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1. Introduction

This paper will be devoted to the subject of mathematical modelling. In fact we
will give a survey of the mathematical aspects of a model which is well known
in economic geography and was first developed by Huff (1964) and Laksh-
manen and Hansen (1965). In this model, it is assumed that we are considering
an economic region, e.g. a city, with m living zones L; (i=1,...,m) and
n shopping centers S; (j =1, ..., n).

It is assumed that the total expenditure on goods by inhabitants of zone L;
in a certain period is equal to a fixed amount 0, How the inhabitants divide
their expenditure over the different shopping centers will of course depend on
the distance ¢;; between the living zone and the different shopping centers but
also on the attractiveness of the centers. We will assume that ¥, is a measure of
the attractiveness of shopping center S, The attractiveness will of course
depend on the size of the center, the diversity of products available, the prices
in the center, parking facilities and so on. From this it is immediately clear that
it will be very hard to measure W, in reality.

Now the model assumes that the inhabitants of zone L, spend

(1) O; Wi Cyf 3. W Cy
1=1

in shopping center j, where a is a positive constant and
(2) Cij= CXP(—ﬁCiJ‘)

where also f§ is a positive constant. We see immediately that if shopping center
S, is further away or less attractive the inhabitants will spend less money in this
center. The parameter f§ is a measure reflecting ease of travel. If for example the
fuel prices rise, also ff must be increased, since people are less willing to travel
for their shopping.
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Now let D; be the total amount which will be spent in shopping center S,
We see from (1) that

m n

(3) Dj = Z Oi(VVja Cij/z wr Ci'z), J= 1,..,n,
i=1 i=1

Equation (3) can be seen as the demand side of the model. It will be clear that
the costs of shopping center .5; will depend on the attractiveness W, It will be
assumed that the costs B, linearly depend on W, Hence

4) B,=kW, j=1,...n,

with k a positive constant.
An equilibrium for the model will be defined as a W= (W, ..., W) >0

such that
(5) D;=B;, j=1,..,n,

ie. the expenditures are equal to the costs for each shopping center S,

In this paper we will be mainly interested in the mathematical aspects of
the equations (1)—(5). These were already studied by Wilson (1981) but we will
use a more profound mathematical approach. We will be interested in the
existence and uniqueness of positive equilibria. Furthermore we will consider
dynamic and stochastic extensions of the model.

Since we will only concentrate on the mathematical aspects of the model,
we will first give the interested reader some references about the empirical
applications. The parameters o and § of the model were estimated by several
people. In the first place we should mention Wilson and his collaborators. They
estimated the parameters for the Leeds region in England and performed a lot
of simulations for this. region. See e.g. Clarke and Wilson (1986) and the
references mentioned in this paper. Lombardo and Rabino (1983) did the same
for Rome, while in van Est and Rijk (1981) the model has been estimated for
the city of Eindhoven in the Netherlands. The model has not only been used to
describe the location of shopping facilities. Clarke and Wilson used the model
to advise the authorities of the Piemonte region in Italy to plan the health care
facilities in their region. An interesting application of the model is given by
Rihil and Wilson (1985). They use the model to study the settlement structure
in ancient Greece. Furthermore Wilson (1986) gives a good recent survey of the
state of the art on the empirical sides of the model. This paper is organised as
follows. In the next section we will devote our atlention to the question of
existence and uniqueness of a positive equilibrium and to a dynamic extension
of the model. In Section 3 we will study the dependence of the equilibria on the
parameters of the model, while in Section 4 we will study a stochastic ex tension
of the model. Finally in the last section we will give some conclusions. Since
this paper is only a survey of results which are already known, we will not give
proofs but we will refer the interested reader to some papers in which the
proofs can be found.
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2, Existence and uniqueness

As we said in the introduction, we are interested in solutions of equations (1) to
(5), which can be resumed as follows

m n

(6) Z 0,(W} Cij/z we Cil)_kVVj =0, j=1,...,n,
i=1 =1

where the O;'s and C;;’s are positive constants.

Hence we have n equations in the n unknows W, If we put for example
W, =0, the n-th equation is fulfilled and we can forget W, in all other
equations. In this way we are reduced to n—1 equations in n—1 unknowns.
Hence we immediately see that W= (0, ..., 0) is a solution and that lower
dimensional solutions give rise to higher dimensional solutions if we add some
zeros. This is the reason that we will only consider positive solutions
W=(W,...,W)>0 (le. W;>0 for all j=1,..., n) of equations (6).

THEOREM 1. The equations (6) always have a positive solution.

Prools of this result can be found in Rijk and Vorst (1983 a, b) and
Chudzynska and Skodkowski (1984). In Rijk and Vorst (1983 a) the theorem is
proved by applying Brouwer’s fixed point theorem to a system of equations
which is equivalent to (6). One cannot apply Brouwer’s fixed point theorem
immediately to the equations (6) since we are interested in solutions contained
in the open domain

R'!f- — {WU"" VV;I W’>O for all _]},

while Brouwer’s fixed point theorem typically works for closed domains. And
as we have seen before, the closure of R% always contains the trivial solution in
which we are not interested. So if we apply Brouwer’s theorem to R” we only
learn that a solution exists but this might be the trivial one.

