TOPICS IN ALGEBRA BANACH CENTER PUBLICATIONS, VOLUME 26, PART 2 PWN-POLISH SCIENTIFIC PUBLISHERS WARSAW 1990

JONES' TRACE FUNCTION ON THE HECKE ALGEBRA OF SYMMETRIC GROUPS

T. A. SPRINGER

Mathematisch Instituut, Rijksuniversiteit Utrecht Utrecht, The Netherlands

This note is mainly expository. It discusses the trace function of the title (see [J]), as much as possible from the point of view offered by the general theory of Weyl groups and their Hecke algebras.

1.

Let $\Sigma_n = (s_i)_{1 \le i \le n-1}$ be the set of canonical generators of the symmetric group S_n . So s_i is the transposition (i, i+1). Denote by l the length function on S_n defined by Σ_n . We view S_{n-1} as a subgroup of S_n , with generators $\Sigma_{n-1} = (s_i)_{1 \le i \le n-2}$.

There is a distinguished set of representatives D_n for the cosets wS_{n-1} consisting of the elements of minimal length in their coset (see [B, p. 37]). They are the elements $s_i
ldots s_{n-1} (1 \le i \le n-1)$ and the identity. There are only two distinct double cosets $S_{n-1} wS_{n-1}$, viz. S_{n-1} and $S_{n-1} S_{n-1} S_{n-1}$.

Let H_n be the (generic) Hecke algebra of the Coxeter group (S_n, Σ_n) . It is an algebra over the polynomial ring Q[q], with generators $(e_i)_{1 \le i \le n-1}$, subject to the relations

$$\begin{aligned} e_i^2 &= (q-1)e_i + q, \\ e_i e_j &= e_j e_i & \text{if } |i-j| \geqslant 2, \\ e_i e_{i+1} e_i &= e_{i+1} e_i e_{i+1} & \text{if } 1 \leqslant i \leqslant n-2. \end{aligned}$$

(If one specializes q to 1 one gets the relations defining the group algebra $O[S_n]$.)

If $w = s_{i_1} \dots s_{i_l}$ is a shortest expression for $w \in S_n$ (so l(w) = l) we put $e_w = e_{i_1} \dots e_{i_l}$, this is independent of the choice of the reduced expression. Then

This paper is in final form and no version of it will be submitted for publication elsewhere.

426 T. A. SPRINGER

 $(e_w)_{w \in S_n}$ is a basis of H_n over Q[q]. We view H_{n-1} as the subalgebra of H_n generated by $(e_i)_{1 \le i \le n-2}$.

We have $e_{xy} = e_x e_y$ if $x, y \in S_n$, l(xy) = l(x) + l(y).

Let M be the submodule of H_n spanned by the e_w with $w \in S_{n-1} S_{n-1} S_{n-1}$. It is an (H_{n-1}, H_{n-1}) -bimodule. Also, H_{n-1} is an H_{n-2} -bimodule, in the obvious way.

LEMMA 1. There is a map $\varphi: H_{n-1} \otimes_{H_{n-2}} H_{n-1} \to M$ with $\varphi(u \otimes v) = ue_1 v$. It is an isomorphism of (H_{n-1}, H_{n-1}) -bimodules.

This is an application of the following general result, proved in [C, p. 75]. Let (W, S) be a Coxeter group. If J is a subset of S, denote by W_J the subgroup of W generated by J. Each coset wW_J contains a unique element of minimal length, let $D_J = D_J^S$ be the set of these elements. Similarly, if $I, J \subset S$ each double coset $W_I wW_J$ contains a unique element of minimal length, let $D_{I,J}$ be the set of them. In these circumstances one has the following

LEMMA 2. (i) If $d \in D_{I,J}$ then $W_I \cap dW_J d^{-1} = W_{I \cap dJ d^{-1}}$.

