TOPICS IN ALGEBRA BANACH CENTER PUBLICATIONS, VOLUME 26, PART 1 PWN POLISH SCIENTIFIC PUBLISHERS WARSAW 1990

ON PURE SEMISIMPLICITY AND REPRESENTATION-FINITE PIECEWISE PRIME RINGS

BOGUMIŁA KLEMP and DANIEL SIMSON

Institute of Mathematics, Nicholas Copernicus University
Toruń, Poland

It is proved that a schurian artinian right peak PI-ring R is right pure sp-semisimple if and only if R is sp-representation finite. A diagrammatic characterization of representation-finite piecewise prime artinian PI-rings (defined in Section 3) is given.

1. Introduction

We recall from [25] that a semiperfect ring R is a right peak ring if R is a generalized matrix ring of the form

(1.1)
$$R = \begin{bmatrix} F_{1} & {}_{1}M_{2} & {}_{1}M_{n} & {}_{1}M_{*} \\ {}_{2}M_{1} & F_{2} & {}_{2}M_{n} & {}_{2}M_{*} \\ \vdots & \vdots & \vdots \\ {}_{n}M_{1} & {}_{n}M_{2} & F_{n} & {}_{n}M_{*} \\ 0 & 0 & 0 & F \end{bmatrix} = \begin{bmatrix} P_{1} \\ \oplus \\ P_{2} \\ \oplus \\ \vdots \\ \oplus \\ P_{n} \\ \oplus \\ P_{*} \end{bmatrix}$$

such that $soc(R_R)$ is an essential right ideal in R isomorphic to a direct sum of finitely many copies of P_* (P_* is called the *right peak* of R). Here F_1, \ldots, F_n are local rings, $F = F_*$ is a division ring, ${}_iM_j$ is an F_i - F_j -bimodule and the multiplication in R is given by F_i - F_t -bimodule maps c_{ijt} : ${}_iM_j \otimes {}_jM_i \rightarrow {}_iM_t$

This paper is in-final form and no version of it will be submitted for publication elsewhere.

satisfying the natural associativity conditions. We denote by P_1, \ldots, P_n, P_* the right indecomposable row ideals of R.

We call R schurian if F_1, \ldots, F_n are division rings. We denote by $\operatorname{mod}_{\operatorname{sp}}(R)$ the category of finitely generated socle projective right R-modules. R is called sp-representation-finite if the number of isomorphism classes of indecomposable modules in $\operatorname{mod}_{\operatorname{sp}}(R)$ is finite.

A ring A is called right pure semisimple [18] if every right A-module is a direct sum of finitely generated modules. Every such ring is right artinian. We call a right peak ring R right pure sp-semisimple if every socle projective right R-module is a direct sum of finitely presented modules.

We recall that the following theorem holds:

(pss_A) If the ring A is right pure semisimple then A is representation-finite provided A is either an Artin algebra [2], or A is an *l*-hereditary PI-ring [21, 24], or A is a local PI-ring [23]. However, it is still an open problem if (pss_A) is true for an arbitrary artinian ring A.

It follows from [25], [26] and [28; 7.3] that under some assumptions on A the proof of (pss_A) can be reduced to the proof of

 (pss_R^*) If R is a right pure sp-semisimple artinian right peak PI-ring then R is sp-representation finite.

In the present note (pss_R^*) is proved for schurian right peak PI-rings R (Theorem 2.7) and (pss_A) is proved for piecewise prime PI-rings defined in Section 3. Moreover, a diagrammatic characterization of representation-finite piecewise prime PI-rings is given (Theorem 3.7).

Throughout this paper we freely use the terminology and notation introduced in [19, 21, 25]. In particular, we denote by J(A) the Jacobson radical of the ring A. If R is schurian of the form (1.1) then (I_R, \mathbf{d}) denotes the value scheme of R [25; p. 536] consisting of the set I_R of points $1, 2, \ldots, n+1 = *$ connected by valued dashed arrows $i \xrightarrow{(\mathbf{d} i : L \mathbf{d}^i : j)} j$, $i \neq j$, whenever $d_{ij} = \dim_{i}(M_j)_{F_j}$ and $d'_{ij} = \dim_{F_i}(iM_j)$ are nonzero. We recall from [25; Proposition 2.3] that if all bimodules iM_* are simple then (I_R, \mathbf{d}) is a valued poset having a unique maximal element * with respect to the relation $i \prec j \Leftrightarrow_i M_j \neq 0$. We draw a solid arrow from i to j if there is no t such that $i \prec t \prec j$.

2. Pure sp-semisimple rings

We begin by recalling a few facts on pure semisimple rings.

