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This note is mainly expository. It discusses the trace function of the title (see
[J]), as much as possible from the point of view offered by the general theory of
Weyl groups and their Hecke algebras.

1.

Let 2, = (s;)1 <i<n— be the set of canonical generators of the symmetric group
S,. So s, is the transposition (i, i+ 1). Denote by ! the length function on §,
defined by X,. We view §,_, as a subgroup of §,, with generators
21 =hgign-2

There is a distinguished set of representatives D, for the cosets wS, _,
consisting of the elements of minimal length in their coset (see [B, p. 37]). They
are the elements s;...5,_, (I <i < n—1)and the identity. There are only two
distinct double cosets S,_,wS,_,. viz. §,_, and S,_;s,_,S,-,

Let H, be the (generic) Hecke algebra of the Coxeter group (S,, Z,). It is
an algebra over the polynomial ring Q [¢], with generatois (e;); <;<n-1, Subject
to the relations

P =(q—1)e+q,

e;e;=e;e; I |i—jl =2,
e e, =¢€,,€€,., If1<i<n=-2
(If one specializes g to 1 one gets the relations defining the group algebra
Q[S,])
If w=s, ...s;, 1s a shortest expression for weS, (so I(w)=1) we put
e, =e; ...e., this is independent of the choice of the reduced expression. Then
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(¢4)ves, 18 @ basis of H, over Q[g]. We view H
generated by (¢ <i<n 2-

We have ¢, =c. e, if x, yeS,, [(xy) = [(x}+1(y).

Let M be the submodule of H, spanned by the e, with we S, _ s,_;S,-,.
It is an (H,_,, H,_,)-bimodule. Also, H,_, is an H,_,-bimodule, in the
obvious way.

, as the subalgebra of H,

Lemma 1. Thereisamapo: H,_  ®y H, | > M with p(u® v) = ue, v.
It is an isomorphism of (H,_,, H,_,)-bimodules.

This is an application of the following general result, proved in [C, p. 75].
Let (W, S) be a Coxeter group. If J is a subset of S, denote by W, the subgroup
of W generated by J. Each coset wW, contains a unique element of minimal
length, let D, = Dj be the set of these elements. Similarly, if I, J = S each
double coset W, wW, contains a unique element of minimal length, let D, , be
the set of them. In these circumstances one has the following

Lemma 2. (3) If de D, then WyndW,d™ ' = W, 45,1
(it Any element of W can be uniquely written in the form w = d' dx, with
xeW,, deD;,;, d' €D}, 44-1. Moreover l(w) = l(d'}+1(d)+!(x).

Lemma 1 follows by applying Lemma 2 in the case that (W, S) = (S, X,),
I=J=2Z%2, ,d=s,_,. By part (i) we have §,_,ns,_S,_(S,-1=S,_5,
moreover S,_, centralizes s,_,. It then follows readily that there is
a well-defined map ¢ as in Lemma 1. That it is an isomorphism follows by
applying part (ii). We skip the details of the argument.

2. The trace function

Let z be another indeterminate. The following theorem establishes the existence
of Jones’ trace function on H,.

THEOREM 1. There exists a unique Q [q]-linear function 1, on H,, with values
in Q(q, z], such that for n > 2

(@ (=1,

(b) InIH,,_| = rn-l’

(c) 7,(vu) = 1, (uv) (u, ve H)),

(d) t,(ue,_;v) =zt,_, (uv) (u,veH,_,).

We prove the theorem by induction on s, starting with n =1 {where
H, = Q[4]). Properties (b) and (d) define ¢, uniquely on H,, assuming 7, , to
be known (here one uses that |S,_,\S,/S,_;| =2, and also Lemma 1). It
remains to prove property (c). Clearly, it suffices to prove that 7, (e; u) = 1, (ue;)
for i=1,...,n—1, ueH,. For i <n—1 this follows from the induction
assumption and for i =n—1, ue H,_, the same holds. So, finally, we have to
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prove that for u,veH,_,
(1) Tple,—ue, 4 v) = 1,(ue,_, ve,_,).
If ueH,_, we have, since u and e,_, commute,

T,(e,_ ue,_ v) = 1,(uel_,v) = (g—1)1,(ue,_, v)+qt, (uv),
whence
(2) t1,(e,_ ue,_,v)=(g—1)z+q)t, () (ueH,_,, veH, ;).
Ifu=ve, ,u'eH,_,e,_ ,H, , then

rn(en—l ue, 4 U) = rn(u’en—len—zen—lunv) = t,,(u’ €n-2€n—y en—?.u”v)’

whence
(3) T, (e,_ ue,_,v)=(q—1)zt,_, (w)+qzt,_, (W u"v),
for u=u'e, ,u with v, u"eH,_, and veH,_,.
Similarly,
4) 1, (ue, ve,_)=(¢g—1z+q)t,(w) (ueH,_ ,,veH, ,),
() t,(ue,_ ve, ;) =(g—1)zt,_, (uo)+gzr,_, (w0’ 0"),

for ueH,_, and v =v'e,_,v" with v, v'eH, _,.
We see from (2) and (4) that (1) holds if u,veH,_,. If ueH,_,,
v=ve, ,v'eH,_ e, ,H,_, then (2) gives

rn(en— 1 uen— 1 U) = ((q_ 1)Z+q) Tn—l(uul en—Z U”)
= (g= D)zt (uv) +qz7,_, (w' "),

and by (5) we again have (1). Similarly in the case where ue H,_,e,_, H,_,,
veH,_,. The last case is that u, ve H,_, e, , H,_,. By (3) we then have, with
obvious notations,

