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Some of the problems of mathematical physics for different kind of physical

fields have been solved in infinite domains with anomalous bodies. These

problems can frequently be reduced to the solution of an integral equation.
The following problem is to be solved:

{ko, M¢V,

2 = o
(1) du+kfu=f, k(M) k., MecV,

V is a finite domain. Here k, may be a constant, but if k = k,, the problem can
be solved more easily than the original one.
Let us rewrite the equation (1) in the form

2) du+kdu = f—(k*—kd)u.
The Green’s function G (M, M) of this equation is the solution of the equation
(3) AG+ K3 (M) G = 8 (Rpp,),

where Risu, 18 the distance between points M and M. Then, the solution of
the equation (2) can be written formally as

(4) u(M) = uo (M)+ [ G(M, Mg)(k§ —k*}u(Mg) dVyy,,
Vv

where

uy (M) = [G(M, My) f (My)dV),,

is a known function. Now, if in (4) the points M belong to ¥, we get an integral
equation in a finite domain.

[409]
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II

If we consider the problem of propagation of electro-magnetic waves, then
equation (1) is the system of differential equations in three-dimensionai domain
with discontinuous coefficients. This problem is used for mathematical model-
ling of electro-magnetic sounding. In this case the kernel of the integral
equation E(M, M,) is the set of vectors of the electric fields at the point M,
induced by electric dipoles placed at the point M, and parallel to the
coordinate axes; u and u, are the vectors of electric field [1]. The matrix
E(M, M,) has non-integrable singularity as M — M. At the same time, u and
u,, change much more slowly. For resulting algorithms analytical separation of
the singularity is very important. Besides, sparse grid can be used for u, whereas
for £ we have to use the dense grid.

To obtain numerical solutions, we partition the domain V into elementary
domains Vi,i=1,...,K.

These elementary domains are so small that 4 can be assumed to be
constant within each of them: u = u(M ), M;e V,. Then the equation (4) can be
reduced to a system of algebraic equations

K
(5) E(M_,)‘I' Z &jmg(Mm) = y_O(Mj)D j= 1’ T K,
m=1
(6) Ay = (K§—I}) | E(M;, Mo)dVy,.
V'H
111

Let the equation (1) be solved in a stratified domain

0 ifz<0,
ky=<k if0O<z<h,
k, ifh<ez.

In this case, an effective method for solving the equation (3) is Hankel’s
transformation with the Bessel's functions J, of the [irst kind [2, 3]. The
components of the matrix E can be expressed by the integrals

(7N G= [ J,(tr)v(t, z, zg)tdt, n=0,1,
0

and their derivatives with respect to x and y, where r = \/(x—xo)"+(y—y0)2,
M =(x, y, z), My = (x4, Vo, z0). v can be discontinuous if z = z,,. It is seen that
if r—0 and z-z,, G tends to infinity.

So, the integrals o?j,,, (6) are 4-fold singular integrals. For separation of
singularity we have taken into consideration physical arguments.
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If the space is homogeneous (for example, k, = k, if the body V is in the
second layer z > h), the components of the Green’s function E° can be
expressed in the explicit form

1 94

En‘:Aau T2A. A s y B =1,4, 7,
! l+k§ax,6x" l,n 1,2,3

1
@) A= R R= PGz

Xy=Xx, X,=Y, Xx3=2  Re(k,)<0.

It is clear that in the neighbourhood of M, EJ = O(R™3), and so it is
a nonintegrable singularity.

To integrate E° for j = m, we use potential theory [4]; the correspondmg
integral becomes

d?j = (ki—k%‘)(‘h I+ Ql),

. 1
9) gy = lim | E{(M;, Mg)dVy, = 3
o0V, 2
6, =lm [ ES(M, Mo)dVi,,
=0 V,inV,

where [ is the unit matrix and V, is the ball having center at M and radius .
For some symmetric integration domains, for example for a ball or a cube,
the integral Ql, can be rewritten in the form
01=4,1,
(10) ' Zz
=3 ] AV,

in which an integrable singularity only occurs. Further, for the ball of radius R,
we have the explicit formula

2
(11) q, = 3k2(( —ik, Ro)exp (ik, Ro)—l)-

IV

Since the number of coefficients of the system (5) increases as 9K?, it is very
important to develop a quick but sufficiently precise algorithm for 4-fold
integrals &; m (6). The separation of E° is very useful because the correspondmg
integrals &5, are much greater than the remainder parts &},. Since E° has
explicit form (8), the &5, will be only 3-fold integrals. On the other hand, the
integrals &, do not contain any more singularity and so they can be calculated
with lower relative precision.
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Another method for speeding up the calculations is the variation of the
integration domain. Numerical experiments show that il a compact domain V;
is replaced by another compact one with equal volume (for example, the cube
by the ball), this gives rise to a minor difference in the results obtained.

Naturally, division of the body V into elementary cubes can be easier than
into balls. If we use a ball for the integral ¢q,, we obtain exactly formula (11),
and at the same time the 3-fold integral (10) for 2 cube can be integrated
analitically with respect to one variable only. If the volumes of the cube and the
ball are equal, the relative difference between the two g,’s for different values of
parameters does not exceed 2%.

{r. 8. x'}
r:bl

S
Fig. 1

Now, let j # m. If the domain of integration for &3, (which is a 3-fold
integral) is a cube, one can integrate analytically with respect to one variable, If

the domain is a cylinder with axis along M, Mm) (see Fig. 1) then the integral
can be integrated in two variables. The relative difference will not be more
than 3%, but for most of the values of the parameters the difference is
smaller than 1%.

\4

After separation of E° from Green's function the components of the remainder
part, 1.e. E!, take the form of integrals,

o

G' = | J,(er)v* (r) e =t =01 gy
0

and their derivatives in x and y, With the aid of this formula, it can be shown
that in the (4-fold) integrals &}, integration with respect to z, can be performed
analytically. Therefore it is useful to choose V] to be a cylinder with different
cross-sections. For j = m a circular cylinder can be chosen. Then the integrals
dj; can be integrated analytically in ail the three space variables.

The difference between the integrals dj; over a cylinder and a cube is not
more than 5% for those parameters which can be of interest in practice.
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If j # m, we use the following body (in cylindrical coordinates):
a—b<r<a+bh, —blag<O<bla, —-b<zy<bh

(see Fig. 2), where 2b is edge of the cube and « is the distance between

{r. 8.2'}
a-b=r=as+b
-bla<@<bla
-bszisb

Fig. 2

centers of V; and ¥, [5]. The volume of this body is 8b°. Here d&j, can be
integrated analytlcally with respect to zg and 0, and often in r, as well

The error which may arise from replacement of the cube by this body
would be very small. So the choice is satisfactory.

Finally, to quicken the algorithms for calculation of the mteglals @} we
must have economic methods for evaluation of infinite integrals with Bessel’s
functions. Now we would like to refer also to paper [6], in which one can find
a method that can be effective for the problems discussed above.
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