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The present notes are a more or less faithful reproduction of lectures given at
the Workshop on the present trends in Representation Theory of Algebras,
Banach Center, Warsaw, April 1988. The aim of these notes is to give an
introduction to the theory of representation-infinite finite-dimensional algeb-
ras, over an algebraically closed field, of polynomial growth, that is, algebras
with infinitely many nonisomorphic indecomposable modules and for which
there is a natural number m such that the indecomposable finite-dimensional
modules occur, in each dimension d > 2, in a finite number of discrete and at
most d™ one-parameter families. We will present below several results which
exhibit important, for the general theory, classes of representation-infinite
algebras of polynomial growth as well as some methods for the study of their
indecomposable modules. In our opinion, the representation-infinite algebras
of polynomial growth form the most interesting class of tame algebras but the
theory of such algebras is still far from being complete. We pose a number of
open problems which seem to be worth studying. In addition, we report on
some recent investigations which are contained in the papers [ANS], [NS] and
[S3].

The presented strategy for the classification of indecomposable modules
over an arbitrary representation-infinite algebra of polynomial growth consists
of two steps:

(1) a reduction, with the help of Galois converings, to the simply
connected case,

(2) a classification of the indecomposable modules over the corresponding
simply connected algebras using the known invariants and the extension
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process of known (minimal) representation-infinite simply connected algebras
of polynomial growth.

The notes are divided into five sections. In Section ! we recall some
definitions needed in the paper. In Section 2 we introduce a hierarchy of tame
algebras as well as we exhibit some known examples of such algebras. Section
3 is devoted to the Euclidean and Ringel algebras playing a crucial réle in the
study of simply connected algebras of polynomial growth. in Section 4 we
present Galois covering techniques which permit the study of arbitrary
algebras of polynomial growth to be reduced to the simply connected ones.
Finally, using the concepts developed here we describe in Section 5 all standard
representation-infinite selfinjective algebras of polynomial growth.

1. Preliminartes

L.1. Let k be a fixed algebraically closed field. A locally bounded category
[BoG] is a k-category R satisfying the following conditions: (a) distinct objects
are nonisomorphic; (b) the algebras R(x, x) are local; (c) for each xeR,
Y yer(dim, R(x, y)+dim, R(y, x)) < 0. Locally bounded categories can be
constructed-in the following way. Let Q be a locally finite quiver {the number of
arrows starting or ending at any vertex is finite) with a set of vertices Q, and
a set of arrows Q,. The path category kQ of Q has objects the vertices of Q and,
for x, yeQ,, the morphism space kQ(x, y) consists of the formal linear
combinations of paths from x to y. Let I be an ideal in kQ satisfying the
following conditions: (d) for each pair of objects x,y of kQ, I(x, y)
= InkQ(x, y)is contained in the subspace of kQ(x, y) spanned by the paths of
length > 2; (e) for each vertex xeQ,, there is a natural number N, such that
I contains each path of length > N_ which starts or ends at x. Then (Q, I) is
called a bound quiver. The residue category kQ/I, called the bound quiver
category, is a locally bounded category. Conversely, each locally bounded
category R is isomorphic to such a kQ/I, and Q is uniquely determined by
R [BoG]. A locally bounded category R = kQ/I is called triangular whenever
Q has no oriented cycles. If R is a locally bounded category, an R-module is
a k-linear covariant functor from R to the category of k-vector spaces. We
denote by mod R the category of all finite-dimensional R-modules, that is,
R-modules V with dimV =) zdim,V(x) < oo. If R is bounded, that is,
Y «yerdim R(x, y) < 0o, the category mod R is equivalent to the category
mod A of finite-dimensional left modules over the algebra A = @ R formed by
the quadratic matrices a = (a,4), yer Such that a,, € R(x, y). Conversely, to each
finite-dimensional basic (A/rad A ~ kx...xk) and connected (there are no
central idempotents different from O and 1) aigebra 4 we can attach the
bounded category R =R, with A =@ R whose objects are formed by
a complete set E of primitive orthogonal idempotents e of 4, 1 =) . pe,
R(e, f) = fAe and the composition is induced by the multiplication in A. In the
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paper by an algebra is meant an associative, basic, connected, finite-dimensional
k-algebra with identity. We shall also identify an algebra 4 with the bounded
category R,.