Now we come to the uniqueness of the positive solutions. We have the
following result

THEOREM 2. If a < 1 there exists a unique positive solution of the equa-
tions (6).

Proofs of this result can be found in Rijk and Vorst (1983 b), Chudzynska
and Slodkowski (1984) and Vorst (1985). In Rijk and Vorst (1983 b) this result
is proved by using the Poincaré-Hopf index theorem (see e.g. Milnor (1965) or
Guillemin and Pollack (1974)). To apply the Poincaré—Hopf index theorem one
needs a dynamical system. Such a dynamical model was already proposed
earlier for the urban retail model. See for cxample Wilson (1981) and
Beaumont, Clarke and Wilson (1981). It will be assumed that the W's follow
the following differential equations

™) W, = 1;(W)(D,;— kW) = F (W)
where f(W) > 0 for all W, > 0.
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The specifications for f;(W) which are most used in the litcrature about the
urban retail model are

®) fiwy=e
or
©) fW) =W,

where ¢ is a positive constant.

The system of differential equations (7) states that if the demand is higher
than the costs for shopping center S;, this center will increase its attractivity,
while if the demand is lower it will decrease its attractivity. If one uses (9)
instead of (8) it simply means that one assumes that more attractive shopping
centers react faster to their demand than the less attractive shopping centers.
Since more attractive centers most of the time will be very large, one might also
argue that they will react slower. Hence one might also be inte-
rested in

(10) HW) = e/W,

Now we can return to the sketch of the proof of Theorem 2 as given in
Rijk and Vorst (1983 b). It is clear that positive solutions of (6) correspond
exactly with constant solutions or equilibria of the system of differential
equations (7). One can show that there exists a bounded closed convex domain
Tin R", such that the vectorfield F with specification (8) points inward on the
boundary of Tand such that there cannot be any solution of (6) lying in R4 \T.
Furthermore one can prove that in an equilibrium W* of (7) we have that

aF} H

(11) det( DW,.(W )) >0
and hence all equilibria have index 1. Since by the Poincaré-Hopf index
theorem the sum of the indexes over all equilibria is 1, there must be exactly
one equilibrium. This finishes our proof. From the proof of inequality (11) one
can also deduce that the unique equilibrium is locally stable, not only if one
uses specification (8) for f; but also if one uses (9) or (10). If one wants to apply
the above method in the case that « > 1 the problem is that inequality (11) no
longer holds and one can only deduce that there must be at least one
equilibrium which gives an alternative proof of Theorem |. Since we know that
there exists a unique positive equilibrium which is locally stable if « < 1 one
might be interested in the global stability of the unique positive equilibrium.
The global stability of the unique positive equilibrium has been proved in
Vorst (1985) for (7) with specification (8), (9) or (10). The proof heavily relies on
the fact that (7) with specification (10) is a Lagrangian or gradient system.
Using this fact it is also possible to give an alternative proof of Theorem 2 (see
appendix 1 of Vorst (1985)).

In the case « > [ it has been shown in Rijk and Vorst (1983 b) that it is
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possible that there exists more than one positive solution of the equations (6).
We will come back to this in the next section, but we can remark here already
that the model behaves quite differently if « < 1 then if « > 1. This is of course
very important in practical applications of the model.

3. Dependence of the equilibria on the model parameters

Let

W= (W)eR" W, >0 for all j}.
We have the following result

THEOREM 3. There exists a continuous function G: A xBxCx D — W such
that for all (o, O, C, kleAxBxCxD, G(o, O, C, k) is the unique positive
solution of equations (6) where the parameters are equal to («, O, C, k).

The proof of this theorem can be found in Kaashoek and Vorst (1984) and
is just an application of the implicit function theorem. Hence we see that the
model has a unique solution if « < I, which continuously depends on the
parameters of the model and which is also globally stable according to the
preceeding section. One might say that the model behaves smoothly if « < L.

We will now concentrate our attention to the case where o > 1.

The first result is a negative one.

THEOREM 4. If o > | und there are more shopping centers than living zones
(i.e. n > m) there cannot be any positive asymptotically stable equilibrium for the
model given by (7).

The proof of this result can be found in Kaashoek and Vorst (1984). From
this we learn that it is only possible to have a stable equilibrium if some
shopping centers disappear until we have less shopping -centers then living
zones. This is completely different [or the situation with a < 1. The next result
tells us that the situation is not too bad in some sense. Lel

A* = {aeR| a > 1}
THEOREM 5. There exists a set M of measure zero in the parumeter space

A* x B x C x D such that for every combination of parameters which is not lying
in M, the equations (6) have only a finite number of positive solutions.