THEOREM 2.1 [2, 20]. A right artinian ring B is right pure semisimple if and only if given any sequence

$$X_1 \xrightarrow{f_1} X_2 \rightarrow \dots \rightarrow X_n \xrightarrow{f_n} X_{n+1} \rightarrow \dots$$

of monomorphisms between indecomposable modules in mod(B) there is an integer n such that f_j is an isomorphism for $j \ge n$.

THEOREM 2.2 [21]. A hereditary artinian PI-ring B is right pure semisimple if and only if B is of finite representation type. In this case the valued graph of B is a disjoint union of Dynkin diagrams.

For artinian right peak rings there is a counterpart of Theorem 2.1.

THEOREM 2.3. Let R be an artinian right peak ring. Then the following conditions are equivalent:

- (a) R is right pure sp-semisimple.
- (b) If $X_1 \xrightarrow{f_1} X_2 \to \ldots \to X_n \xrightarrow{f_n} X_{n+1} \to \ldots$ consists of indecomposable modules in $\operatorname{mod}_{\operatorname{sp}}(R)$ and f_1, f_2, \ldots are monomorphisms then there is m such that f_j is an isomorphism for $j \ge m$.
 - (c) Every indecomposable module in $Mod_{sp}(R)$ is of finite length.
- (d) Every additive functor $H: \operatorname{mod}_{\operatorname{sp}}(R) \to \mathscr{A}b$ has a nonzero simple subfunctor.
- (e) The Jacobson radical of the category $\operatorname{mod}_{\operatorname{sp}}(R)$ is right T-nilpotent in the sense that for any sequence $Y_1 \xrightarrow{g_1} Y_2 \to \ldots \to Y_n \xrightarrow{g_n} Y_{n+1} \to \ldots$ of nonisomorphisms between indecomposable modules in $\operatorname{mod}_{\operatorname{sp}}(R)$ there is m such that $g_m g_{m-1} \ldots g_1 = 0$.

Proof. (a) \Rightarrow (c) is obvious.

(a) \Rightarrow (b). Since $X = \operatorname{colim} X_i$ is a socle projective module, by (a) X has a nonzero summand Y of finite length. Let m be such that $Y \subseteq \operatorname{Im}(g_j: X_j \to X)$ for $j \geqslant m$, where g_j is the natural colimit monomorphism. Since obviously Y is a summand of $\operatorname{Im} g_j$, $X_j \cong Y$ for all $j \geqslant m$ because X_j is indecomposable. It follows that f_i is an isomorphism for $j \geqslant m$.

The implications (b) \Rightarrow (d) \leftarrow (c) can be proved by the method of Auslander [2]. For the convenience of the reader we outline the proof.

Suppose the converse of (d) and let $H: \operatorname{mod}_{\operatorname{sp}}(R) \to \mathscr{A}b$ be an additive functor having no nonzero simple subfunctors. By arguments used in the proof of [2; Proposition 2.9(a)] for any module X in $\operatorname{mod}_{\operatorname{sp}}(R)$ and a nonzero element x in H(X) there is a homomorphism $f: X \to X'$ in $\operatorname{mod}_{\operatorname{sp}}(R)$ which is not a splittable monomorphism and satisfies $H(f)x \neq 0$. Since modules in $\operatorname{mod}_{\operatorname{sp}}(R)$ are of finite length, using the same type of argument as in the proof of [2; Theorem 1.5] one can construct a sequence

$$X_1 \xrightarrow{f_1} X_2 \to \ldots \to X_n \xrightarrow{f_n} X_{n+1} \to \ldots$$

of indecomposable modules in $\operatorname{mod}_{\operatorname{sp}}(R)$ and proper monomorphisms f_j such that $\operatorname{colim} X_i$ is indecomposable of infinite length. This contradiction finishes the proof of $(b) \Rightarrow (d) \leftarrow (c)$.

By the well-known arguments of Bass (see [0; p. 317]), (d) is equivalent to

the fact that every flat functor in $Add(mod_{sp}(R)^{op}, \mathcal{A}b)$ is projective, which is equivalent to (e) ([17; Theorem 2.4], [19; Lemma 5.3]). In order to prove (e) \Rightarrow (a), given a module M in $Mod_{sp}(R)$ we consider the functor

$$h_M = \operatorname{Hom}_R(-, M): \operatorname{mod}_{\operatorname{sp}}(R) \to \mathscr{A}b.$$

Since M is a directed union of submodules M_s of finite length, $h_M = \operatorname{colim} h_{M_s}$ is flat. By our remark above h_M is projective. Hence $h_M \cong \bigoplus_t h_{N_t} \cong h_{(\oplus N_t)}$ for some modules N_t in $\operatorname{mod}_{\operatorname{sp}}(R)$. It follows that $M \cong \bigoplus_t N_t$ and the proof is complete.

