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1. Introduction

In this survey paper we point out some similarities and some differences
between the theory of invariants of commuting and noncommuting variables.
We begin by making some definitions.

Let k be a field and V a finite-dimensional vector space over k. Let further
G be a subgroup of GL (V). Choosing a basis x,, ..., x, for ¥V we can identify
G with a group of nxn-matrices with entries in k.

Then we have the symmetric k-algebra of V,

k[V1=SV=@®SV=k[x,...x]

rz0

the polynomial algebra in n commuting variables.
We also have the tensor algebra of V,

kVS=TV=@TV=k<{xy..., XD,

rz0

the polynomial algebra in n noncommuting variables.

G acts on both k[V] and k (V) in a natural way. We define the k-algebra
of G-invariarits, k[V]° (k {V)Y), as the polynomials in k[V] (k (V) that are
left-invariant by G.

For any graded k-algebra 4 = @, 4 A, where dim, 4, < «o for all r, we
define the Hilbert series H(A,t) in Z[[t]] by

H(A,t)= Y dim, 4,1

r>0
This paper is in final form and no version of it will be submitted for publication elsewhere.
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2. G finite

Usually it is too hard to “compute™ k[V]¢. We will compare three problems
that are solved in both cases:

(a) Find a formula for the Hilbert series.
(b) When is k[V]% (k (V)9 finitely generated (as a k-algebra)?
(c) When is k[V1¢ (k{V)>®) free (i.c. a polynomial algebra)?

THeoreM 1. (a) (Molien’s formula). For k = C

1 1
HC[VIS )= =Y ——.
(b) K[V is finitely generated (for any characteristic) (E. Noether 1916,
[13].
(c) C[V]® is a polynomial algebra if and only if G is generated by
pseudoreflections (ge G is a pseudoreflection if and only if rank(g—1) =1)

(Shephard-Todd 1954, [16]).
1
THEOREM 2. (a) H(C V)Y, 1) —_
1—-tTrg

[81).

(b) CLV>Y is finitely generated if and only if G acts diagonally (and hence
G is cyclic) (Dicks-Formanek 1982, [8], Kharchenko 1984, [10]).

(¢) k{V>% is always free (any G, any characteristic) (Lane 1976, Kharchen-
ko 1978, {9]).

- G (Dicks-Formanek 1982,

geCG

Finally, we would like to mention a case where Problem (a) has been
solved in characteristic p. Let p be a prime > 3. Let G be the cyclic group of
order p, generated by the (n+ 1) x(n+ 1)-matrix

1 10....]
ort1....
000...11
000...01

Then G acts on the (n+ 1)-dimensional k-vector space V (chark = p).
Let further G’ be the cyclic group of order p generated by the
(n+1) x (n+ 1)-matrix (over C)

where 1 = ¢2™? Then G acts on U = C"'*1,
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Turorem 3 (Almkvist [1], p. 18-21). Let n be even. Then

1 1
=161, deti—1g)

1G] y'<g- det (1 —tg)
THrorREM 4 (Dicks-Formanek [8], p. 27). Let n be even. Then

1 5 1
G 51—t Trg"

H(k[V]® t)= H(C[UI®, 1)

H(k V%, 1)=H(CU)", 1) =

Furthermore, k{V>% is not finitely generated.

Remark 5. If n is odd the formulas are more complicated. That the Hilbert
series in characteristic zero and p agree, seems to be a combinatorial accident.
The corresponding rings of invariants are far from being isomorphic.

2. G infinite

When G is finite, it is immediate from the explicit formulas that the Hilbert
series are rational functions. This is also true when G is infinite in the
commutative case (Hilbert-Samuel). But in the noncommutative case this is
not true even for the cyclic infinite group.

ExaMPLE 6. Let G be the cyclic group generated by

20 0
{030}
00 1/6

' (3m)!
G — Im
HICODR 0= L iy
is a transcendental function of ¢ (it is ,F, (1/3, 2/3, 1, 27¢%) and (1/3, 2/3, 1) is
not on the Schwarz-list characterizing the algebraic hypergeometric functions).
However, we have the following result.

acting on ¥V = C3. Then

THeOREM 7 (Almkvist-Dicks—Formanek [6]). Let G be the cyclic group
generated by 1+ N where N is nilpotent. Then H(C{V)Y, 1) is an algebraic
Junction of t.

Molien’s formula can be extended to compact subgroups G of GL (¥, C).
Thus we have '

C du(g)
V16, = |——2L_  (H. Weyl),
HCV% 0= |giisy ™ We)
G
4
H(C(VYS, §) = I_—f_’f’gr)(_) (Almkvist [3],
% g Almkvist-Dicks—Formanek [6])

for |t} < 1/dimV (here p is the Haar measure on G).
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For infinite G, k[V]¢ need not be finitely generated (Nagata’s famous
_counterexample from 1959 [12]). V. L. Popov [15] has shown that finite
generation for all rational actions of G is equivalent to that G is linearly
reductive.

