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[t is proved that a schurian artimian right peak Pl-ring R is right pure
sp-semisimple if and only if R is sp-representation finite. A diagrammatic
characterization of representation-finite piecewise prime artinian Pl-rings
(defined in Section 3) is given.

1. Introduction

We recall from [25] that a semiperfect ring R i1s a right peak ring if R is
a generalized matrix ring of the form

[ Fl 1M2 1Mn lM* Pl

@
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@

(1.1) R= | ... . =
@
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such that soc(Ry) is an essential right ideal in R isomorphic to a direct sum of
finitely many copies of P, (P, is called the right peak of R). Here F,,..., F, are
local rings, F=F, is a division ring, ;M; ts an F-F-bimodule and the
multiplication in R is given by F,-F-bimodule maps c¢;;: ,M,®;M,— M,

This paper is in.(inal form and no version of it will be submitted for publication elsewhere.

[327]



328 B. KLEMP AND D. SIMSON

satisfying the natural associativity conditions. We denote by P,,...,P,, P, the
right indecomposable row ideals of R.

We call R schurian if F,..., F, are division rings. We denote by mod (R)
the category of finitely generated socle projective right R-modules. R is called
sp-representation-finite if the number of isomorphism classes of indecomposable
modules in mod,(R) is finite.

A ring A 1s called right pure semisimple [18] if every right A-module is
a direct sum of finitely generated modules. Every such ring is right artintan. We
call a right peak ring R right pure sp-semisimple if every socle projective right
R-module is a direct sum of finitely presented modules.

We recall that the following theorem holds:
(pss,)  If the ring A is right pure semisimple then A is representation-finite

provided A is either an Artin algebra [2], or 4 is an [-hereditary PI-ring
[21, 24], or A is a local Pl-ring [23]. However, it is still an open problem if
(pss,) is true for an arbitrary artinian ring A.

It follows from [25], [26] and [28; 7.3] that under some assumptions on
A the proof of (pss,) can be reduced to the proof of

(pssg) If R is a right pure sp-semisimple artinian right peak PI-ring then R is
sp-representation finite.

In the present note (pss}) is proved for schurian right peak Pl-rings
R (Theorem 2.7) and (pss,) is proved for piecewise prime Pl-rings defined in
Section 3. Moreover, a diagrammatic characterization of representation-finite
piecewise prime Pl-rings is given (Theorem 3.7).

Throughout this paper we freely use the terminology and notation
introduced in 19, 21, 25]. In particular, we denote by J(A) the Jacobson
radical of the ring A. If R is schurian of the form (1.1) then (I, d) denotes the
value scheme of R [25; p. 536] consisting of the set Ip of points
1,2,....,n+1 = connected by valued dashed arrows i 44, j i i when-
ever d;; = dim(;M ), and dj; = dim, (;M) are nonzero. We recall from [25;
Proposition 2.3] that if all bimodules ;M are simple then (I, d) is a valued
poset having a unique maximal element * with respect to the relation
i<j<M;#0. We draw a solid arrow from i to j if there is no ¢ such that
i<t<j.

2. Pure sp-semisimple rings

We begin by recalling a few facts on pure semisimple rings.

THEOREM 2.1 [2, 20]. A right artinian ring B is right pure semisimple if and
only if given any sequence '

X, U0X,».. -X8X,,,—...
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of monomorphisms between indecomposable modules in mod{(B) there is an integer
n such that f; is an isomorphism for j = n.

THEOREM 2.2 [21]. A hereditary artinian PI-ring B is right pure semisimple
if and only if B is of finite representation type. In this case the valued graph of B is
a disjoint union of Dynkin diagrams.

For artinian right peak rings there is a counterpart of Theorem 2.1.

THEOREM 2.3. Let R be an artinian right peak ring. Then the following
conditions are equivalent:

(a) R is right pure sp-semisimple.

O IfX,L5X,»... X, {5 X,,,—... consists of indecomposable mo-
dules in mod, (R) and f,, f,.... are monomorphisms then there is m such that f, is
an isomorphism for j = m.

(c) Every indecomposable module in Mod_(R) is of finite lengyth.

(d) Every additive functor H: mod_(R)— .«/b has a nonzero simple sub-
functor.

(€} The Jacobson radical of the category mod,,(R} is right T-nilpotent in the
sense that for any sequence Y, LY, —. . -Y 45 Y ., —... of nonisomor-
phisms between indecomposable modules in mod (R) there is m such that
gmgm—l"'gl =0'

Proof. (a)=>(c) is obvious.