1.2. For a locally bounded category R we denote by I'p its Auslan-
der—Reiten quiver, that is, a valued translation quiver whose vertices are the
isomorphism classes of indecomposable finite-dimensional R-moduies, arrows
are the irreducible maps valued by their multiplicities, and whose translation
7 is the Auslander-Reiten translate DTr [HPR]. A translation quiver T is
called a tube [Ri3] i it contains a cyclic path and if its topological realization
|T] = S' x Ry (where S! is the unit circle and Rg the set of nonnegative real
numbers). Further. T is a stahle tube ol rank r if it is of the form Z .4, .(z").
A vertex x of T is called projective-injective provided tx =0 and 1 'x =0.
Finally, T is said to be a quasi-tube if its full translation subquiver formed by all
vertices which are not projective-injective is a tube.

1.3. We recall from [Gr], [MP] the notion of the fundamental group of
a bound quiver. Let (Q,1) be a connected bound quiver. A relation
0= Z}":l/ljwje I(x, y) is said to be minimal if m = 2 and for each nonempty
proper subset J of {1, ..., m}, ) ;.;A;w;¢ I Denote by m(I) the set of minimal
relations of the ideal I, and by I7,(Q, x,) the fundamental group of @ at the
vertex x,. Let N(Q, m(I), x,,) be the normal subgroup of IT,(Q, x,) generated
by all elements of the form [w™'u"'vw] where w is a walk from x, to x and
u, v are paths from x to v such that there is an element ) 7=, /,w,e m(I) with
u=w; v=w, forsome 1<, r<m The fundamental group I1,(Q. 1) of (Q, )
1s defined to be the group

(0, ) =I,(Q, xc)/N(Q, m(I), x,).

Following [AS1] a triangular locally bounded category R is called simply
connected if, for any presentation R ~ kQ/I of R as a bound quiver category,
the fundamental group I7,(Q, I) is trivial (see also Lemma 4.2). It follows from
[BrG], [MP] that, for representation-finite algebras (categories). this definition
coincides with that of [BoG]. An example of a representation-infinite simply
connected algebra (bounded category) is provided by the bound quiver algebra
(category) kQ/I, where Q is the quiver of Fig. 1 and [ is generated by &y and

2 4
~
/ \ q
1 ; 34 5

Fig. 1

Eu—oyp. On the other hand, the algebra (category) given by the bound quiver
(Q', I, where Q' is illustrated in Fig. 2 and I’ is generated by &u—gyu, is not
simply connected. Indeed, it is isomorphic to kQ'/I”, where I” is generated by
Eu, and ,(Q, I") = Z.
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Fig. 2

1.4. Let A be a triangular algebra kQ/I. By P(x) (resp. I(x), S(x)) we
denote the indecomposable projective (resp. injective, simple) A-module as-
sociated with x € Q,. If M e mod A, we set dim M = (dim, Hom ,(P(x), M)).cq,.
The Cartan matrix C , of A is an n x n-matrix (where n = |Q () whose i-j-entry is
dim, Hom (P(). P(j)). Since gldim A < .. C, is Z-invertible [Ri3] and we
can consider the (nonsymmetric) bilinear form (x.y),=xC, "y’ for x, p
from the Grothendieck group K, (A) =Z" of A. For X. Yemod 4. we have

(dimX, dimY), = i(—nidimkl«:xtg(x, Y) (cf. [Ri3]).

i=0

The associated quadratic form 4,(z) = (z, z), is called the Euler characteristic
of A. Let R be a minimal set of relations which generate I and denote by r(x, y)
the cardinality of R~ I(x, y) for each couple x, ye Q,. Then following [Bol]
the quadratic form ¢ ,: Z"—>Z" defined by

a2 = 2 z(xP— Y z(dz()+ Y rlx,y)z(x)z(y),

xeQo (x=y)eQ, x,yeQq

z = (z(X))xeqo, is called the Tits form of A. If gldim 4 < 2, we have g, = 4,
[Bol].

2. A hierarchy of tame algebras

In this section we introduce a hierarchy of tame algebras and show some
known classes of such algebras.