3. Classical invariant theory

“Classical” means that ¢ = SL (2, C). We will keep this notation in this whole
section. One can use Weyl’s integration formula (and his “unitarian trick™) to
reduce to an integral over SU(2, C), see [3] and [6]. Here we prefer to use
a more combinatorial approach. (See [2] and [4] for details.)

A. Partitions

DeriniTion 8. (a) A (m, n, d) = the number of partitions of m into at most
n parts of size <d.
(b) B(m, n, d) = the number of solutions (x,, ..., x,) in N" satisfying

X +...+Xx,=m
with 0 < x; < d.

ExaMpPLE 9. A(3, 3, 2) = 2 since we only have two partitions 2+ 1 and
1+1+1 But B(3, 3, 2) = 7 since x; +x,+x; = 3,0 < x; < 2 has the solutions
(2,1,0), (2,0, 1), (1,2,0), (1,0,2), (0,2, 1), (0, 1, 2) and (1, 1, 1).

n] _(—mq —" (1=

is the G ]
p A—nd—1)..(0-0 i1s the Gaussian

DerFiNniTION 10. (a) [

polynomial.

(b) {Z}=(1+t+...+t")".

d nd
ProrosiTion 11. (a) [n; ]= Y A(m,n, d)y1™
m=0

n nd
(b) {d} = > B(m,n,d™

m=0

DeriNiTION 12, A polynomial ag+a,t+ ... +ayt" in Z[t] is unimodal
(usually called symmetric unimodal) if

(1) a,_; =a; for all i,
() O0<ay<a, <...<ap

d .
ExaMPLE 13. [n: ] (Sylvester) and {:} (trivial) are unimodal.
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ProrosiTiON 14.

Bom,n, d)— ¥ (_l)j(;l)(m—j(d+l)+n—l)

jz0 n—1

k
(here (_)zO if k<j)
]
There is no such simple formula known for A(m, n, d).

- B. SL (2, C)-modules

As before we have G = SL(2, C). We use the following facts (proved
elementarily in Springer’s book [17]).

(a) G is semisimple and there is exactly one irreducible G-module, V,, in
each dimension n=1, 2, ...
(b) The Clebsch-Gordan rule:

Vm®CVn:VmV;=Vm+n—1+Vm+n—3+"'+Vm—n+l lfm?n

A formal finite sum V =Y ;c;V, with ¢;€Z is a G-module if and only if all
c; 2 0. Call V homogeneous if it has only even (or only odd) components (e.g.
2V, + 5V, and 3V, + 5V, are homogeneous).

THEOREM 15 (Almkvist [4]). The map
dotayt+ ... +a, tN T rag N a, Vy,  Ha, —ag) V-,
+a—a) Vy_s+ ... Hayz—ay,- )V
is a bijection preserving the multiplication
{unimodal polynomials} — {homogeneous G-modules}.
In particular, if N is odd there is no V,-component on the right-hand side.
THEOREM 16.

nd
(a) S"m+1H["Zd]= Y A(m, n, d)r"

m=0

nd
(b) T"V,,HH{Z}= Y B(m, n, djt™.
[0)

m=

At this moment the author would like to state his favorite

ConJECTURE 17. []i=: (1 —£/(1—¢*) is unimodal if
(a) n 1s even,

yn=3and r =11,

ic) n=5and r=17,

dyn=4k+1>=9 and r =5,

) n=4k+3>7 and r>7.
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For n =2 the conjecture says that
1+ +e%)...(1+1)

is unimodal and this was proved by Stanley and others. By using a refinement
of an analytic method used by Odlyzko-Richmond [14] for n = 2, the author
has proved the conjecture for 2 < n < 20 and for n = 100 and 101 (see [4] and
[5] for an explanation of the strange numbers).

It should perhaps be pointed out that the conjecture is equivalent to

[T¥'V, is a homogeneous G-module
ji=1
for n and r as above (here y’ V, are the formal Adams operations, which usually

are not modules).

C. Invariants

DeFiniTION 18, If V is a G-module we denote by
Ve ={veV; g-v=v for all g in G}
the submodule of G-invariants.

For the irreducibles V, we have ¥, =0 if n > 1 and VF = V,. It follows
that if V =) c;V; then dimV®=c¢,.

THeOREM 19. (a) (Cayley—Sylvester). The number of linearly independent
invariant homogeneous polynomials of degree n in d+1 commuting variables is

c(d, n) = A(ndf2, n, d— A(nd/2—1, n, d).

(b) (M. Brion 1982). The number of linearly independent invariant homo-
geneous polynomials of degree n in d+1 noncommuting variables is

¢(d, n) = B(nd/2, n, d)—B(nd/2—1, n, d).
Proof. Take the coefficient of V; using Theorems 15 and 16.
-More suitable for computations is the following result ({2] and [6]).
THeOREM 20.

