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The aim of this talk is to give a review of some recent results of geometric and
combinatorial nature arising from the study of partition functions associated to
a finite family of vectors in a real finite-dimensional vector space (cf. [1-5]).
These results are closely related to the general theory of hypergeometric
functions developed by 1. M. Gelfand and his coworkers but in order to make
the exposition more elementary we shall not speak of this theory here.

1. Definition of vector partition function

Consider R" and the “positive octant” R%. Suppose we are given
a k-dimensional vector subspace ¥, — R" such that V, n R = 0. Then for any
x € R” the linear variety V;+ x intersects R% in the compact (perhaps empty)
convex polyhedron A4, = (V,+x)nR%. The (vector) partition function is
defined to be the “volume” of 4,; clearly it depends only on the image of x in
V = R"/V,.

The “volume” may be understood in different ways which leads to various
versions of the partition function. In the “discrete” version the “volume” is the
number of integral points in 4,. In other words let e,, ..., e, be the standard
basis in R”, p: R" > V the natural projection and v, = p(e;Je V. Then the
discrete version of partition function is

P)y={(m,,....m)eZ%: Y muy=v}l, vel

1<i<n

For example if {v,, ..., v,} is the set of positive roots of a root system in
7 then P(v) is the Kostant partition function [6] playing the fundamental role
in representation theory.

This paper is in final form and no version of it will be submitted for publication clsewhere.
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We shall deal here only with the “continuous” version of the (vector)
partition function defined as {ollows. Choose a differential k-form « on R” with
polynomial coefficients, and compatible orientations of all the-varteties V,+ x;
the corresponding partition function is defined by

= {w, v=px)el.

In fact the continuous version {in a different form) appeared even earlier
than the discrete one in the work by Berezin and Gelfand (7] (for positive root
systems).

We shall show that P, (v) is a piecewise polynomial function on V. Its
behaviour is controlled by two kinds of geometric structures in a certain sense
dual to each other. The first is connected with the system of simiplicial cones
generated by subsets of the set of vectors {¢,, ..., v,} in V, while the second one
with arrangement of the hyperplanes {x,= 0} on the affine k-space V,+x
(where x,, ..., x, are coordinates in R").

2. Parametric presentation of P (v) and the space %

Let | = n—k and consider the /-dimensional vector space V = R"/V, and the
system of vectors v, ..., v,€ V introduced above. Clearly rk {v,....,v,} =1,
and the property ¥, nR% = 01s equivalent to the fact that all v, ..., v, lie on
one side of some hyperplane in V passing through the origin (i.e. that
{p,v;y >0 for 1 <i<n and some pelV*)

Let V' < V be the open set of vectors v which are in general position with
respect to {vy, ..., v,}, i.e. V" is the complement in V' of the union of all proper
subspaces spanned by some of the vectors v,, ..., v,. For any subset I < [1, n]
let C, denote the closed convex cone generated by {v;: ie I'}. We are especially
interested in independent subsets I, 1.e. such that the corresponding vectors {v;:
iel} are linearly independent. Clearly, for an independent I the cone C, is
simplicial, and dim C; =|/|. A maximal independent subset will be called
a base. Clearly, each base I is of cardinality !/, and we denote by yx, the
characteristic function of the open set (C,nV')c V.

THeorem 1 ({173, [2]). For ve V' the function P_(v) can be decomposed as
(1) P, = ZP () 1, (v

where the sum is over all bases I = [1, n], and P), are some polynomials on V.

By Theorem 1, P, is piecewise polynomial. More precisely, let v, v’ € V” be
equivalent if y,(v) = x,(v') for any base I (in other words, cither v, v'eC; or
v, v'¢C,;). Obviously, the equivalence classes are open in V’, and P, 1s
polynomial on each of these open subsets.
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The decomposition (1) is not unique. Consider the simplest example:
n = 3,1 =2,V = R? with standard basis ¢,, ¢, and coordinates x,, x,, v, = ¢,,
v, = €,, U3 = &, +&,, and w a suitably normalized 1-form on R? with constant
coefficients. Then it is easy to see that P_(x,, x,) = min(x,, x,). It can be
written in form (1) in several different ways, e.g.