We recall from [10, 26] that given a subset $J \subseteq I_R$ such that $* \in J$ we denote by R_J the ring obtained from the matrix form (1.1) by omitting all rows and columns with indices $t \in I_R - J$. We have a pair of functors [26; (1.14)]

(2.4)
$$\operatorname{mod}_{\operatorname{sp}}(R_J) \stackrel{T_J}{\rightleftharpoons} \operatorname{mod}_{\operatorname{sp}}(R)$$

having the following properties proved in [26; Corollary 1.16].

LEMMA 2.5. T_J is full, faithful, $r_J T_J \simeq \operatorname{id}$ and $\operatorname{Im} T_J$ is the full subcategory $\operatorname{mod}_{\operatorname{sp}}(R)|_J$ of $\operatorname{mod}_{\operatorname{sp}}(R)$ consisting of modules X such that $P(X) \simeq \bigoplus_{j \in J} P_J^{s_j}$. Moreover, T_J preserves monomorphisms and epimorphisms.

COROLLARY 2.6. If R is a schurian artinian right pure sp-semisimple PI-ring then $d_{j*}d'_{j*} \leq 3$ for all $j \in I_R$ and (I_R, d) is a valued poset.

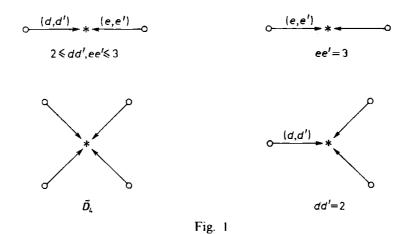
Proof. If $J = \{j, *\}$ then $R_J = \begin{bmatrix} F_j & {}_j M \\ 0 & F \end{bmatrix}$ is hereditary and in view of Lemma 2.5 and (a) \Leftrightarrow (b) in Theorem 2.3, R_J is right pure semisimple because $\operatorname{mod}_{\operatorname{sp}}(R)$ is cofinite in $\operatorname{mod}(R)$. Then Theorem 2.2 yields $d_{j*}d'_{j*} \leq 3$ and by [25; Prop. 2.3], (I_R, d) is a valued poset.

THEOREM 2.7. Let R be a schurian artinian right peak PI-ring. Then the following statements are equivalent:

- (a) R is right pure sp-semisimple.
- (b) R is sp-representation-finite.
- (c) The width w(R) of R [10, 11] is ≤ 3 and (I_R, d) is a valued poset which does not contain critical peak valued posets $(2,2,2)^*$, $(1,3,3)^*$, $(N,4)^*$, $(1,2,5)^*$, \tilde{F}'_{41} , \tilde{F}''_{41} , \tilde{F}''_{42} , \tilde{F}''_{42} , \tilde{G}'_{2} , \tilde{G}''_{2} (see [10, Theorem 2], [11, Theorem A]) as full peak subposets.

Proof. (b) \Leftrightarrow (c) is proved in [11].

(a) \Rightarrow (c). We know from Corollary 2.6 that (I_R, d) is a valued poset and $d_{ij}d'_{ij} \leq 3$ for all $i, j \in I_R$. It follows that w(R) > 3 if and only if (I_R, d) contains as a full peak subposet one of the posets of Fig. 1. Since the functor T_J ((2.4)) preserves monomorphisms and indecomposability (Lemma 2.5), in view of



Theorem 2.3 it is sufficient to prove that if (I_R, d) is either one of the valued posets above or one of the critical valued posets then R is not right pure sp-semisimple.

First we consider the case when (I_R, d) is the poset $(N,4)^*$. By [11; Lemma 2.13], $\operatorname{mod}_{\operatorname{sp}}(R) \cong (N,4)$ -sp and therefore it is of infinite type by [9]. In order to prove that R is not right pure sp-semisimple we proceed as follows. By applying the Nazarova-Roiter differentiation with respect to maximal elements in the poset (N,4) we get in a finite number of steps a poset I' of width 4. It follows from [22; Corollary 6.9] that there exists a full and dense functor ∂ : (N,4)-sp $\to I'$ -sp such that $\operatorname{Ker} \partial$ is generated by finitely many modules (see also [25; Section 5]). Then ∂ induces a representation equivalence ∂ : $\mathscr{A} \to I_0$ -sp $\subseteq I'$ -sp, where I_0 is a subposet of I' consisting of four incomparable elements and \mathscr{A} is a full subcategory of (N,4)-sp. Since FI_0^* is a hereditary PI-ring of type \widetilde{D}_4 and I_0 -sp is obviously cofinite in $\operatorname{mod}(FI_0^*)$, Theorem 2.2 shows that FI_0^* is not right pure semisimple. Therefore Theorem 2.1 and the functor ∂ allow us to construct a sequence