(ii) Any element of W can be uniquely written in the form w = d' dx, with $x \in W_J$, $d \in D_{I,J}$, $d' \in D_{I \cap dJd^{-1}}^I$. Moreover l(w) = l(d') + l(d) + l(x).

Lemma 1 follows by applying Lemma 2 in the case that $(W, S) = (S_n, \Sigma_n)$, $I = J = \Sigma_{n-1}$, $d = s_{n-1}$. By part (i) we have $S_{n-1} \cap s_{n-1} S_{n-1} s_{n-1} = S_{n-2}$, moreover S_{n-2} centralizes s_{n-1} . It then follows readily that there is a well-defined map φ as in Lemma 1. That it is an isomorphism follows by applying part (ii). We skip the details of the argument.

2. The trace function

Let z be another indeterminate. The following theorem establishes the existence of Jones' trace function on H_n .

THEOREM 1. There exists a unique Q[q]-linear function τ_n on H_n , with values in Q[q, z], such that for $n \ge 2$

- (a) $\tau_n(1) = 1$,
- (b) $\tau_n|_{H_{n-1}} = \tau_{n-1}$,
- (c) $\tau_n(vu) = \tau_n(uv) \ (u, v \in H_n),$
- (d) $\tau_n(ue_{n-1}v) = z\tau_{n-1}(uv) \ (u, v \in H_{n-1}).$

We prove the theorem by induction on n, starting with n=1 (where $H_1=Q[q]$). Properties (b) and (d) define τ_n uniquely on H_n , assuming τ_{n-1} to be known (here one uses that $|S_{n-1}\setminus S_n/S_{n-1}|=2$, and also Lemma 1). It remains to prove property (c). Clearly, it suffices to prove that $\tau_n(e_iu)=\tau_n(ue_i)$ for $i=1,\ldots,n-1$, $u\in H_n$. For i< n-1 this follows from the induction assumption and for i=n-1, $u\in H_{n-1}$ the same holds. So, finally, we have to

prove that for $u, v \in H_{n-1}$

(1)
$$\tau_n(e_{n-1}ue_{n-1}v) = \tau_n(ue_{n-1}ve_{n-1}).$$

If $u \in H_{n-2}$ we have, since u and e_{n-1} commute,

$$\tau_n(e_{n-1}ue_{n-1}v) = \tau_n(ue_{n-1}^2v) = (q-1)\tau_n(ue_{n-1}v) + q\tau_n(uv),$$

whence

(2)
$$\tau_n(e_{n-1}ue_{n-1}v) = ((q-1)z+q)\tau_n(uv) \quad (u \in H_{n-2}, v \in H_{n-1}).$$

If $u = u' e_{n-2} u'' \in H_{n-2} e_{n-2} H_{n-2}$ then

$$\tau_n(e_{n-1}ue_{n-1}v) = \tau_n(u'e_{n-1}e_{n-2}e_{n-1}u''v) = \tau_n(u'e_{n-2}e_{n-1}e_{n-2}u''v),$$

whence

(3)
$$\tau_n(e_{n-1}ue_{n-1}v) = (q-1)z\tau_{n-1}(uv) + qz\tau_{n-1}(u'u''v),$$

for $u = u' e_{n-2} u''$ with u', $u'' \in H_{n-2}$ and $v \in H_{n-1}$. Similarly,

(4)
$$\tau_n(ue_{n-1}ve_{n-1}) = ((q-1)z+q)\tau_n(uv) \quad (u \in H_{n-1}, v \in H_{n-2}),$$

(5)
$$\tau_n(ue_{n-1}ve_{n-1}) = (q-1)z\tau_{n-1}(uv) + qz\tau_{n-1}(uv'v''),$$

for $u \in H_{n-1}$ and $v = v' e_{n-2} v''$ with $v', v'' \in H_{n-2}$.