@ =Y (_l)j(n>(nd/2+n—2—j(d+l)> for n=2,

iz0 J n—2

2n

(b) ¢é(d,n) _! J(s_m_(d_+l)_y)" sin? ydy,

T sin y
o
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2n
1 sin? y
G = —
() H(C V. ,t)—nJI tsin(d+1)ydy
0 sin y
_1"‘ n?—1

_Ij; dit+d=2)ni" 2+ ... —dn; ¥

where n,, ..., n, are the roots of 229+ 2272+ ... +1 = 29/t which lie in the unit
circle for small t. In particular, the Hilbert series is an algebraic function of t.

ExamprLE 21. We have a small table

d  H(ECWuL %Y

1 1
F(l—~/1—412)= P42+ 2054 505414084 .

2 -3t , ;
—[ 1= [—— =142+ 43" +615+ ...
2 14t

4 \/E

- =14+ +2+505+ 1687 ..
J=0 145+ f1=50(1—-1)

ExaMpLE 22. It seems very hard to find the invariants explicitly (see
Section E, though). We have

4 (d
Z (_l)l(i)xixd—iETz Vi
i=0

is the only invariant of degree 2. (It is a noncommutative discriminant.) If
d = 2v we have

v L CAWEIAWE’
Z (— I)H-”k(-)(.)(k)xv—i+jxu—j+hxr—h+ie T Vi,
ijk=0 L/ \J

D. Asymptotics
Hilbert has shown that for large even n

d-3 4 3 ] d
c(d, ) = ?—-—J(ﬁi’—y) Y dy+0(n ")
odt o y
0

(see [17], p. 63). Hence c(d, n) grows polynomially with n (the degree being d—3
means that the Krull dimension of C[V,,,]° is d—2).

Using Theorem 20(b) one can show that for even n and with s = d+ 1 one
has

[ o] oD

4 (s 2(n—2) [(siny\"
E(d, n)=sn-3_g"v(¥)y2d'v+sn—5. (r;n )J‘(sz) y4dy+0(5"—7).

0 0
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Thus é(d, n) grows exponentially with n. The leading terms of c¢(d, n) and
¢(d, n) are (except for a factor d!) very similar if we interchange d and n (see [2]
for proofs).

E. The work of T. Tambour

T. Tambour has developed a symbolic method for noncommutative
invariants and covariants for G = SL (2, C) (see [20]). We will only state a few
of this results.

The Hilbert series

H(C W, % 0= Y dim(C (¥, %) 0"

m:=0

is algebraic but not rational for d > 2. Let us sum over the wrong index d (see
also Teranmishi [22]):

Z dim ( C<Vd+1/ ml

dz0

THeEOREM 23. (a) F, (t) is a rational function of t.

] . m tm*2
(c) Fm(t)=zosjz<m/2(—1) l(j>‘pm»21((1_tz)m'Tz )

where

(®,/)(1") = - X Al

VEH

with p, = the group of n-th roots of unity.

The last result resembles a formula by Springer [ 18] for the Hilbert series
of C[V,,,]° Tambour has also found a commutative algebra having F, (t) as
its Hilbert series.

The symmetric group S,, acts by permuting the factors of (C<V, ., >%),.
Let a(d, m) be the number of irreducible components in the S _-module
decomposition of (C(V,, ,>°), =(I,),. Consider the power series (“false”
Hilbert series)

Hi,o=3Y ald, m
m=0

Then

H(I,, 1= _,

H({,, 1=

(l—tz)(l—t3)(1—t4)’

~ - 14+ 2684+ 36104 5012 4 3114 4 2016 4 124

H;, )= S5 —ea 8 o
(1=t =5 (1= (1=t (1 =1t
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THEOREM 24.

@ H(T, 1/n= (=1 G (I, 1.
(b) ﬁ(fda t)=H(C[Vd+1@A2 Vd+1]Ga t)-
where the elements of A%V, have degree 2.

(c) H(C<Vd+1>, t)=H(C[V;t+1®AZ Vizils 1)
1
= (1 — )T (1 =2yl + 2z

(d) If G is a finite subgroup of GL (V) then

- 1 1
H(CVS 1) =— ‘
(CVoh ) |G| 5 det(1 —tg)det(1 -2 A% g)

Tambour [21] has also found the generators of C {x, y>¢ where G is one
of the five polyhedral (finite} subgroups of SL (2, C).
The generators are obtained as all permutations of factors of

(xy—ys¥if,, i=1,2,3, geN,
where f,, f,, f5 are the generators of C[x, y]® (see Springer [17], p. 94).

Research problem

It would be of great interest to give a combinatorial explanation to the
remarkable coincidences of the Hilbert series of two seemingly unrelated
algebras in Theorems 3, 4 and 24(b), (c). See also the remark after Theorem 23.
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