1, (e,_ ue,_ v}y =(g—1)z2t,_, () +qz*z,_, (W u' v "),

and (5) implies that this also equals 7,(ue, ,ve, ;). The theorem is proved.

3. Some properties

We shall establish now some properties of 7, to be needed for its identification
in Section 4. We put

€= 2, Tle,),

YESH

and we write { =1—z (g—1).
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Lemma 3. For all n =2 we have
G =2"(g-D""T] @ '=0.
i=1

This is trivial for n = 2. The general case follows from the inductive
formula

(1) co=01+z(l+q+...+¢" " Ne,., (=3
To prove (1), we first show that for x, yeS§,
(2) Y. talece) =q"%c,
y€Sn

This 1s proved by induction on /(x), starting with x = 1. Let I(x) =m > 1 and
assume that x = sw where /[(w) = m—1. Then e, = e e, and

Z Tn(ex ey) = Z T (esew ey) Z T, (eweyes)

yeSn YeSn yeSn
= z Tn (ew e_vs) + (q - 1) Z Tn (ew ey) + q Z Tn (ew eys)
YeSH yeS, yeSH
1(ys)>Iy) [lys)y<I(y) l(ys) <i(y)
=q Y t.(e.e,),
yeSn

from which (3) follows.
We now have, with the notation of Section 2,

= Y T,le)+ Y 1 e, re)

yeSn-1 veSp -
deD,, -

=c,;+z Y 1,-,(eqe)
yeSn-1
deD,- 1

=C"_1+Z( Z q"d))cn—li
deD, -

by (2). Since the element s;...s,_, of D,_, (see Section 2) has length n—1—i
formula (1) holds. This proves Lemma 3.

For 1 < p<n—1 define a homomorphism ¢: §,xS,_,—§, by
x. 1) {x.i if 1<

X, = .
ey y(ii—-p)+p f p+

Lemma 4. For xeS,, yeS,_, we have

T (€)= Tp(ex) T~ ().

We use induction on n. If yeS§,

has the form y's,_,_,y" with
v,y'€S,_,-,, we see that

-p

Cotx,y) = €o(x.y1€n— 1 Co(1,y)
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and o(x, )), ¢(1, y")eS,_,. By property (d) of 1,

Tn(€pxyy) = ZTn— 1 (€pex,y) €p(1.yp)s

which by induction may assumed to be equal to

ZTp (ex) Tn—p— 1 (ey' ey") = Tp (ex) T"_p(ey).

This proves the lemma in that case. If ye S, _ ,_, the proof is easier and may be
omitted.

4. Identification of 71,

The algebra H, ® Q(q) is semisimple. Its absolutely irreducible representations
can be realized over the field Q (g) (see [BC]). Their isomorphism classes can be
parametrized by partitions Z of n, in such a way that under the specialization
g — 1 (suitably defined) one recovers the irreducible representations of Q[S,]
parametrized by the same partition such that 4 = (n) corresponds to the trivial
representation of S, (see [M, Ch. I, no. 7]). The corresponding representation of
H, sends e, to ¢'™.

Let N, be an H, ® Q (g)-module affording the representation parametrized
by 4 and define a linear function X; on H, by

X).(ew) = Tr(ew’ Nl)

Property (c) of 7, implies, by generalities about semisimple algebras, the
existence of elements a,eQ(q, z) such that

(1) Tn = Z aﬂ.Xﬂ.'
|Al=n

(For notations regarding partitions see [M].) The multiplicative property of

Lemma 4 shows that for | < p<n-—1, xeS,, yeS,_, we have

(2) Z au av Xu (ex) Xv (ey) = Z ail. Xl (e(p(x,]'))‘

lul=p [A]=n

Denote by y, the character of S, corresponding to A. Define the
Littlewood-Richardson coefficients ¢}, by

Llox, y) = | IZ_ Chy 20 (X) 2, (),
IVI#=;£.0

where xe S, yeS§,_, (see [M, Ch. I, no. 9]). There is a “generization™ of this
formula, namely

Xl (eqo(x.y)) = Z civ Xy (ex) Xv (ey)'l

lul=p
i=n-p

which follows from the results of [BC]. Inserting this formula into (2) and



430 T. A. SPRINGER

using that the functions X, on H, ® Q(q) are linearly independent (which
follows from their definition) we see that if |u| = p, |v| = n—p, we have