We see from (2) and (4) that (1) holds if $u, v \in H_{n-2}$. If $u \in H_{n-2}$, $v = v' e_{n-2} v'' \in H_{n-2} e_{n-2} H_{n-2}$ then (2) gives

$$\tau_{n}(e_{n-1} u e_{n-1} v) = ((q-1)z+q)\tau_{n-1}(uv' e_{n-2} v'')$$

= $(q-1)z\tau_{n-1}(uv) + qz\tau_{n-2}(uv' v''),$

and by (5) we again have (1). Similarly in the case where $u \in H_{n-2} e_{n-2} H_{n-2}$, $v \in H_{n-2}$. The last case is that $u, v \in H_{n-2} e_{n-2} H_{n-2}$. By (3) we then have, with obvious notations,

$$\tau_n(e_{n-1} u e_{n-1} v) = (q-1) z \tau_{n-1}(uv) + q z^2 \tau_{n-2}(u' u'' v' v''),$$

and (5) implies that this also equals $\tau_n(ue_{n-1}ve_{n-1})$. The theorem is proved.

3. Some properties

We shall establish now some properties of τ_n , to be needed for its identification in Section 4. We put

$$c_n = \sum_{v \in S_n} \tau_n(e_v),$$

and we write $\zeta = 1 - z^{-1}(q - 1)$.

LEMMA 3. For all $n \ge 2$ we have

$$c_n = z^n (q-1)^{-n} \prod_{i=1}^n (q^{i-1} - \zeta).$$

This is trivial for n = 2. The general case follows from the inductive formula

(1)
$$c_n = (1 + z(1 + q + \dots + q^{n-2}))c_{n-1} \quad (n \ge 3).$$

To prove (1), we first show that for $x, y \in S_n$

(2)
$$\sum_{\mathbf{v} \in S_n} \tau_n(e_x e_y) = q^{l(x)} c_n.$$

This is proved by induction on l(x), starting with x = 1. Let $l(x) = m \ge 1$ and assume that x = sw where l(w) = m - 1. Then $e_x = e_s e_w$ and

$$\begin{split} \sum_{y \in S_n} \tau_n(e_x \, e_y) &= \sum_{y \in S_n} \tau_n(e_s \, e_w \, e_y) = \sum_{y \in S_n} \tau_n(e_w \, e_y \, e_s) \\ &= \sum_{\substack{y \in S_n \\ l(ys) > l(y)}} \tau_n(e_w \, e_{ys}) + (q-1) \sum_{\substack{y \in S_n \\ l(ys) < l(y)}} \tau_n(e_w \, e_y) + q \sum_{\substack{y \in S_n \\ l(ys) < l(y)}} \tau_n(e_w \, e_{ys}) \\ &= q \sum_{y \in S_n} \tau_n(e_w \, e_y), \end{split}$$

from which (3) follows.

We now have, with the notation of Section 2,

$$\begin{split} c_n &= \sum_{y \in S_{n-1}} \tau_n(e_y) + \sum_{\substack{y \in S_{n-1} \\ d \in D_{n-1}}} \tau_n(e_d e_{n-1} e_y) \\ &= c_{n-1} + z \sum_{\substack{y \in S_{n-1} \\ d \in D_{n-1}}} \tau_{n-1}(e_d e_y) \\ &= c_{n-1} + z \left(\sum_{\substack{d \in D_{n-1} \\ d \in D_{n-1}}} q^{l(d)} \right) c_{n-1}, \end{split}$$

by (2). Since the element $s_i
ldots s_{n-2}$ of D_{n-1} (see Section 2) has length n-1-i formula (1) holds. This proves Lemma 3.