Po(xy, X)) = Xp 013t X %23 = X fa2 T (X=X X553 = Xaxy2H (X —X3) X23-

This non-uniqueness is of course due to the fact that the functions yx, are
linearly dependent, viz., we have the obvious relation y,, = 7,3+ £23-
Returning to the general case, let # denote the vector space of piecewise
constant function: on V' spanned by all y, corresponding to various bases
I c 1, n]. By (1), P, can be thought of as an element of # ®, Pol(V), where
Pol(V) is the ring of polynomial functions on V. It is clear now that the
following two problems are essential for description of P :
(A) Find a complete system of linear relations between the functions y;.
(B) Construct some bases of # (in order to make the decomposition (1)
unique).
Both problems will be soclved explicitly but before doing this we describe
several other realizations of #.

3. Various realizations of %

The original definition of # will be referred to as geometric. Now we give
several other equivalent definitions.

ALGEBRAIC DEFINITION. Let us think of v; as linear forms on the duai space
V*. For any base I —[1,n] define the rational function f, on V* by
fi=([Terv)™ " Let #™& be the vector space of rational functions on V*
spanned by all f;. Choose a non-zero I-form wye A'(V*).

ProproSITION 1. [1]. There is an isomorphism # — #>'® sending each y, to

lwg (/\iEI vl fr-

In fact this isomorphism is given by the Laplace transform:

1= (p) = [ x(@)e™ P g (v).

ToPOLOGICAL DEFINITION. Put #'P = H' (VX\| ), <;<. i ©).

This cohomology group was determined by Arnold [8] and Brieskorn [9].
Their results can be stated as follows:

PrOPOSITION 2. There is an isomorphism #*® ® A' (V) — #'°® sending each
element f@ w to the cohomology class of the closed differential I-form fo on

Vc"k\Uivil‘
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Combining Propositions 1 and 2 we get an explicit isomorphism
H ~ H'oP:

ProposiTION 3. There is an isomorphism # — #'°P sending each y; to the
cohomology class of

dv, dv;
e o oo, b)) — A LA —
1 1
Dil U”
where I ={i,, ..., i,y is a base, and ¢ is a fixed orientation of V.

COMBINATORIAL DEFINITION. It makes sense in the more general context of
arbitrary matroids. Recall that a matroid structure on a finite set (say, [ 1, n]) is
given by specifying a collection # of subsets of [1, n] called independent
subsets, which must satisfy the following axioms:

(I1) Gef, (12) If ' =1 and Ie.# then I'c.#,
(I3) (Exchange axiom). If I, I,e and |I,{ <|I,| then (I, U {i})e #, for
some iel,\I,.

Clearly the matroid axioms are satisfied for the system of indepen-
dent subsets associated as above to a family of vectors v,,..., v, (in
a vector space over any field), ie. in the case when . consists of all
subsets I such that {v;: iel} are linearly independent. This example sug-
gests using for arbitrary matroids the terminology of linear algebra such
as dependent subsets, bases (maximal independent subsets), rank function
defined on all subsets of [1, n] (for J < [1, n] r(J) is the cardinality of
(any) maximal independent subset I < J) etc. The remarkable feature of
the matroid theory is that any of these (and many other) notions satisfies
natural properties which can be used for equivalent axiomatic definitions
of a matroid. Clearly, in every matroid all bases are of the same car-
dinality called rank of the matroid. Basic facts about matroids can be
found in [10].

Now suppose we have a matroid on [1, n] of rank . Let E_ = A™(C"),
and E= @, E, be the Grassmann algebra of C". For each I < [1, n]
denote by E, the one-dimensional space C-(/\,,e) (where e, ..., ¢, is
a standard basis in C"), so E, = @ ;- FE,. Let d: E— E be the (super)
derivation sending each ¢, to 1 (so d(E,) < E, _, for all m). Put B, = @ E,,
the sum over all I < [1,n] such that |I|=m, r(I)<!; let C,=E,/B,,.
Evidently, C,, = 0 for m < I It is also clear that d(B,,) < B,,_, so d induces
the mapping d: C,, — C,,_,. We associate with our matroid the vector space
HPm = C/dC,, , = Ef(B,+dE,, ).