2.1. Following Drozd [D] an algebra A is called wild if there is an
A-k{x, yy-bimodule M, where k{x, y) is the free k-algebra in two noncom-
muting variables x and y, such that M is a finitely generated free right
k{x, y>-module and the functor M &, ,, —: modk{x, y> —-mod A preserves
isomorphism classes and indecomposability. An algebra A is called tame if, for
any dimension d, there exists a finite family of (parametrizing) functors
F;: modk[x] —»mod 4, 1 <i < n,, where k[x] is the polynomial algebra in
one variable, satisfying the following conditions:

() For each i, F; = M;®,—, where M, is an A-k[x]-bimodule and
a finitely generated free right k[x]-module.
(i) Al but a finite number (up to isomorphism) indecomposable
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A-modules of dimension d are of the form F,(S) for some i and some simple
k{x]-module S.

For equivalent definitions of tame algebras we refer to [DS1]. We have the
following remarkable theorem of Drozd [D] (see also [CB]).

THEOREM [D]. Every finite-dimensional algebra A is either tame or wild,
and not both.

Remarks. (1) Let F: mod k[x] — mod A be a functor satisfying the above
condition (1). Then

Xy = {Aek|F(k[x]/(x—2A)) is indec.omposable}

is a constructible subset of k in the Zariski topology, and hence finite or cofinite
in k [DS1].

(2) Let F,, F,: mod k[x] —mod A be two functors satisfying (i). Then the
set

{Aek|F (k[x]/(x—4)) ~ F,(k[x]}/(x—¢&)) for some ek}

is finite or cofinite in k (again as a constructible subset of k).

For an algebra 4 and d > 1, we denote by u,(d) the least number of
parametrizing functors satisfying (i) and (if). An algebra A4 is called of
polynomial growth [S2] if there is a natural number m such that, for any
dimension d = 2, u,(d) < d™ Futher, A is of linear growth if there is a natural
number n such that u,(d) < nd for all d > 1. Moreover, A is called domestic
[Ri2] if there is a finite family of functors F;: modk[x]—->mod A, 1 < i < n,
satisfying (i) and (ii") below:

(i) For each dimension d, all but a finite number of indecomposable
A-modules of dimension d are of the form F,(V) for some i and some
indecomposable k[x]-module V.

A is n-parametric if the minimal number of such functors is n. Observe
that, if A is domestic, then there is a natural number n such that u,(d) < n for
all d > 1. Indeed, if F = M®;;y—: mod k[x] > mod 4 is a functor satisfying
(i) and such that dim,F(k[x]/(x—A)") = mr, for iek, then the functor
F' = M' @, —: mod k[y] »mod A4, where M' = M@ yyk[x, y1/(x—y)", also
satisfies (i) and we have

F'(k[yl/(y—A) =~ F(k[x]/(x—4)") for all Aek.

The second Brauer-Thrall conjecture (for a proof we refer to [F]) can be
written as follows: an algebra A is representation-finite (only finitely many
isoclasses of indecomposable modules) if and only if u,(d) =0 for all 4 > 1.

PrROBLEM 1. Let A be an algebra such that u (d) < n for some n and all
dz=1.Is A domestic?
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PROBLEM 2. Let A be an algebra of polynomial growth. Is A of linear
growth?

A locally bounded category R is called tame (resp. of polynomial growth,
linear growth, domestic) if so is every full finite subcategory of R (see [DS1]).

2.2, Hereditary algebras. Let H be a hereditary algebra, that is,
gldimH < 1. Then H = kA for some connected quiver 4 without oriented
cycles, and we have the following theorem:

THeEOREM [DF], {N]. The following conditions are equivalent:

(i) H is representation-infinite and tame.
(i) H is one-parametric.
(iii) The underlying graph A of A is one of the Euclidean quivers of Fig. 3.

Q, (o]

D, o o lof {r+1 vertices)
(o] 8]
°
|
o
|
Es o ) o ) )
o
|
£, ) ) ) ) o ) )
0
|
Ey o o o o o o o o
Fig, 3

2.3. Tilted algebras of Euclidean type. Let H be a hereditary algebra of
Euclidean type. A module U emod H is called preprojective (resp. preinjective)
if there are only finitely many isoclasses of indecomposable H-modules
V such that Homg(V, U) # 0 (resp. Homy,(U, V) #0). Let T be a multi-
plicity-free tilting module, that is, an H-module satisfying the conditions: (1)
Ext!(T, T) = 0 and (2) T is a direct sum of n (n = the rank of K,(H)) pairwise



ALGEBRAS OF POLYNOMIAL GROWTH 541

nonisomorphic indecomposable modules. Then B = End.(T) is called a tilted
algebra of Euclidean type.