{a)=(b). Since X = colimX,; is a socle projective module, by (a) X has
a nonzero summand Y of finite length. Let m be such that Y < Im(g;: X;— X)
for j = m, where g, is the natural colimit monomorphism. Since obviously Y is
a summand of Img;, X;= Y for all j > m because X; is indecomposable. It
follows that f; 1s an isomorphism for j = m.

The implications (b) = (d) <= (c¢) can be proved by the method of Auslander
f2]. For the convenience of the reader we outline the proof.

Suppose the converse of (d) and let H: mod,,(R)— «/b be an additive
functor having no nonzero simple subfunctors. By arguments used in the proof
of [2; Proposition 2.9(a)] for any module X in mod,,(R) and a nonzero
element x in H(X) there is a homomorphism f: X — X’ in mod,(R) which is not
a splittable monomorphism and satisfies H{(f)x # 0. Since modules in
mod,,(R) are of finite length, using the same type of argument as in the proof of
[2; Theorem 1.5] one can construct a sequence

XI—LI-FXz_’...—’XnL’X".fl—’...

of indecomposable modules in mod,,(R) and proper monomorphisms f; such
that colim X; is indecomposable of infinite length. This contradiction finishes
the proof of (b)=(d)<(c).

By the well-known arguments of Bass (see {0; p. 317]), (d) is equivalent to
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the fact that every flat functor in Add(mod,,(R)*®, .&/b) is projective, which is
equivalent to (e) ([17; Theorem 247, [19; Lemma 5.3]). In order to prove
(¢)=>(a), given a module M in Mod_ (R} we consider the functor

hy, = Homg(—, M): mod_ (R)— «/b.

Since M is a directed union of submodules M, of finite length, h,, = colimh,,_
is flat. By our remark above h,, is projective. Hence hy, = @, hy, = hgy,, for
some modules N, in mod,(R). It follows that M = @,N, and the proof is
complete.

We recall from [10, 26] that given a subset J < I, such that xeJ we
denote by R, the ring obtained from the matrix form (1.1) by omitting all rows
and columns with indices telg—J. We have a pair of functors [26; (1.14)]

Ty

(2.4) mod,,(R;) 2 mod(R)

having the following properties proved in [26; Corollary [.16].

LEMMA 2.5. T, is full, faithful, r; T, ~ id and ImT; is the full subcategory
mod, (R)|, of mod,,(R) consisting of modules X such that P(X) ~ D Py
Moreover, T, preserves monomorphisms and epimorphisms.

CoOROLLARY 2.6. If R is a schurian artinian right pure sp-semisimple PI-ring
then d; dj, <3 for all jely and (Ig, d) is a valued poset.
F, M
0 F
Lemma 2.5 and (a)<>(b) in Theorem 2.3, R, is right pure semisimple because

mod,,(R) is cofinite in mod(R). Then Theorem 2.2 yields d;,d}, < 3 and by
[25; Prop. 23], (I, d) is a valued poset.

Proof. 1f J = {j, *} then R, z[ :| is hereditary and in view of

THEOREM 2.7. Let R be a schurian artinian right peak Pl-ring. Then the
Sfollowing statements are equivalent:

(a) R is right pure sp-semisimple.

(b) R is sp-representation-finite.

(c) The width w(R) of R [10, 11] is < 3 and (I, d) is a valued poset which
does not contain critical peak valued posets (2,2,2)*, (1,3,3)*, (N,4)*, (1,2,5)*, .,
Fy., Fy,, Fi,, G5, G (see [10, Theorem 2}, [11, Theorem A}) as full peak
subposets.

Proof. (by<=>(c) is proved in [11].

(a) =(c). We know from Corollary 2.6 that (I, d) is a valued poset and
dijdi; < 3 for all i, je Ig. It follows that w(R) > 3 if and only if ({5, d) contains
as a full peak subposet one of the posets of Fig. 1. Since the functor T; ((2.4))
preserves monomorphisms and indecomposability (Lemma 2.5), in view of
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Theorem 2.3 it is sufficient to prove that if (I, d) is either one of the valued
posets above or one of the critical valued posets then R is not right pure
sp-semisimple.