Suppose now that our matroid is associated as above with the family
of vectors v, ..., v, in a I-dimensional vector space V. The following result
is essentially proven in [11].
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ProposITION 4. The homomorphism E; — #'" = H' (V¢\ | ) vf, C) sending
dv,

v, .
each e. A ... A e, [0 the cohomolo cluss of the form —2 A ...A — s
i gy -

! i) b
epimorphic with kernel (B,+dE,, ) so it induces an isomorphism #*™° ~ #,
Combining Propositions 3 and 4 we obtain an isomorphism
H ~ H™® = C,/dC,, . This immediately gives us a complete system of linear
retations between the functions y,. which is indexed by subsets J < [1, n] with
|7] = !+ 1 and r(J) = L. This system will be given explicitly in the next section.
In fact, the whole chain of syzygies is also available:

ProprosiTiON 5. For every matroid the sequence

0-C,5C,_,5...5C, > a0

is exact.

This follows from another interpretation of #°°*™® as the unique non-zero
homology group of the geometric lattice associated to a matroid (see [12]).

4, Linear relations in # and Bjorner’s theorem

Let J c [1, n] be a subset such that |J| = I+ 1, r(J) = [. Then there is only one

(up to a factor) linear relation ) . ,a;v; =0. Let

J, ={jeJ: aj>0}, J_=l{jed: aj<0}, Jo={jed: a}_:o}.

Clearly, these subsets are determined uniquely up to interchanging J, and J _.
Note also that J, uJ_ = {jeJ: J\{j} is independent}, and that our condition
that v,, ..., v, lie in a halfspace implies that J,,J_ # @.

THEOREM 2. For any subset J < [l,n] with |J|=1+1, r(J)=1 the
Jollowing relation holds:

(2) > L = > X

jed + jed -

Moreover, the relations (2) form a complete system of linear relations between the
elements y, in .

The relation (2) has simple geometric meaning: both sides are equal to the
characteristic function of (C, n V).

We turn now to Bjorner’s theorem which gives dim # and a class of
special bases of #. Minimal dependent subsets of [1, n] are called circuits (the
terminology comes from matroids associated to graphs). A subset
J ={jis....Jm is called a broken circuit if J'U{j} is a circuit for some
J>J1seeisme
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THEOREM 3. dim 3# is equal to the number of bases I containing no broken
circuits. Moreover, the y, corresponding to such bases form a basis in A .

This theorem is essentially proven in [13] for arbitrary matroids. In fact
BjOrner constructs a more general class of bases in #°™ which will be
described later. A direct proof of Theorem 3 using only Proposition 5 is given
in the Appendix to {1].

We remark that the definition of a broken circuit depends on an arbitrary
choice of linear ordering of [1, n]. So Theorem 3 can give several various
combinatorial interpretations of dim .

ExampLes 1. Let v, ..., v, be in general position in V. Then broken
circuits are just I[-element subsets I < [I,n] not containing n. So

. n— . .o
dim #' = (l l)’ and a basis in # is formed by the y, for bases I2n.
2.1f{v,, ..., v,} is the set of positive roots of some root system R in I then
dim # is known to be m, ‘... - m,, the m; being the exponenis of R (see [14]).

For example, when R is of type A;, dim # = [!. Theorem 3 gives the following
“constructive” explanation of this fact.

In this case our vectors are indexed by pairs (i, j) with I < i <j<I+1; we
have v;; = ¢,—¢;, where ¢, ..., &, , is the standard basis in R**'. Order these
pairs (i, j) lexicographically. Then it is easy to see that an /-subset J of {(i, /)}
contains no broken circuits if and only if for any i = 1, ..., [, J contains exactly
one vector of the form v;;. Clearly, the number of such subsets s /!, as required.

Returning to the vector partition function we see that the decomposition
(1) becomes unique if we require P!, = 0 for all bases I containing a broken
circuit.

5. Dual description of P,: chambers and flags

Now we present another approach to the description of P, developed in [4].
By (1), P, is uniquely determined by the family of polynomials P{, where

w?>

I < [1, n] runs over all bases. We have seen that the family (PY) is not unique.
But there is a canonical way to describe P, in terms of other polynomials.
Namely, consider connected components of V', which will be called chambers.
Evidently, P, is equal to some polynomial P}, on each chamber I' and is
uniquely determined by the family of polynomials PL.