THEOREM [HR]. The following condirions are equivalent:

(i) B is representation-infinite.
() B is one-parametric.
(i) T has no simultaneously preprojective and preinjective direct summand.

2.4. Trivial extension ailgebras. The irivial extension T(A) of an algebra
A by its minimal injective cogenerator bimodule DA = Hom,(A, k) is the
algebra whose additive structure is that of the group A@®DA, and whose
multiplication is defined by

(a, f)(b, g) = (ab. ag +b)

for a, be A and f. ge DA. Then T(A) is selfinjective and, in fact, symmetric.

THEOREM [T]. Let H be a hereditary algebra. The following conditions are
equivalent

(1)) T(H) is representation-infinite and tame.
() T(H) is 2-parametric.
(i) H is of Euclidean type.

For example, if H is given by the quiver of type I, of Fig. 4, then T(H) is
the bound quiver aigebra kQ/I, where Q is the quiver of Fig. 5 and I is
generated by o, 8, o, B, i #j 1 <i, j<4

For a classification of ail representation-infinite trivial exiension algebras
of polynomial growth we refer to [ANS]. [NS], [Ne}.

2.5. Triangular matrix algebras. Denote by T7,(A) the algebra
[A A
{0 A4

of 2 x 2 upper-triangular matrices over an algebra A.
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THEOREM [L]. Let H = kA be a hereditary algebra. The following con-
ditions are equivalent:

(1) T,(H) is representation-infinite and tame.
(1) T,(H) is representation-infinite of polynomial growth.
(iii) A is one of the Dynkin graphs

As: 0—o—0—0—0 or D,: oc—o-—o.
Moreover, for A different from o »o—o0—-0—-0, T,(H) is nondomestic.
For example, if 4 = 0% 0% 0 0%0, H = k4, then T,(H) is the bound
quiver algebra KQ/I, where Q is the quiver
o od o0& 0% 0
gl ol el el v
02> 0> 0& 0= O
a B’ y ' 4
and I is generated by o' & —na, f'n—ef, Y o—0y, 6 0o—Yo.
THEOREM [S1]. Let A" be the truncated polynomial algebra k[x]/(x"). The
following conditions are equivalent:
(i) T,(A") is representation-infinite and tame.
(i) T,(A") is nondomestic of polynomial growth.
(i) n= 4.
T,(A*) is the bound quiver algebra kQ/I given by the quiver
Q: ?OTO‘—;})

and the ideal I generated by o, B* and ya— fy.

The tame triangular matrix algebras T,(A) over arbitrary Nakayama
algebras are classified in [S1] and those over arbitrary selfinjective algebras in
[HM]. For a classification of all tame algebras of the form T,(A) we refer
to [LS].

2.6. Group algebras. Denote by D
following 2-groups:

wmwm=21, 8 m>=3 Q.6 m=>=2 the

the dihedral groups D, =<{g,hlg? =h*" =1, hg =gh™ "),
the semidihedral groups S, = {g, h|g?> = h*" =1, hg = gh*" "'~ 1},
the quaternion groups @, =g, hlg*=h*""", g* =1, hg=gh™ ).

THEOREM [BD). Let G be a finite group, let char k = p > 0 and suppose
p divides the order of G. The group algebra kG is representation-infinite and tame
if and only if p = 2 and any Sylow 2-subgroup of G is one of the groups D,,, S,,
or Q.
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The group algebras kD,, were investigated in [B], [Ril]. Moreover, the
group algebra kG is representation-infinite domestic (resp. of polynomial
growth) if and only if p = 2, 2 divides the order of G and any Sylow 2-subgroup
of G 1s isomorphic to the Klein four-group D, . This follows from the fact that.
if H is one of the groups D, m > 2.8 .m >3 or @,.m>= 2 then the group
algebra kH has a quotient isomorphic to the bound quiver algebra kQ/I where
Q is the quiver

0%
and 1 is generated by o2, 2, paf, ofo, which is by [S2, Lemma 1] tame but not
of polynomial growth. The representation-infinite polynomial growth group

algebras AG of finite groups G over arbitrary finite-dimensional algebras A are
classified in [S2].

2.7. Gelfand—Ponomarev algebras. The algebras k[ x, y]/(xy, x", y"),n = 3,
investigated by Gelland and Ponomarev [ GP] (see also [DS3]) are tame but
not of polynomial growth.