For $1 \le p \le n-1$ define a homomorphism $\varphi: S_p \times S_{n-p} \to S_n$ by

$$\varphi(x, y) = \begin{cases} x.i & \text{if } 1 \leq i \leq p \\ y.(i-p) + p & \text{if } p+1 \leq i \leq n. \end{cases}$$

LEMMA 4. For $x \in S_p$, $y \in S_{n-p}$ we have

$$\tau_n(e_{\varphi(x,y)}) = \tau_p(e_x)\tau_{n-p}(e_y).$$

We use induction on n. If $y \in S_{n-p}$ has the form $y' s_{n-p-1} y''$ with $y', y'' \in S_{n-p-1}$, we see that

$$e_{\varphi(x,y)} = e_{\varphi(x,y')} e_{n-1} e_{\varphi(1,y'')},$$

and $\varphi(x, y'), \varphi(1, y'') \in S_{n-1}$. By property (d) of τ_n ,

$$\tau_n(e_{\varphi(x,y)}) = z\tau_{n-1}(e_{\varphi(x,y')}e_{\varphi(1,y'')}),$$

which by induction may assumed to be equal to

$$z\tau_{p}(e_{x})\tau_{n-p-1}(e_{y'}e_{y''}) = \tau_{p}(e_{x})\tau_{n-p}(e_{y}).$$

This proves the lemma in that case. If $y \in S_{n-p-1}$ the proof is easier and may be omitted.

4. Identification of τ_n

The algebra $H_n \otimes Q(q)$ is semisimple. Its absolutely irreducible representations can be realized over the field Q(q) (see [BC]). Their isomorphism classes can be parametrized by partitions λ of n, in such a way that under the specialization $q \to 1$ (suitably defined) one recovers the irreducible representations of $Q[S_n]$ parametrized by the same partition such that $\lambda = (n)$ corresponds to the trivial representation of S_n (see [M, Ch. I, no. 7]). The corresponding representation of H_n sends e_w to $q^{l(w)}$.

Let N_{λ} be an $H_n \otimes Q(q)$ -module affording the representation parametrized by λ and define a linear function X_{λ} on H_n by

$$X_{\lambda}(e_{w}) = \operatorname{Tr}(e_{w}, N_{\lambda}).$$

Property (c) of τ_n implies, by generalities about semisimple algebras, the existence of elements $\alpha_{\lambda} \in Q(q, z)$ such that

(1)
$$\tau_n = \sum_{|\lambda| = n} \alpha_{\lambda} X_{\lambda}.$$

(For notations regarding partitions see [M].) The multiplicative property of Lemma 4 shows that for $1 \le p \le n-1$, $x \in S_p$, $y \in S_{n-p}$ we have

(2)
$$\sum_{\substack{|\mu|=p\\|\nu|=n-p}} \alpha_{\mu} \alpha_{\nu} X_{\mu}(e_{x}) X_{\nu}(e_{y}) = \sum_{|\lambda|=n} \alpha_{\lambda} X_{\lambda}(e_{\varphi(x,y)}).$$

Denote by χ_{λ} the character of S_n corresponding to λ . Define the Littlewood-Richardson coefficients $c_{\mu\nu}^{\lambda}$ by

$$\chi_{\lambda}(\varphi(x, y)) = \sum_{\substack{|\mu|=p\\|\nu|=n-p}} c_{\mu\nu}^{\lambda} \chi_{\mu}(x) \chi_{\nu}(y),$$

where $x \in S_p$, $y \in S_{n-p}$ (see [M, Ch. I, no. 9]). There is a "generization" of this formula, namely

$$X_{\lambda}(e_{\varphi(x,y)}) = \sum_{\substack{|\mu| = p \\ |\nu| = n - p}} c_{\mu\nu}^{\lambda} X_{\mu}(e_x) X_{\nu}(e_y),$$

which follows from the results of [BC]. Inserting this formula into (2) and

430 T. A. SPRINGER

using that the functions X_{λ} on $H_n \otimes Q(q)$ are linearly independent (which follows from their definition) we see that if $|\mu| = p$, $|\nu| = n - p$, we have

$$\alpha_{\mu} \alpha_{\nu} = \sum_{|\lambda| = n} c_{\mu\nu}^{\lambda} \alpha_{\lambda}.$$

Let S be the ring of symmetric functions (see [M, Ch. I]. The preceding formula shows that the linear map φ which sends the S-function s_{λ} of [loc. cit.] to α_{λ} is a homomorphism $S \to Q(q, z)$. Next we notice the following, where ζ is as in Lemma 3.