It is a relatively easy task to compute each separate PL. But the number of
chambers is usually very large compared to dim.#, and so there is a lot of
“universal” (i.e. independent of w) linear relations between the corresponding
polynomials PL. We shall find explicitly a complete system of these linear
relations and construct some families consisting of dim s “universal” linear
combinations of the PL’s which enable us to evaluate all PI.
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To be more precise. each chamber I' determines a linear form e #*
defined by <y, z>=1 if 'cC,, and 0 otherwise. Extend ¥, to
a Pol(V)-linear form # & Pol(V) - Pol(V) (see Section 2). If P, is treated as
an element of # ® Pol(V) then by definitions we have P, = (Y, P ). It is
clear now that “universal” linear relations between the PI’s are just linear
relations between the s in #7*. So we have two problems entirely analogous
to problems (A) and (B) in Section 2:

(A*) Find a complete system of linear relations between the elements .
(B*) Construct some bases of #*.

To state the results we need some definitions. Let W, ..., W, be all
codimension 1 subspaces in V' spanned by some subset of {v,, ..., v,} (so that
V' = V\UISJSM W)). The intersections W, n...n W, will be called flats. The
flats spanned by some subsets of {v,, ..., v,; will be called essentia/, and other
flats inessential. For example, [-dimensional essential flats are just
Ruy, ..., Ry, It was already said that the connected components of I\| J; W,
are called chambers. A chamber I' is adjacent to a flat U iff ' n U is open in U,
where T is the closure of I A flug Fisachain(0=U,c U, c...c U, = V),
where each U, is an s-dimensional flat. A flag F is said to be oriented if for any
s=1,..., 1 there is chosen one of two components US of U\U,_, (an
oriented flag will be denoted by F). We say that a chamber I" is adjacent to
a flag F if I' is adjacent to each of its flats U._.

Clearly, there are exactly 2' chambers adjacent to each flag F. For any of
them let

e(l, 1:—') =(— 1)|(se[1.11:r,~,tl: =0y
and define the element Y€ #* by
Yr= ;U(F, F)yr,
the sum over all chambers I' adjacent of F. Evidently, if F' is another
orientation of the same flag then Yz = +1-.

~

Tueorem 4 ([4]). For any oriented flag F = (0 c U, = ... = U, = V) such
that U, is inessential we have Wz = 0. Moreover, these relations together with the

obvious relations - = 0 for I' ¢\ J, C, form a complete system of linear relations
between the elements . in H#*.

Our next result is the analogue of Theorem 3. We associate to each base
I={i, <...<i} c[l,n]the oriented flag FN =0 c U, c...c U, = V)as
follows: U, = (v,,, ..., v;_» is the linear span of vectors v; , v;,, ..., v, oriented
so that U s, .

TueoRrEM 5 ({4]). The elements sz, corresponding to bases I containing no
broken circuits form a basis in H*.
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Theorems 3 and $ admit the following generalization. Choose a mapping
1: {Nonzero essential flats} — [1, n] so that if 1 (U) = i then v,€ U. To any such
7 we associate the class .#_  of independent subsets of [I, n] uniquely
determined by the following rules:

(a) Je s ..

(b) Let @ # Ie #, and t({v;: iel)) =i,. Then Ie.#_if and only if ijel
and (I\iy)e #,.

For example, it is easy to see that for t defined by t(U) = max {i: v;e U}
the class .#, consists of all subsets I < [, n] containing no broken circuits.

THEOREM 6. Elements y, for Ie.#_ form a basis in A.

This result generalizes Theorem 3; it is also essentially due to Bjdrner [13].
Now let & _ be the class of all oriented flags F=(0c U, c...c U, = V)
satisfying two properties: (a) Any U/ is essential; (b) If (U = i  then v; e U .

THeorem 7 ([4]). Elements iz for Fe % form a basis in #*.

It is easy to see that Theorem 5 is a special case of Theorem 7 correspon-
ding to t(U) = max {i: v,e U}.

The basis given by Theorem 7 consists not of elements . but of their
certain linear combinations, so it seems to be more complicated than the basis
from Theorem 6. But it has the following nice property.

THeOREM 8 ([4]). For any chamber I' and any mupping t as above all
coefficients in the expansion of Y. in the basis (Y72 Fe%F ) are 0 or 1.