$$N_1 \xrightarrow{g_1} N_2 \xrightarrow{g_2} \dots \rightarrow N_n \xrightarrow{g_n} N_{n+1} \rightarrow \dots$$

of nonzero nonisomorphisms between indecomposable modules in \mathcal{A} such that $g_j g_{j-1} \dots g_1 \neq 0$ for all $j \geq 1$. It follows from Theorem 2.3 that R is not right pure sp-semisimple and (a) \Rightarrow (c) is proved in the case where R is of type $(N,4)^*$.

Now we suppose that R is such that (I_R, d) is of one of the forms above or (I_R, d) is a critical valued poset different from $(N,4)^*$. Then R is hereditary and a case by case inspection shows that $\operatorname{mod}_{\operatorname{sp}}(R)$ is cofinite in $\operatorname{mod}(R)$ in the sense that all but a finite number of indecomposable modules in $\operatorname{mod}(R)$ are in $\operatorname{mod}_{\operatorname{sp}}(R)$. By Theorem 2.2, R is not of finite representation type and R is not right pure semisimple. Then from Theorems 2.1 and 2.3 we conclude that R is not right pure sp-semisimple, which is a contradiction. This finishes the proof of $(a) \Rightarrow (c)$.

Since (b) \Rightarrow (a) follows from Theorem 2.3, the proof is complete.

3. Representation-finite piecewise prime PI-rings

DEFINITION 3.1. A is a piecewise prime ring if A is a semiperfect ring with the property that if $e, f, g \in A$ are primitive orthogonal idempotents such that eJfJg = 0, J = J(A), then either eJf = 0 or fJg = 0 (cf. [8]).

It is clear that the definition is left and right symmetric.

LEMMA 3.2 [27]. A basic semiprimary ring A is piecewise prime if and only if A has (up to isomorphism) a triangular form

(3.2')
$$A = \begin{bmatrix} D_1 & {}_{1}N_2 \cdots {}_{1}N_m \\ & D_2 \cdots {}_{2}N_m \\ & \ddots & \vdots \\ 0 & & D_m \end{bmatrix}$$

where D_1, \ldots, D_m are division rings, $_iN_j$ are D_i -D_j-bimodules and the multiplication in A is defined by D_i -D_t-bilinear maps c_{ijt} : $_iN_j \otimes_j N_t \rightarrow_i N_t$ satisfying the obvious associativity conditions and $c_{ijt} = 0$ if and only if $_iN_j = 0$ or $_iN_t = 0$.

Proof. Let e_1, \ldots, e_m be a complete set of primitive orthogonal idempotents ordered in such a way that $e_i J e_j \neq 0$ implies i < j. If we put $D_j = e_j A e_j$, ${}_i N_j = e_i A e_j$ and $c_{ijk}(x \otimes y) = x \cdot y$ then we get the triangular form (3.2') satisfying the required conditions. The proof of the converse implication is left to the reader.

Throughout we denote by e_1, \ldots, e_m the standard set of primitive orthogonal matrix idempotents in the form (3.2') of A.

Note that if I is a poset and D is a division ring then the path algebra DI is piecewise prime. If R is a right peak ring (1.1) having all bimodules ${}_{j}M_{*}$ simple then $A = (1 - e_{*})R(1 - e_{*})$ is piecewise prime, where e_{*} is the peak idempotent. Finally, semiperfect piecewise domains [8, 24] are piecewise prime.

If A is an artinian piecewise prime ring of the form (3.2') then we associate to A a valued poset (I_A, d) in the same way as we did it for right peak rings. We are going to give a characterization of representation-finite piecewise prime rings in terms of (I, d).

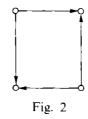
We call A homogeneous if $d_{ij}d'_{ij} \leq 1$ for all i, j. A map $f: (I, \mathbf{d}) \to (\overline{I}, \overline{\mathbf{d}})$ is a contraction if $f^{-1}(j)$ is homogeneous and connected for any $j \in \overline{I}$.

The following result follows from [3; Proposition 3.2] and its proof.

LEMMA 3.3. Let A be a homogeneous piecewise prime ring and let I be the poset I_A with $i < j \Leftrightarrow_i N_j \neq 0$. If (I_A, d) or its contraction does not contain the poset of Fig. 2 as a full subposet then $A \simeq DI$, where $D = D_1 \simeq ... \simeq D_m$.