First we consider the case when (I, d) is the poset (N,4)*. By [11; Lemma
2.13], mod,,(R) = (N,4)-sp and therefore it is of infinite type by [9]. In order to
prove that R is not right pure sp-semisimple we proceed as follows. By
applying the Nazarova—Roiter differentiation with respect to maximal elements
in the poset (N,4) we get in a finite number of steps a poset I’ of width 4. It
follows from [22; Corollary 6.9] that there exists a full and dense functor ¢:
(N,4)-sp— I'-sp such that Kerd is generated by finitely many modules (see
also [25; Section 5]). Then & induces a representation equivalence 0:
o - I,-sp = I'-sp, where I is a subposet of I’ consisting of four incomparable
elements and «/ is a full subcategory of (N,4)-sp. Since FI§ is a hereditary
Pl-ring of type D, and I,-sp is obviously cofinite in mod(FI%), Theorem 2.2
shows that FI§ is not right pure semisimple. Therefore Theorem 2.1 and the
functor ¢ allow us to construct a sequence

N{ 2N, 2 >N 2N, 1—>...

of nonzero nonisomorphisms between indecomposable modules in .o such that
gi9j-1---g, # 0 for all j > 1. It follows from Theorem 2.3 that R is not right
pure sp-semisimple and (a) = (c) 1s proved in the case where R is of type (N, 4)*.

Now we suppose that R is such that (I, d) is of one of the forms above or
(Ig, d) 1s a critical valued poset different from (N,4)*. Then R is hereditary and
a case by case inspection shows that mod,,(R) is cofinite in mod(R) in the sense
that all but a finite number of indecomposable modules in mod(R) are in
mod,,(R). By Theorem 2.2, R is not of finite representation type and R is not
right pure semisimple. Then from Theorems 2.1 and 2.3 we conclude that R is
not right pure sp-semisimple, which is a contradiction. This finishes the proof
of (a)=(c).

Since (b)=(a) follows from Theorem 2.3, the proof is complete.
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3. Representation-finite piecewise prime PI-rings

DEFINITION 3.1. A4 1s a piecewise prime ring if A is a semiperfect ring with
the property that if e, f, ge A are primitive orthogonal idempotents such that
eJfJg =0, J=J(A), then either eJf =0 or fJg =0 (cf. [8]).

It is clear that the definition is left and right symmetric.

LeMMA 3.2 [27]. A basic semiprimary ring A is piecewise prime if and only if
A has (up to isomorphism) a triangular form

D, NN,

3.2) A= Do el

0 D,
where D,...,D, are division rings, N; are D-D-bimodules and the multi-
plication in A is defined by Di-D,-bilinear maps c;: \N;® ;N ,— N, satisfying the
obvious associativity conditions and c;;; = 0 if and only if [N;=0 or ;N =0,
Proof. Lete,,... e, be a complete set of primitive orthogonal idempotents

ordered in such a way that e, Je; # 0 implies i <j. If we put D, = e;Ae,,
N, =e;Ae; and ¢;;(x®y) = x-y then we get the triangular form (3.2") satisfying
the required conditions. The proof of the converse implication is left to the
reader.

Throughout we denote by e,,...,e, the standard set of primitive ortho-
gonal matrix idempotents in the form (3.2°) of A4.

Note that if / is a poset and D is a division ring then the path algebra DI is
piecewise prime. If R is a right peak ring (1.1) having all bimodules ;M simple
then A = (1 —e,)R(1 —e,) is piecewise prime, where e, is the peak idempotent.
Finally, semiperfect piecewise domains [8, 24] are piecewise prime.

If 4 is an artinian piecewise prime ring of the form (3.2°) then we associate
to 4 a valued poset (I, d) in the same way as we did it for right peak rings. We
are going to give a characterization of representation-finite piecewise prime
rings in terms of (I, d).

We call A homogeneous if d;;d;; < 1 for all i, j. A map f: (I, d)~(I, d) is
a contraction if f7'(j) is homogeneous and connected for any jel.

The following result follows from [3; Proposition 3.2] and its proof.

LEMMA 3.3. Let A be a homogeneous piecewise prime ring and let I be the
poset I, with i <j< N;#0.If (I, d) or its contraction does not contain the
poset of Fig. 2 as a full subposet then A ~ DI, where D=D,~...~D,.

LemMaA 3.4. Let A be a basic artinian piecewise prime Pl-ring and let (I ,, d)
be the valued poset of A.

(a) If A is right pure semisimple then d,;d;; <3 for all i,jel,.

