with (j_0, \ldots, j_{r-1}) a certain permutation of $(0, \ldots, r-1)$. Thus

$$sign \det A = (-1)^{\sigma},$$

where σ is the number of transpositions needed to rearrange the numbers (j_0, \ldots, j_{r-1}) in the natural order.

It is easily seen that $\sigma=0$, i.e., $(j_0,\ldots,j_{r-1})=(0,\ldots,r-1)$, if the assumption of the lemma holds for $i=1,\ldots,k-1$. For example, this clearly holds if \mathbf{g}_i contains only one block $\beta_i:=[g_{i,l},\ldots,g_{i,l+q}]$ of 1-entries (l is the level of β_i) for $i=1,\ldots,k$ and the level increases or remains the same when i increases. This condition holds for Hermitian matrices G.

Another particular case: if the previous assumption holds for i = 2, ..., k and $i_1, ..., i_p$ are the positions of the 1-entries in g_1 , then

$$(j_0,\ldots,j_{r-1})\equiv (i_1,\ldots,i_p,k_1,\ldots,k_{r-p}),$$

where $k_1 < \ldots < k_{r-p}$ and thus

$$\sigma = (i_1 - 1) + (i_2 - 2) + \ldots + (i_p - p) = p(p+1)/2 + i_1 + \ldots + i_p.$$

The lemma is proved.

THEOREM 1. Let $\mathbf{x}=(x_0,x_1,\ldots,x_{m+1}), a=x_0< x_1<\ldots< x_{m+1}=b,$ $E=(e_{ij})_{i=0,\ j=0}^{m+1}$ and |E|=r+N. Suppose that $\{(\mathbf{x}_k,E_k)\}_{k=1}^N$ is an sregular (r+1)-partition of (\mathbf{x},E) . Then there is a σ , depending only on E, such that

$$(-1)^{\sigma} \det V[(\mathbf{x}, E), (\xi, \nu)] \geq 0$$

for each choice of the set

$$\xi = (\tau_1, \ldots, \tau_N) \equiv ((\xi_1, \nu_1), \ldots, (\xi_n, \nu_n))$$

of points $\xi_1 < \ldots < \xi_n$ with respective multiplicities ν_1, \ldots, ν_n such that $1 \leq \nu_i \leq r$, $i = 1, \ldots, n$, $\nu_1 + \ldots + \nu_n = N$. Moreover,

$$(-1)^{\sigma} \det V[(\mathbf{x}, E), (\xi, \nu)] > 0$$

if and only if $\tau_i \in \text{supp } B[(\mathbf{x}_i, E_i); t], i = 1, ..., N$.

Proof. Clearly the matrix $V[(\mathbf{x}, E), (\xi, \nu)]$ consists of the rows

$$\mathbf{w}_{ij} := \{1, (x-a), \dots, (x-a)^{r-1}, K(x,\xi_1), \dots, K^{(\nu_n-1)}(x,\xi_n)\}^{(j)}|_{x=x_i}$$

where (i, j) runs over the indices of all 1-entries e_{ij} in the sequence

$$e_{00},\ldots,e_{0,r-1},\ldots,e_{10},\ldots,e_{1,r-1},\ldots,e_{m+1,0},\ldots,e_{m+1,r-1}$$

and $K(x,t) := (x-t)_+^{r-1}$, $K^{(j)}(x,t) := (\partial^j/\partial t^j)K(x,t)$. In order to find det V we shall perform some elementary transformations in V, writing in row r+k $(k=1,\ldots,N)$ a linear combination of rows

$$\mathbf{v}_{r+k} := \sum_{e_{ij}=1} c_{ij} \mathbf{w}_{ij}$$

where the sum is over the 1-entries of E_k and $\{c_{ij}\}$ are the coefficients in the divided difference

$$D[(\mathbf{x}_k, E_k); f] = \sum_{e_{ij}=1} c_{ij} f^{(j)}(x_i).$$

Denote by α_k the coefficient of the highest derivative at the last point of \mathbf{x}_k appearing in $D[(\mathbf{x}_k, E_k); f]$. According to Lemma 1,

$$(10) \alpha_k > 0.$$

Denote by V_0 the matrix obtained from V by the described transformation of rows $r+1,\ldots,r+N$. Clearly det $V=\alpha \det V_0$ with $\alpha:=1/(\alpha_1\ldots\alpha_N)$, and the (r+k)th row of V is of the form

$$\mathbf{v}_{r+k}^0 := \{D_k[1], \dots, D_k[(x-a)^{r-1}], D_k[K(x,\xi_1)], \dots, D_k[K^{(\nu_n-1)}(x,\xi_n)]\}$$

where $D_k := D[(\mathbf{x}_k, E_k); \cdot]$. Using the property $D_k[f] = 0$ for all $f \in \pi_{r-1}$ and the definition of B-splines we see that

$$\mathbf{v}_{r+k}^0 = \{0,\ldots,0,B_k(\xi_1),\ldots,B_k^{(\nu_n-1)}(\xi_n)\}.$$