LEMMA 3.4. Let A be a basic artinian piecewise prime PI-ring and let (I_A, d) be the valued poset of A.

- (a) If A is right pure semisimple then $d_{ij}d'_{ij} \leq 3$ for all $i, j \in I_A$.
- (b) Suppose that $d_{ij}d'_{ij} \leq 3$ for all $i, j \in I_A$ and given $s \in I_A$ put $\hat{e}_s = \sum_{j \leq s} e_j$.



Then:

- (i) $\hat{e}_s A \hat{e}_s$ is a right peak ring with peak idempotent e_s .
- (ii) The Cartan matrix of A (see [11; Section 3])

(3.5)
$$C(A) = \begin{bmatrix} 1 & d_{12} & d_{1m} \\ d'_{12} & 1 & d_{2m} \\ \vdots & \vdots & \vdots \\ d'_{1m} & d'_{2m} & 1 \end{bmatrix}$$

is symmetrizable and if $d_{ij} \neq 0$, $d_{jt} \neq 0$ then d'_{ij} , d'_{jt} , d_{it} are nonzero and

$$(\mathbf{pp}_1)$$
 $d_{it} = d'_{it} = 1$ iff $d_{ij} = d'_{jt}$ and $d'_{ij} = d_{jt}$;

$$(\mathbf{pp}_2) \qquad (d_{ii}, d'_{ii}) = (d_{ij}, d'_{ij}) \quad iff \quad d_{ji} = d'_{ji} = 1,$$

$$= (d_{ii}, d'_{ii}) \quad iff \quad d_{ii} = d'_{ii} = 1;$$

$$(\mathbf{pp}_3)$$
 if, in addition, $d_{tk} \neq 0$ and $d_{jt}d'_{jt} \geqslant 2$ then either $d_{ij}d'_{ij} = 1$ or $d_{tk}d'_{tk} = 1$.

Proof. (a) follows by the arguments in the proof of Corollary 2.6 with J and $\{i, j\}$ interchanged.

(b) Since A is piecewise prime, the D_i - D_j -bimodule map \bar{c}_{ijs} : ${}_iN_j \to \operatorname{Hom}_{D_s}({}_jN_s, {}_iN_s)$ adjoint to c_{ijs} is nonzero. Then \bar{c}_{ijs} is injective because by our assumptions ${}_iN_j$ is a simple bimodule. It follows that $\hat{e}_sA\hat{e}_s$ is a right peak ring. The remaining part follows from the results in [11; Section 3].

Let us consider the class of all matrices C of the form (3.5) with natural entries satisfying the following conditions:

- 1° If $d_{ij} \neq 0$ and $d_{jt} \neq 0$ then $d_{it} \neq 0$ for $1 \leq i, j, t \leq m$.
- 2° C is symmetrizable, i.e. there exist nonzero natural numbers f_1, \ldots, f_m such that $d_{ij}f_j = f_i d'_{ij}$ for all $1 \le i, j \le m$.
 - 3° $d_{ij}d'_{ij} \leq 3$ for all $1 \leq i, j \leq m$.
 - 4° The rules (pp_1) - (pp_3) above are valid.

Applying the same type of arguments as in the proof of Theorem 3.8 in [11] one can prove the following realization result.

PROPOSITION 3.6. Let C be a matrix of the form (3.5) with natural entries satisfying conditions $1^{\circ}-4^{\circ}$ above. Then there exists a finite-dimensional piecewise prime algebra A over a field k such that C = C(A).

Let C = C(A) be a matrix as above and let C' be the upper-triangular

matrix obtained from C by replacing all d'_{ij} 's by zeros. Let F be the diagonal matrix with entries f_1, \ldots, f_m satisfying 2° for C. Set $D = C' \cdot F$. The matrix D is invertible and D^{-T} defines the bilinear form

$$\langle -, - \rangle : Q^m \times Q^m \to Q, \quad \langle x, y \rangle = xD^{-T}y^T,$$

and the quadratic form

(3.7)
$$\chi_A: Q^m \to Q, \quad \chi_A(x) = \langle x, x \rangle = xD^{-T}x^T.$$

Note that if A is a finite-dimensional piecewise prime algebra over a field k and C = C(A), then D = D(A) is the Cartan matrix of A in the sense of [16; 2.4]. Moreover, similarly to [4], [16; 2.4], it follows that if X, Y are A-modules with proj.dim $X < \infty$ or inj.dim $Y < \infty$, then

$$\langle \dim X, \dim Y \rangle = \sum_{t \geq 0} (-1)^t \dim \operatorname{Ext}_A^t(X, Y).$$