The proof of this result can also be found in Kaashoek and Vorst (1984).
In the same paper the following special case has been studied. Assume that we
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have two zones which are both shopping center and living zone. Hence
n=m=2. Furthermore assume x =2, Cyy = Ca3; Cy; > Cy3; Cy3 =Cyy;
C,, >0. Let C=C,5/Cy;<1. By scaling we might assume that
(0,+0,)fk = 1. Define Q@ =0,/k—% hence —1 < Q <1 The equations (6)
become for this special case '

Q+Hw2 G-owicC
WZ+W2C  WEC+ W7

QR+YIWPC G-QWS
(13) 2 2 2 2
WZ+WEC ~ WEC+W;

It immediately follows from (12) and (13) that W, = 1 — W,. Using this in
equation (12) we can reduce the equations to just one polynomial equation of
degree 5 in W,. W, =0 and W, =1 (i.e. W, = 0) are of course trivial solutions
of this equation. The parameters in the equation are Q and C. In Figure 1 a) we
have depicted the dependence of the W,-value of the equilibria on the
parameters Q and C. It is clear that for some combinations of the parameter
values the equilibrium will not be unique and in fact figure b) shows that we
have a cusp catastrophe for a certain combination of the parameter values. By

W, =0,

(12)

_W2=0.

Fig. |

studying also the dynamic extension of the model in this special case one can
show that at most one of the equilibria is stable and that if there is only one
equilibrium this one is unstable. Assume that the parameters are such that we
have three positive equilibria. Only one of this three will be stable. Let the
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system be in this stable situation, hence we have two shopping centers. Now, if
the fuel prices decrease, the following might happen. A decrease in ff (parameter
of the fuel prices) gives rise to an increase in C and we eventually come in
a situation with only one positive equilibrium and besides, this equilibrium will
be unstable. The system will now suddenly move to a boundary equilibrium,
i.e. an equilibrium with W, = 0 or W, = 0, depending on the value of Q. This
means that one of the centers disappears. In reality this kind of phenocmena has
been often encountered. One might think of the disappearance of a lot of small
shops due to the improved transportation possibilities for individuals. Such an
improvement has the same effect as a decrease in the fuel prices since in both
cases large distances are easier to overcome and form no longer a dominant
factor in the decision where to do the shopping. In Kaashoek and Vorst (1984)
other economic implications of the cusp catastrophe for this model have been
given.

4, A stochastic version of the model

Since the urban retail model essentially only uses distances, expenditures of
inhabitants and attractiveness of shopping centers as variables, it is clear that it
can only be a very rough approximation of reality. There will be a lot of other
uncertain factors which will influence the shopping decisions of the individuals.
A more realistic model will therefore have a stochastic component. In Vorst
(1985} the following extension of the model has been proposed:

(14) AW, = eW,(D,—kW)dt + Y g(W)dZ,(t)

i=1
where the Z,(t) are independent Wiener processes. Hence we have a system of
stochastic differential equations. The behaviour of the time paths of solutions
of the equations (14) will heavily depend on the specification for g; one uses. In
Vorst (1985) we considered two specifications. The first one is the following;

(15) AW, = eW,(D,—kW)dt +3(D,—k; W)dZ (1),

where & is a positive constant.

The equations (15) state that if one is closer to an equilibrium the
stochastic influences will be less than il one is further away form an
equilibrium.

In Vorst (1985) the following result has been proved using a well-known
stability result which can for example be found in Schuss (1980), p. 128

TueoreM 6. If a <1 and ¢ is small enough then the unique positive
cquilibrium W of the equations (6), is a globally stochastically asymptotically
stable equilibrium of the system of stochastic differential equations (15).
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Instead of assuming that the stochastic influences reduce if one approaches
an equilibrium one might assume that the stochastic influences remain
constant in size. This happens if one uses the following system of stochastic
differential equations:

n

(16) AW, = e(D;—kW)dt+ ), g;:dZ,(t)

i=1
where the g;'s are constants. In this case one can show that eventually always
at least one of the shopping centers must disappear or one of them must
become immensely large. For a precise statement of this result the reader is
referred to Vorst (1985). A lot of research about the stochastic version remains
to be done, since most research has been devoted to the deterministic versions
of the model.

Conclusions. In this paper we describe the mathematics behind a model
which has been developped by economic geographers to describe the location
of shopping facilities. The model tries to describe the location of shopping
centers using the expenditures of the inhabitants of a city and the distances
between shopping centers and living zones as exogeneous variables. The
location of the shopping centers is the solution of a set of n non-linear
equations in n unknowns. We gave a survey on the mathematical results which
might be useful in the application of the model in real world situations. In the
first place we focussed our attention on existence and uniqueness of solutions.
We have seen that if the parameter @ < 1 we have a unique solution, while if
¢ > 1 we don’t have unique solutions in general. In this case the dependence of
the solutions on the parameters is no longer continuous. We also considered
dynamic and stochastic extensions of the model.

In the economic geographic literature there are a [ot of models which are
not very well investigated [rom a mathematical point of view. Also for users of
these models it is very important to know whether solutions exist and/or are
unique. Also the dependence on the parameters is very important. Birkin and
Wilson (1986) describe some of these models for industrial location. Sikdar and
Karmeska (1982) give a stochastic model for immigration and population
growth. These are by far not the only examples in the economic geographic
literature but might be a good start for an interested mathematician.
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