6. Dual geometric description of ¢

In this section we consider another geometric approach to the space # develop-
ed in [2] (see also [3]). Recall that we have the natural projection p: R" -» V
such that p(e;) = v;, where e,, ..., e, is the standard basis in R". For any ve V
let K, denote the affine k-space p~!(v) = R". The coordinates x,, ..., x, in R”
define (affine) linear functions on each K,. For ie[l,n] put S;(v)=
K, {x;=0}, and for any J < [I, n] put S,(v) = ()i, S:(v). Each S,(v) is
a (perhaps, empty) affine subspace of K,. The next proposition shows that for
ve V' the rank of any of these subspaces is determined by the matroid structure
on [1, n] introduced above, and so does not depend on v.

ProposiTioN 6. Let ve V'. Then S;(v) = if and only if r([1, n]\J) < |,
otherwise codimy S;(v) = |J|.

In particular, we see that (nonempty) afline hyperplanes S, (v) have normal
crossings in K, for ve V'. The points of the form S, (v) will be called vertices. We
see that S,(v) is a vertex if and only if [1, n]\J is a base.
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From now on we assume that ve V. Let §, = | J;S;(v) and consider the
relative homology H, (K, S,; C). This can be realized as the space of formal
linear combinations of bounded connected components of the space K, \S,.
Geometric structure of these components depends heavily on v. Nevertheless,
A. N. Varchenko proved the following important

THEOREM 9 ([2]). All spaces H, (K, S,; C) for ve V' are naturally isomor-
phic to each other.

The proof in {2] uses the Gauss—Manin connection on the homological
bundle with fibers H,(K,, S,; C) over the complexification of V', and shows
that it has trivial monodromy.

Now consider the cohomology H*(K,, S,; C) which can be realized as
the dual of H (K, S,; C). Following [2] we associate to each vertex §,(v)
the element &8, .eH*(K,, S,; C) constructed as follows. For any vector
e=1(g,...,¢g) with g, = +1 put 4, = K, n{ex; >0 for 1 <i<n}; clearly,
the nonempty 4, , are just connected components of K,\S,. For any bounded
component A,, we define {(4,,, 4,,> to be [[,¢ if S;(v) belongs to the
closure 4, ., otherwise {d,,, 4,,> =0.

E,b?

Tueorem 10 ([2], £31). For any ve V' there is the natural isomorphism
H*(K,, S,; C) = # sending each 8, to Y| .-

In fact A. N. Varchenko showed in [2] that each element 4, is
covariantly constant with respect to the Gauss—Manin connection. This is
a crucial step in his proof of Theorem 1 (see Section 2 above).

Theorems 3 and 10 immediately imply

ProrosiTion 7. For any ve V' the number of bounded connected compo-
nents of K ,\S, is equal to the number of bases I < [1, n] containing no broken
circuits.

A straightforward geometric proof of this fact 1s given in [2] (see also [3],

Prop. 1.8.2).
Proposition 7 can be reformulated in terms of the family v,, ..., v,. For

this we give a characterization of bounded connected components of K \S,.

ProprosiTiON 8. The set A, , is nonempty if and only if v belongs to the open
convex cone generated by €, v, . . ., g,v,; it is bounded if and only if this cone is
proper, i.e. not equal to V. :

Propositions 7 and 8 give us

ProrposiTioN 9. For any veV’' the number of vectors ¢ = (g, ..., €,)€
e{+1, —1}" such that the open convex cone generated by ¢,v,, ..., €,0, is
proper and contains v, is equal to the number of bases I = [1, n] containing no
broken circuits.
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Concluding remarks

1. The natural combinatorial language for the problems discussed above
is that of oriented matroids [15]. In fact most of the notions and results can be
generalized to the case of arbitrary oriented matroids.

2. The ring of locally constant functions on the complement of a finite
number of hyperplanes in a real finite dimensional vector space is systematical-
ly studied in [5]. Most of the results of Section 5 can be proved using the
technique developed in [5]. In fact most of the notions and results of [5] also
can be developed in the general setting of oriented matroids.

3. To study the “discrete” version of vector partition function one needs
some refinement of the above geometric and combinatorial analysis. Namely,
one must study the convex cones C, and faces I' of arbitrary dimension

r=0,1,...,1 (not only /-dimensional ones as above). Some results in this
direction are obtained in [2], [4], [5].
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