3. Euclidean and Ringel algebras

In this section we describe the module categories mod R for two important
classes of algebras of polynomial growth: Euclidean and Ringel algebras. We
start with some basic definitions.

3.1. Let H be a hereditary algebra of Euclidean type. Of special interest
are the tilted algebras C = End,(T), where T is a preprojective tilting
H-module, called tame concealed algebras [Ri3]. They have the following
characterization:

THEOREM [HV]. The class of tame concealed algebras coincides with the
class of tame algebras A with a preprojective component in the Auslander—Reiten
quiver ', and such that all factor algebras A/AeA, where e is a primitive
orthogonal idempotent of A, are representation-finite.

The tame concealed algebras have been classified by Happel and Vossieck
[HV]. The only tame concealed algebras of type A, are the hereditary algebras.
There are four kinds of tame concealed algebras of type D, (see Fig. 6, where
the unoriented edges may be oriented arbitrarily). Moreover, there are
4302 = 564437+ 3809 tame concealed algebras of types E,, E,, E, given by
the bound quivers with 7. 8.9 vertices respectively, which are very clearly
arranged in 144 families by Happel and Vossieck [HV]. In a parallel work
[Bo2] Bongartz obtained the same list with another characterization.

THEOREM [Bo2]. The class of tame concealed algebras of types D,, E, E,,
E; coincides with the class of minimal representation-infinite tame simply



544 A. SKOWRONSKI

o\ o) TV‘:(O . /o
o o— — Q00 : o- O—==+ 1+ +=—0 o)

/ W \

O/ Q 7;‘0 (o}

AU <? PN

: —0

i /

O, Yr h

AN

¥ o e 0
‘1a=7’r --h?'hr;z ’ dl)»:és,,. 51‘5;2 ﬂd+dd+}’,_._}’-_=o,r/

Fig. 6

connected algebras A, where minimal means that every full convex proper
subcategory of the category R, of A is representation-finite.

Recall now the structure of the Auslander-Reiten quiver of a tame
concealed algebra C. From [Ri3], I', is the disjoint union

HC v Ty 3C,

where #¢ (resp. 2€) is a preprojective (resp. preinjective) component of [,
consisting of the isoclasses of all indecomposable preprojective (resp. preinjec-
tive) C-modules and 7€ is a P,(k)-family of stable tubes TS, AeP,(k)
= ku{oc}. Moreover, the ordering from the left to right indicates that there

are nonzero maps only from any of these components to itself and to the
components to its right.

3.2. We shall now define the tubular extension of a tame concealed
algebra. Let P be a finite connected subquiver of the quiver of Fig. 7 containing
the root h. Let T be the ideal in kP generated by all compositions fa. Then the
quotient category (algebra) kP/I is called a branch in b (in the sense of [Ri3]).

Vol
Vi i
Vi Vi
] !
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Let C be a tame concealed category with a P (k)-tubular family T, 1€ P (k),
and let r, be the rankof TL. Let B = (B, ..., B,) be a finite family of branches
and E=(E,..., E) a finite sequence of pairwise nonisomorphic simple
regular C-modules, that is, modules from the tubes which are not starting
points of irreducible epimorphisms. The tubular extension R = C[E, B] of C by
E and B is the category whose objects are formed by the disjoint union of all
objects of C, By, ..., B, and the morphism spaces are defined as follows:
R(x,)=C(x,y) f x,yeC, R(x,y)=B(x,y) if x,yeB;,, Rix,y)=0 1if
yeB;, xeCUB,;, i #j, and for xe B;, ye C, we put R(x, y) = E{y)®, Bi(x, b).
The composition 1s the unique possible one. The tubular type ng = (n,)cp, im0
of R is defined by

n,=r+t Z By,
EeT$

where |B;| denotes the cardinality of B,;. Since almost all n, are equal to 1, we
shall write, instead of (in;), the finite sequence containing at least two n,,
including all those which are larger than 1, arranged in nondecreasing order.
The tubular extension R =TE, B] is said to be a Euclidean (resp. Ringel)
category if its tubular type ng, is one of the following: (p,q), 1 <p<gq,
(2,2, mj,m=2,(2,3,3),(2,3,4),0r (2, 3,5) (resp. (3, 3, 3),(2, 4, 4), (2, 3, 6),
or (2, 2, 2, 2). The associated algebra @ R is then called a Euclidean (resp.
Ringely algebra. 1t follows from [Ri3, 4.9] that the class of Euclidean algebras
coincides with the ciass of representation-infinite tilted algebras of Euclidean
types having & complete slice in their preinjective component.