It is easy to see that if B is a basic artinian piecewise prime PI-ring such that $C(B) = C(A)^T$ and $f = f_1 \cdot ... \cdot f_m$, then

$$\chi_B(x) = x (f \cdot F^{-1} \cdot C(A)')^{-T} x^T.$$

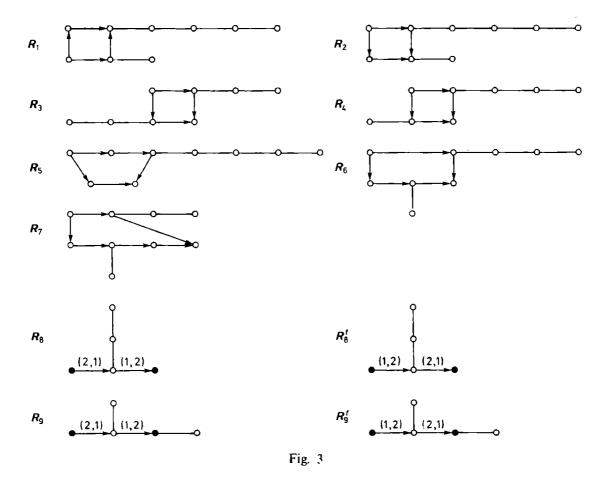
Now we are able to prove the main result of this section.

THEOREM 3.9. Let A be a basic artinian piecewise prime PI-ring of the form (3.2') and suppose that the valued poset (I_A, \mathbf{d}) is connected. The following statements are equivalent:

- (1) A is representation-finite.
- (2) A is right pure semisimple.
- (3) (I_A, d) is symmetrizable and the quadratic form (3.7) is weakly positive.
- (4) $d_{ij}d'_{ij} \leq 3$ for all $i, j \in I_A$ and (I_A, d) , $(I_A, d)^{op}$ have no contraction containing as a full valued subposet one of the following critical PP-posets:
 - (i) the extended Dynkin diagrams [6];
- (ii) the minimal wild graphs $0 \stackrel{(d,d')}{\longrightarrow} 0 \stackrel{(e,e')}{\longleftrightarrow} 0$, $2 \le dd' < ee' \le 3$ or dd' = ee' = 3;
 - (iii) the crucial posets of Fig. 3 (see [12, 13, 3, 24, 27]).
 - (5) (I_A, d) is a valued full subposet of one of the following forms or its dual:
 - (i) Dynkin diagrams [6];
 - (ii) Loupias posets of finite representation type [12, 13];
 - (iii) nonhomogeneous representation-finite valued PP-posets of Fig. 4.
- (In Figs. 3 and 4, $d_{st} = d'_{st} = 1$ if s and t are black points and $\circ \circ$ means either $\circ \circ \circ$ or $\circ \leftarrow \circ$.)

Proof. (1) \Rightarrow (2) follows from Theorem 2.1.

(2) \Rightarrow (4). It follows from Corollary 2.6 that $d_{ij}d'_{ij} \leq 3$ and since the rings



B corresponding to the crucial posets $R_1 - R_7$ and R_8 , R_9 are *l*-hereditary, it follows that if (I_A, d) has a contraction containing these crucial posets then by [24; Theorem 2.5], A is not right pure semisimple because there is a full and faithful embedding $\text{mod}(B) \rightarrow \text{mod}(A)$. If B is of the type R_8^t , R_9^t then applying the triangular reduction [25; Theorem 4.1] we show similarly to [24; p. 171] that there are a ring epimorphism $A \rightarrow S$, a schurian artinian right peak PI-ring R and a full dense functor G_+ : $\text{mod}(A) \rightarrow \text{mod}_{sp}(R)$ such that $\text{Ker } G_+ = [\text{mod}(S)]$ and (I_R, d) contains an extended Dynkin diagram. It follows from Theorem 2.7 that R is not right pure sp-semisimple and by Theorem 2.3, A is not right pure semisimple; a contradiction.