Let S be the ring of symmetric functions (see [M, Ch. I]. The preceding formula
shows that the linear map ¢ which sends the S-function s, of [loc. cit.] to o is
a homomorphism § — Q(q, z). Next we notice the following, where ( is as in

Lemma 3.
n i—1
4
o U(q—l)

We have the orthogonality relations for the X,
Y 47X (e) Xy le,-) =0 (A#2),

weSp
see e.g. [L, p. 62]. We apply this for A’ = (n). Since X, (e, - ) = ¢"", we get
Y X,(e,)=0 if 1#(n),

weS,,

LEMMA 5.

and (1) shows that
Cp = Z T, (Cw) = C((n)( Z ql(w))_
weS, weSn

Since, as i1s well-known,

n

Y ¢ =@g-1)"[] @ —1),

weSh i=1
the asserted formula follows from Lemma 3.

Our homomorphism is completely determined by the ¢ (s,) = %,,. The
results of {M, Ch. I, no. 3, no. 7] imply that if |4| =n,

o, = det(x;,—i+ 1 <ij<n-

There is a multiplicative formula for «,, which is perhaps more explicit. If
A ={(A, A5, ...) is a partition, let n(4) =) 5, (i—1)4,. Viewing 4 as a set of
lattice points in the plane as in [M, Ch. I] define for x = (i, j)e 4 the hook
length by h(x) = 4;,+4;—i—j+ 1 (where 4’ is the dual partition) and the content
by ¢(x) =j—i. From {M, Ch. I, no. 2 ex. 5 and no. 3 ex. 3], together with
Lemma 5, we then obtain

THEOREM 2.

- ¢ —D+(g—1)
(1) n ( h(,\) 1 )

xel

The formula is due to A. Ocneanu (see [J]).
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5. Comments

It is natural to ask whether there exists an analogue of Theorem 1 for other
classes of Weyl groups. The construction of t, uses that {§,_\S,/S,_,|=2.
This property characterizes the pair (S,, S,_,), as the following result shows.
Let (W, S) be a Weyl group. We assume W to be irreducible. If J < §
we denote, as in no. 1, by W, the parabolic subgroup generated by J.

ProrosiTioN 1. If J <S8 is such that W \W/W,| =2 then the pair
(W, W)} is isomorphic to (S,, S,_,).

It is immediate that if |W,\ W/W,| =2, the parabolic group W, is
maximal, i.e. there is s€S such that J = S5—{s}.

Assume that W is the Weyl group of a root system R in a real vector
space V. For feR denote by s, the reflection in V defined by it. There is
a basis B of R such that § = {s;|feB}. So s =s,, with aeB. Denote by w,
the longest element of W and by : the opposition involution of B, i.e.
1f = —wyf (BeB). The fundamental weights defined by B are denoted
by n,.

Since |W\W/W,| =2, w, and s lie in the same double coset, so
wo = wsw’, with w, w"eW,. Using that W,n,=mn, sn,=7n,—0a, we see
that

o?

— My =Wol, =Wsw' n, =w((n,—a)=n,—4&
with &eR, 1e.

(1) d=m,+n

a ia’

and d is a dominant weight. If 1@ = « then & = 27, which can only be if
R is of type C, for some n > 2 and 4 is the longest root in R. But now w,
1s central and clearly w,s¢ W, w, W,, whence |W,\ W/W,| = 3.

If 12 # « all roots have the same length and 4 is the highest root. From
(1) we see that the affine Dynkin graph defined by B is a cycle, hence it is
of type A. The proposition then readily follows.

The proposition indicates that analogues of Theorem 1 for other Weyl
groups could be somewhat more complicated to deal with. One should
consider such analogues in the following framework.

Consider families F of triples (W, S, J), where (W, S) is a Weyl group
and J < §, such that the following holds:

(a) if (W, S, J)eF and seJ then, putting ' = S—{s}, W' = W, there is
J = § such that (W', §', J)eF;

(b) if (W, S, J)eF there 1s a Q[g]-linear map 1, of the Hecke algebra
H, of (W,S) to Q[g, z] such that

Twl(uv) =ty (vu) (4, veHy)
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and that, with the notations of (a)
Twluw. = Tw  Twue,v) =zt (uw)  (u, veHy.).

(Here e, is the generator of H defined by seS)

The problem is to construct such families. Theorem 1 exhibits one, viz.
(S,, 2, {5,-¢}) (notations of Section 1). One can deduce that (S,, Z,, X,) is also
one. -

The question arises whether the family (W, S, S), where (W, §) is any Weyl
group, has the properties of (b).

A more modest question is whether a family F exists whose Weyl groups
are the ones of type B, (= C,), resp. D, (n > 3). Notice that if W is a Weyl
group of type B, (resp. D,) and W’ the parabolic subgroup of type B,_, (resp.
D,_,) we have [W\W/W’| =3.

I do not know the answer to these questions.
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