(b) Suppose that d;;d;; < 3 for all i, jel, and given sel, put é =) ;_.e;.
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Fig. 2
Then:

() é,Aé is a right peak ring with peak idempotent e..
(i) The Cartan matrix of A (see [11; Section 3])

1m
(3.5) cay= | Tom
’lm ,2m l

is symmetrizable and if d;; # 0, d;, # 0 then dj;, dj, d,, d;; are nonzero and
(Ppy) dy=dy=1 iff dy=d; and dij=d,;
(Pp2) (i, di) = (dy, &) Iff dyy=d =1,
=(d;, dy) iff d;=d;=1;
(pP;)  if, in addition, d,, # 0 and d; d; = 2 then either d;;d;; = 1 or d,dy = 1.

Proof. (a) follows by the arguments in the proof of Corollary 2.6 with
J and {i, j} mterchdnged.

{(b) Since A is piecewise prime, the D-D/bimodule map ¢ N,
—Hom,, (;N, ;N adjoint to ¢;j, is nonzero. Then Cijs 1s injective because by
our assumptions ;N is a simple bimodule. It follows that é Aé, is a right peak

ring. The remaining part follows from the results in [11; Section 3].

Let us consider the class of all matrices C of the form (3.5) with natural
entries satisfying the following conditions:

1° If d;;#0 and d;, # 0 then d, #0 for 1 <1, j, t<m.

2° Cis symmetnzablc i.e. there exist nonzero natural numbers f;,...,f,
such that d;f; = fidi; ‘or all 1 <i, j<m.

3 ddi; <3 for all 1<, j<m.

4° The rules (pp,){pp,) above are valid.

Applying the same type of arguments as in the proof of Theorem 3.8 in
[11] one can prove the following realization result.

PROPOSITION 3.6. Let C be a matrix of the form (3.5) with natural entries
satisfying conditions 1°-4° above. Then there exists a finite-dimensional piecewise
prime algebra A over a field k such that C = C(A).

Let C = C(A) be a matrix as above and let ¢’ be the upper-triangular
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matrix obtained from C by replacing all di's by zeros. Let F be the diagonal
matrix with entries f},...,f,, satisfying 2° for C. Set D = C'*F. The matrix D is
invertible and D~ 7 defines the bilinear form

(=, =2 Q"xQ">Q, (x,yy=xD"TyT,
and the quadratic form

(3.7) i Q"=0Q,  xax) = (x, x) = xDTxT.

Note that if A is a finite-dimensional piecewise prime algebra over a field
k and C = C(A), then D = D(A) is the Cartan matrix of 4 in the sense of [16;
2.4]. Moreover, similarly to [4], [16; 2.4], it follows that if X, Y are A-modules
with proj.dimX < oo or injdimY < oo, then
{dimX, dimY) = ) (—1ydimExt/(X, Y).

120

It is easy to see that if B is a basic artinian piecewise prime PI-ring such
that C(B) = C(A)" and f =f,"...*f,, then

(3.8) 1) = x(f-F~1-C(Ay) "x".

Now we are able to prove the main result of this section.

THEOREM 3.9. Let A be a basic artinian piecewise prime Pl-ring of the form
(3.2') and suppose that the valued poset (I ,, d) is connected. The following
statements are equivalent:

(1) A is representation-finite.
(2) A is right pure semisimple.
(3) ({4, d) is symmetrizable and the quadratic form (3.7) is weakly positive.
(4) d;;di; <3 for all i,jel, and (1, d), (I, d)" have no contraction
containing as a full valued subposet one of the following critical PP-posets:
(i) the extended Dynkin diagrams [6];
(ii) the minimal wild graphs oY¥4Lcde) o 2 < dd <ee <3 or
dd = ee’ = 3;
(1) the crucial posets of Fig. 3 (see [12, 13, 3, 24, 27)).
(5) 4, d) is a valued full subposet of one of the following forms or its dual:
(1) Dynkin diagrams [6];
(i1) Loupias posets of finite representation type [12, 13];
(1)) nonhomogeneous representation-finite valued PP-posets of Fig. 4.

(In Figs. 3 and 4, d, =d;, =1 if s and ¢ are black points and o
means either o—o0 or 0«—o0.)