- $(4) \Rightarrow (5)$. If A is homogeneous then in view of Lemma 3.3, $A \simeq DI_A$ and (5) follows from [12, 13]. If A is not homogeneous then we are in the situation of Lemma 3.4(b) and a simple combinatorial analysis involving the rules (\mathbf{pp}_1) — (\mathbf{pp}_3) shows that (I_A, \mathbf{d}) or its dual is either a Dynkin diagram or a full valued subposet of one of the PP-posets of Fig. 4.
- $(5) \Rightarrow (1)$. If either A is homogeneous or (I_A, d) is one of the forms $PP_1 PP_{10}$ (see Fig. 4) then A is l-hereditary and by [24; Theorem 2.5], A is representation-finite. There remains the case when (I_A, d) is of one of the forms $PP_1^t PP_{10}^t$. Similarly to [24] we can proceed by induction on $|I_A|$ and apply to

A the triangular reduction [25]. In each case we get an sp-representation-finite schurian right peak PI-ring R, a representation-finite piecewise prime factor ring S of A and an equivalence of categories $\text{mod}(A)/[\text{mod}(S)] \cong \text{mod}_{\text{sp}}(R)$. Hence we conclude that A is representation-finite.

- $(5) \Rightarrow (3)$. Suppose that (I_A, d) is of one of the types (i)-(iii) in (5). By a simple analysis of each of the possible finite type poset forms of (I_A, d) presented in [13] and all possible PP-forms for (I_A, d) in Fig. 4 one can show that gl.dim $A \leq 2$ and that the Auslander-Reiten valued translation quiver (Γ_A, τ) has a complete directed preprojective component [16] because of the separation property for radicals of indecomposable projective A-modules. Since A is of finite type, every indecomposable A-module is directing [16]. Furthermore, looking at all possible shapes of (I_A, d) it is easy to check that there exists a finite-dimensional algebra B such that $(I_A, d) = (I_B, d)$ and C(A) = C(B). Hence B has the properties mentioned above for A. Now using the same type of argument as in [4] or in [16; 2.4] we get (3).
- $(3) \Rightarrow (4)$. It is easy to check that if either $d_{ij}d'_{ij} \geqslant 4$ for some i, j, or (I_A, \mathbf{d}) or $(I_A, \mathbf{d})^{op}$ has one of the forms (i)–(iii) in (4) then the form (3.7) is not weakly positive. This finishes the proof.

By the discussion in the proof of $(5) \Rightarrow (3)$ and the results in [16; 2.4] we get

COROLLARY 3.10. If A is a representation-finite piecewise prime PI-ring then:

- (a) gl.dim $A \leq 2$.
- (b) The Auslander-Reiten valued translation quiver Γ_A of A has a complete preprojective component which is simply connected in the sense of [5, 15].
- (c) If X is an indecomposable A-module then X is directing in the sense of Ringel [16; 2.4], $\operatorname{Ext}_A^1(X, X) = 0$ and $\operatorname{End}(X) \cong D_j$ for some j. Moreover, X is uniquely determined by its composition factors.

Remark 3.11. Suppose that A, B are basic representation-finite piecewise prime artinian PI-rings such that the Cartan matrix C(A) is the transpose $C(B)^T$ of C(B). Denote by \tilde{A} and \tilde{B} the Auslander rings of A and B, respectively. Since by Corollary 3.10 the Auslander-Reiten valued translation quivers Γ_A and Γ_B are simply connected, they can be constructed by the well-known cokernel procedure starting from hereditary projective modules and radicals of indecomposable projective modules. An analysis of this construction shows that the translation quivers obtained from Γ_A and Γ_B by forgetting the values over edges are isomorphic. Moreover, we have $C(\tilde{A}) = C(\tilde{B})^T$. It would be interesting to give a more conceptual explanation of this phenomenon which has an analogue for sp-representation-finite schurian right peak PI-rings studied in [11].

In connection with this problem we have the following result which is a simple consequence of the criterion in $\lceil 29 \rceil$ and the formula (3.8).