LEMMA 5.

$$\alpha_{(n)} = z^n \prod_{i=1}^n \left(\frac{q^{i-1} - \zeta}{q^i - 1} \right).$$

We have the orthogonality relations for the X_{λ}

$$\sum_{w \in S_n} q^{-l(w)} X_{\lambda}(e_w) X_{\lambda'}(e_{w-1}) = 0 \qquad (\lambda \neq \lambda'),$$

see e.g. [L, p. 62]. We apply this for $\lambda' = (n)$. Since $X_{(n)}(e_{w-1}) = q^{l(w)}$, we get

$$\sum_{w \in S_n} X_{\lambda}(e_w) = 0 \quad \text{if } \lambda \neq (n),$$

and (1) shows that

$$c_n = \sum_{w \in S_n} \tau_n(e_w) = \alpha_{(n)} \left(\sum_{w \in S_n} q^{l(w)} \right).$$

Since, as is well-known,

$$\sum_{w \in S_n} q^{l(w)} = (q-1)^{-n} \prod_{i=1}^n (q^i - 1),$$

the asserted formula follows from Lemma 3.

Our homomorphism is completely determined by the $\varphi(s_{(n)}) = \alpha_{(n)}$. The results of [M, Ch. I, no. 3, no. 7] imply that if $|\lambda| = n$,

$$\alpha_{\lambda} = \det (\alpha_{(\lambda_i - i + j)})_{1 \leq i, j \leq n}.$$

There is a multiplicative formula for α_{λ} , which is perhaps more explicit. If $\lambda = (\lambda_1, \lambda_2, \ldots)$ is a partition, let $n(\lambda) = \sum_{i \ge 1} (i-1) \lambda_i$. Viewing λ as a set of lattice points in the plane as in [M, Ch. I] define for $x = (i, j) \in \lambda$ the hook length by $h(x) = \lambda_i + \lambda'_j - i - j + 1$ (where λ' is the dual partition) and the content by c(x) = j - i. From [M, Ch. I, no. 2 ex. 5 and no. 3 ex. 3], together with Lemma 5, we then obtain

THEOREM 2.

$$\alpha_{\lambda} = q^{n(\lambda)} \prod_{x \in \lambda} \left(\frac{z \left(q^{c(x)} - 1 \right) + (q - 1)}{q^{h(x)} - 1} \right).$$

The formula is due to A. Ocneanu (see [J]).

5. Comments

It is natural to ask whether there exists an analogue of Theorem 1 for other classes of Weyl groups. The construction of τ_n uses that $|S_{n-1} \setminus S_n/S_{n-1}| = 2$. This property characterizes the pair (S_n, S_{n-1}) , as the following result shows.

Let (W, S) be a Weyl group. We assume W to be irreducible. If $J \subset S$ we denote, as in no. 1, by W_J the parabolic subgroup generated by J.

PROPOSITION 1. If $J \subset S$ is such that $|W_J \setminus W/W_J| = 2$ then the pair (W, W_J) is isomorphic to (S_n, S_{n-1}) .

It is immediate that if $|W_J \setminus W/W_J| = 2$, the parabolic group W_J is maximal, i.e. there is $s \in S$ such that $J = S - \{s\}$.

Assume that W is the Weyl group of a root system R in a real vector space V. For $\beta \in R$ denote by s_{β} the reflection in V defined by it. There is a basis B of R such that $S = \{s_{\beta} | \beta \in B\}$. So $s = s_{\alpha}$, with $\alpha \in B$. Denote by w_0 the longest element of W and by ι the opposition involution of B, i.e. $\iota \beta = -w_0 \beta$ ($\beta \in B$). The fundamental weights defined by B are denoted by π_{β} .