Let i_1, \ldots, i_p be the positions of the 1-entries in $(e_{00}, \ldots, e_{0,r-1})$. Then, by the Laplace formula,

(11)
$$\det V = \alpha \det A \cdot \det \{B_k(\tau_i)\}_{k=1, i=1}^N$$

where

$$A = \begin{bmatrix} \{1, x - a, \dots, (x - a)^{r-1}\}^{(j)}|_{x = x_i} \\ e_{ij} = 1, & e_{ij} \in E_0 \end{bmatrix}$$

and E_0 is obtained from E_1 by replacing the last 1-entry (i.e., the last 1 in the last row of E_1) by 0. Since E_1 was assumed to be s-regular, E_0 is regular. Then, by Lemma 2, det $A \neq 0$. Further, by Proposition 2,

$$\Delta := \det\{B_k(\tau_j)\}_{k=1, j=1}^N \ge 0$$

and strict inequality holds if and only if $\tau_k \in \text{supp } B_k$, k = 1, ..., N. Therefore, in view of (10) and (11), $\det V \neq 0$ if and only if $\Delta \neq 0$, and

(12)
$$\operatorname{sign} \det V = \operatorname{sign} \det A.$$

The theorem is proved.

Next we derive Karlin's total positivity theorem as a particular case of Theorem 1.

COROLLARY 1. Let (\mathbf{x}, E) be any pair with $\mathbf{x} = (x_0, x_1, \ldots, x_{m+1})$, $a = x_0 < x_1 < \ldots < x_{m+1} = b$, and with a quasi-Hermitian incidence matrix $E = (e_{ij})_{i=0, j=0}^{m+1} \sum_{j=0}^{r-1} such that |E| = r + N$. Suppose that $\{(\mathbf{x}_k, E_k)\}_{k=1}^N$ is an

s-regular (r+1)-partition of (x, E). Then

$$\det \begin{bmatrix} \{1, (x-a), \dots, (x-a)^{r-1}, K(x, \xi_1), \dots, K^{(\nu_n-1)}(x, \xi_n)\}^{(j)}|_{x=x_i} \\ e_{ij} = 1, \quad e_{ij} \in \hat{E} \end{bmatrix} \ge 0$$

for each choice of points $\xi_1 < \ldots < \xi_n$ with respective multiplicities ν_1, \ldots, ν_n such that $1 \leq \nu_i \leq r$, $i = 1, \ldots, n$, $\nu_1 + \ldots + \nu_n = N$. Here \hat{E} is the matrix obtained from E by replacing the first r 1-entries by 0 (i.e., annihilating the matrix E_0). Strict inequality holds if and only if

$$\tau_i \in \operatorname{supp} B[(\mathbf{x}_i, E_i); t], \quad i = 1, \ldots, N.$$

Proof. Denote the determinant considered by W. Clearly, up to a positive constant,

$$W = (-1)^{\sigma} \det V = (-1)^{\sigma} \det A \cdot \det \{B_k(\tau_j)\},\,$$

where σ and A are as in the theorem. Since E_1 is quasi-Hermitian, sign det $A = (-1)^{\sigma}$ and the assertion follows from Theorem 1.

REFERENCES

- [1] K. Atkinson and A. Sharma, A partial characterization of poised Hermite-Birkhoff interpolation problems, SIAM J. Numer. Anal. 6 (1969), 230-235.
- [2] B. Bojanov, B-splines with Birkhoff knots, Constr. Approx. 4 (1988), 147-156.
- [3] H. B. Curry and I. J. Schoenberg, On Pólya frequency functions. IV. The fundamental spline functions and their limits, J. Analyse Math. 17 (1966), 71-107.
- [4] S. Karlin, Total positivity, interpolation by splines and Green's function of differential operators, J. Approx. Theory 4 (1971), 91-112.
- [5] G. G. Lorentz, K. Jetter and S. D. Riemenschneider, *Birkhoff Interpolation*, Encyclopedia Math. Appl. 19, Addison-Wesley, Reading, Mass., 1983.
- [6] I. J. Schoenberg and A. Whitney, On Pólya frequency functions. III, Trans. Amer. Math. Soc. 74 (1953), 246-259.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF SOFIA BOUL. A. IVANOV 5 1126 SOFIA, BULGARIA

Reçu par la Rédaction le 20.4.1990