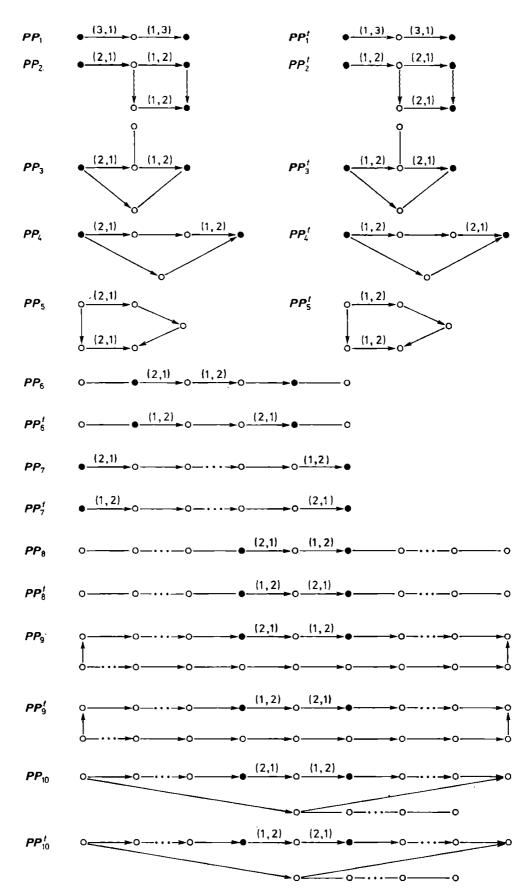


Fig. 4. Nonhomogeneous representation-finite valued PP-posets

LEMMA 3.12. Let C = C(A) be a matrix of the form (3.5) satisfying condition 2° and let $C(B) = C^{T}$. Then χ_{A} is weakly positive (weakly nonnegative) if and only if so is χ_{B} .

References

- [0] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Graduate Texts in Math. 13, Springer, 1973.
- [1] M. Auslander, Representation theory of artin algebras II, Comm. Algebra 1 (1974), 269-310.
- [2] -, Large modules over artin algebras, in: Algebra, Topology and Category Theory, Academic Press, New York 1976, 3 17.
- [3] R. Bautista, On algebras close to hereditary Artin algebras, An. Inst. Mat. Univ. Nac. Autónoma México 21 (1) (1981), 21-104.
- [4] K. Bongartz, Algebras and quadratic forms, J. London Math. Soc. 28 (1983), 461-469.
- [5] K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (1982), 331-378.
- [6] V. Dlab and C. M. Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 173 (1976).
- [7] P. Gabriel, *Indecomposable representations II*, in: Sympos. Math. Ist. Naz. Alta Math. 11, Academic Press, 1973, 81-104.
- [8] R. Gordon and L. W. Small, Piecewise domains, J. Algebra 23 (1972), 553-564.
- [9] M. M. Kleiner, Partially ordered sets of finite type, Zap. Nauchn. Sem. LOMI 28 (1972), 32-41 (in Russian).
- [10] B. Klemp and D. Simson, A diagrammatic characterization of schurian vector space PI-categories of finite type, Bull. Polish Acad. Sci. Math. 32 (1984), 385-396.
- [11] -, -, Schurian sp-representation-finite right peak PI-rings and their indecomposable socle projective modules, J. Algebra (1990), to appear.
- [12] M. Loupias, Représentations indécomposables des ensembles ordonnés finis, Thèse, Université François Rabelais de Tours, 1975.
- [13] -, Indecomposable representations of finite ordered sets, in: Lecture Notes in Math. 488, Springer, 1975, 201-209.
- [14] L. A. Nazarova and A. V. Roiter, Representations of partially ordered sets, Zap. Nauchn. Sem. LOMI 28 (1972), 5-31 (in Russian).
- [15] C. M. Ringel, Kawada's theorem, in: Abelian Group Theory, Lecture Notes in Math. 874, Springer, 1981, 431-447.
- [16] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
- [17] D. Simson, Functor categories in which every flat object is projective, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 375-380.
- [18] —, Pure semisimple categories and rings of finite representation type, J. Algebra 48 (1977), 290–296.
- [19] -, On pure global dimension of locally finitely presented Grothendieck categories, Fund. Math. 96 (1977), 91-116.
- [20] -, On pure semisimple Grothendieck categories, II, ibid. 110 (1980), 107-116.
- [21] -, Partial Coxeter functors and right pure semisimple hereditary rings, J. Algebra 71 (1981), 195-218.
- [22] -, Representations of partially ordered sets, vector space categories and socle projective modules, Paderborn 1983, 141 pp.
- [23] -, Indecomposable modules over one-sided serial local rings and right pure semisimple rings, Tsukuba J. Math. 7 (1983), 87-103.

- [24] -, Right pure semisimple l-hereditary Pl-rings, Rend. Sem. Mat. Univ. Padova 71 (1984), 141-175.
- [25] -, Vector space categories, right peak rings and their socle projective modules, J. Algebra 92 (1985), 532-571.
- [26] -, Socle reductions and socle projective modules, ibid. 103 (1986), 18-68.
- [27] -, On methods for the computation of indecomposable modules over artinian rings, in: Reports of 28th Symp. on Algebra, Ring Theory and Algebraic Geometry, University of Chiba, Japan, 26-29 July 1982. 143 170.
- [28] -, Moduled categories and adjusted modules over traced rings, Dissertationes Math. 269 (1990).
- [29] M. V. Zel'dich, A criterion for weak positivity of quadratic forms, in: Linear Algebra and Representation Theory, Inst. Math. Acad. Sci. Ukrain. SSR, Kiev 1983, 135–137 (in Russian).