Proof. (1)=>(2) follows from Theorem 2.1.
(2) = (4). It follows from Corollary 2.6 that d;;d;; < 3 and since the rings

0O
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B corresponding to the crucial posets R,-R, and Ry, R, are I-hereditary, it
follows that if (I ;, d) has a contraction containing these crucial posets then by
{24; Theorem 2.5], A is not right pure semisimple because there is a full and
faithful embedding mod(B) - mod(A). If B is of the type Ry, R, then applying
the triangular reduction [25; Theorem 4.1] we show similarly to [24; p. 171}
that there are a ring epimorphism 4 — S, a schurian artinian right peak Pl-ring
R and a full dense functor G,: mod(A)—mod,(R) such that KerG,
= [mod(S)] and (I, d) contains an extended Dynkin diagram. It follows from
Theorem 2.7 that R is not right pure sp-semisimple and by Theorem 2.3, A4 is
not right pure semisimple; a contradiction.

(4) = (5). If A is homogeneous then in view of Lemma 3.3, 4 ~ DI, and (5)
follows from [12, 13]. If 4 is not homogeneous then we are in the situation of
Lemma 3.4(b) and a simple combinatorial analysis involving the rules
(pp,H(pp,) shows that (I ,, d) or its dual is either a Dynkin diagram or a full
valued subposet of one of the PP-posets of Fig. 4.

(5)=>(1). If either A is homogeneous or (I,, d) is one of the forms
PP, —PP,, (sce Fig. 4) then A4 i1s [-hereditary and by [24; Theorem 2.5], A4 is
representation-finite. There remains the case when (I ,, d) 1s of one of the forms
PP, — PP, Similarly to [24] we can proceed by induction on |I | and apply to
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A the triangular reduction [25]. In each case we get an sp-representation-finite
schurian right peak Pl-ring R, a representation-finite piecewise prime factor
ring S of A and an equivalence of categories mod(A)/[mod(S)] = mod,,(R).
Hence we conclude that A is representation-finite.

(5)=(3). Suppose that (I, d) is of one of the types (i)—(i1) in (5). By
a simple analysis of each of the possible finite type poset forms of (I,, d)
presented in [13] and all possible PP-forms for (I ,, d) in Fig. 4 one can show
that gldimA < 2 and that the Auslander-Reiten valuea translation quiver
("4, T} has a complete directed preprojective component [16] because of the
separation property for radicals of indecomposable projective A-modules.
Since A4 is of finite type, every indecomposable 4A-module is directing [16].
Furthermore, looking at all possible shapes of (I, d) it is easy to check that
there exists a finite-dimensional algebra B such that (I,, d) =(I,, d) and
C(A) = C(B). Hence B has the properties mentioned above for A. Now using
the same type of argument as in [4] or in [16; 2.4] we get (3).

(3)=(4). It is easy to check that if either d;;dj; > 4 for some i, j, or (I ,, d)
or (I ,, d)°® has one of the forms (i)111) in (4) then the form (3.7) is not weakly
positive. This finishes the proof.

By the discussion in the proof of (5) =>(3) and the results in [16; 2.4] we
get

CoroLLARY 3.10. If A is a representation-finite piecewise prime Pl-ring
then:

(a) gl.dimA < 2.

(b) The Auslander-Reiten valued translation quiver I ; of A has a complete
preprojective component which is simply connected in the sense of [5, 15].

(c) If X is an indecomposable A-module then X is directing in the sense of
Ringel [16; 2.4], Ext}(X, X) = 0 and End(X) = D; for some j. Moreover, X is
uniquely determined by its composition factors.

Remark 3.11. Suppose that A, B are basic representation-finite piecewise
prime artinian Pl-rings such that the Cartan matrix C(A) is the transpose
C(B)T of C(B). Denote by A and B the Auslander rings of A and B, respectively.
Since by Corollary 3.10 the Auslander—Reiten valued translation quivers [,
and I'y are simply connected, they can be constructed by the well-known
cokernel procedure starting from hereditary projective modules and radicals of
indecomposable projective modules. An analysis of this construction shows
that the translation quivers obtained from I', and I'; by forgetting the values
over edges are isomorphic. Moreover, we have C(A) = C(B)". It would be
interesting to give a more conceptual explanation of this phenomenon which
has an analogue for sp-representation-finite schurian right peak PlI-rings
studied in [11].

In connection with this problem we have the following result which is
a simple consequence of the criterion in [29] and the formula (3.8).
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Fig. 4. Nonhomogeneous representation-finite valued PP-posets

22 — Banach Center t. 26, cz. |



338 B. KLEMP AND D. SIMSON

LeMMA 3.12. Let C = C(A) be a matrix of the form (3.5) satisfying condition
2° and let C(B) = CT. Then y , is weakly positive (weakly nonnegative) if and only
if 50 is xg.
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