Since $|W_J \setminus W/W_J| = 2$, w_0 and s lie in the same double coset, so $w_0 = w' s w''$, with w', $w'' \in W_J$. Using that $W_J \pi_\alpha = \pi_\alpha$, $s \pi_\alpha = \pi_\alpha - \alpha$, we see that

$$-\pi_{\iota\alpha} = w_0 \,\pi_\alpha = w' \,sw'' \,\pi_\alpha = w' \,(\pi_\alpha - \alpha) = \pi_\alpha - \tilde{\alpha}$$

with $\tilde{\alpha} \in R$, i.e.

$$\tilde{\alpha} = \pi_{\alpha} + \pi_{i\alpha},$$

and $\tilde{\alpha}$ is a dominant weight. If $i\alpha = \alpha$ then $\tilde{\alpha} = 2\pi_{\alpha}$, which can only be if R is of type C_n for some $n \ge 2$ and $\tilde{\alpha}$ is the longest root in R. But now w_0 is central and clearly $w_0 s \notin W_I w_0 W_I$, whence $|W_I \setminus W/W_I| \ge 3$.

If $i\alpha \neq \alpha$ all roots have the same length and $\tilde{\alpha}$ is the highest root. From (1) we see that the affine Dynkin graph defined by B is a cycle, hence it is of type A. The proposition then readily follows.

The proposition indicates that analogues of Theorem 1 for other Weyl groups could be somewhat more complicated to deal with. One should consider such analogues in the following framework.

Consider families F of triples (W, S, J), where (W, S) is a Weyl group and $J \subset S$, such that the following holds:

- (a) if $(W, S, J) \in F$ and $s \in J$ then, putting $S' = S \{s\}$, $W' = W_{S'}$, there is $J' \subset S'$ such that $(W', S', J') \in F$;
- (b) if $(W, S, J) \in F$ there is a Q[q]-linear map τ_W of the Hecke algebra H_W of (W, S) to Q[q, z] such that

$$\tau_{\mathbf{w}}(uv) = \tau_{\mathbf{w}}(vu) \qquad (u, v \in H_{\mathbf{w}})$$

432 T. A. SPRINGER

and that, with the notations of (a)

$$\tau_{W|_{H_{W'}}} = \tau_{W'}, \quad \tau_{W}(ue_{s}v) = z\tau_{W'}(uv) \quad (u, v \in H_{W'}).$$

(Here e_s is the generator of H_W defined by $s \in S$.)

The problem is to construct such families. Theorem 1 exhibits one, viz. $(S_n, \Sigma_n, \{s_{n-1}\})$ (notations of Section 1). One can deduce that $(S_n, \Sigma_n, \Sigma_n)$ is also one.

The question arises whether the family (W, S, S), where (W, S) is any Weyl group, has the properties of (b).

A more modest question is whether a family F exists whose Weyl groups are the ones of type B_n (= C_n), resp. D_n ($n \ge 3$). Notice that if W is a Weyl group of type B_n (resp. D_n) and W' the parabolic subgroup of type B_{n-1} (resp. D_{n-1}) we have $|W' \setminus W/W'| = 3$.

I do not know the answer to these questions.

References

- [BC] C. T. Benson and C. W. Curtis, On the degrees and rationality of certain characters of finite Chevalley groups, Trans. Amer. Math. Soc. 165 (1972), 251-273.
- [B] N. Bourbaki, Groupes et Algèbres de Lie, Chap. IV, V, VI, Hermann, Paris 1968.
- [C] R. W. Carter, Finite Groups of Lie Type, Wiley, New York 1986.
- [J] V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987), 335-388.
- [L] G. Lusztig, Characters of Reductive Groups over a Finite Field, Ann. of Math. Stud. 107, Princeton 1984.
- [M] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, Oxford 1979.