3.3. Lct C be the hereditary algebra given by the quiver of Fig. 8. Then the

2

é

3

Fig. 8

tubular P (k}-family & ¢ consists of the tubes depicted in Fig. 9, where the
vertical lines have to be identified in order to obtain a tube. Let
B =(B,, B,, B,) be the family of branches

B,=(h. By=Ih. B,=lch

where ¢ is shown in Fig. 10, and E = (E,, E,, E,) (see Fig. 11) a sequence of
simple regular C-modules lying respectively in the tubes TS, TE, TE.

Then D= @C[E, B] is a Fuclidean algebra of type ny, = (2, 3, 4)
isomorphic to the bound quiver algebra kQ,/I,, where Q, is the quiver
of Fig. 12 and I, is generated by fx. 6, &y, Eu—oyn

B Hanach Center © 26, cz. |
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Similarly, if B = (B,, B,, B,), where
B, = {o—b}, Ez={b}- B; = {c},

where ¢ is shown in Fig. 10, and E=(E,, E,, E;) as above, then
S = @ C[E, B] is a Ringel algebra of type (2, 4, 4). Moreover, § is isomorphic
to the bound quiver algebra kQ4/I, where Qg is the quiver of Fig. 13 and I is
generated by fa, yo, &n, Eu—oyu.

e
PN A 4
TN O

Fig. 13

34. Let A be a Euclidean or Ringel algebra. It follows from [Ri3] that
gldim A <2 and consequently the Tits form g, coincides with the Euler
characteristic 4,. Moreover, by [Ri3], g, is positive-semidefinite. The elements
x€ Ky(A) = Z" satisfying g ,(x) =0, called radical vectors, form a subgroup
rad q, of K,(A), the radical of q,. The rank of rad q, is called the radical rank
of q,. An element x € K,(A) such that ¢q,(x) = 1 is called a root of q,. Finally,
an element xe€ K,(A4) = Z" is positive provided x # 0 and x; = 0 for all i. The
following theorem shows that positive roots and positive radical vectors are
convenient invariants in classifying the indecomposable (finite-dimensional)
A-modules.

THEOREM [Ri3]. Let A be a Euclidean or Ringel algebra. Then the
indecomposable finite-dimensional A-modules are controlled by q,, that is, the
following conditions are satisfied:

() For any indecomposable finite-dimensional A-module X, the dimension
vector dim X of X is either a connected positive root or a connected positive
radical vector of q,.

(B) For any connected positive root x of q, in K,(A), there is precisely one
isomorphism class of indecomposable A-modules X satisfying dim X = x.

(y) For any connected positive radical vector x of q, in K,(A), there is an
infinite, one-parameter, family of isomorphism classes of indecomposable
A-modules X satisfying dim X = x.

3.5. Let A = @ C[E, B] be a Euclidean algebra. Then from [Ri3, 4.9] the
Auslander—Reiten quiver I', of A is the disjoint union

Fy=24vI4v o
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where #4 = 2° is a preprojective component, 24 is a preinjective component
with a complete Euclidean slice, and 74 = (T{");cp, i is @ tubular F,(k)-family
obtained from the tubular family 7€ = (Tf),cp,iy by ray insertions in
the tubes containing the simple regular modules E; from E = (E,,..., E)).
Moreover, g, is positive-semidefinite with radical rank 1 and hence A 1s
one-parametric. Finally, the indecomposable modules X with dim X erad g,
are C-modules.

For the Euclidean algebra D (3.3), the preprojective component #? = €,
of type A,. is shown in Fig. 14, and the preinjective component 2”7, with

< \ffj/’(?/ \ / \ /’
\<1 i/ \ N

P3)= L01

a complete slice of type E,, is illustrated in Fig. 15, where we replace the
indecomposable modules by the dimension vectors. Finally, T,® = TS for
A#0,1, 00, and T2 (see Fig. 16) is obtained from TS by one ray insertion
containing the module P(4). T;? (Fig. 17) is obtained from T by one ray
insertion containing P(5). and T (Fig. 18) is obtained from T{ by three ray
insertions containing the modules P(8), P{6)/P(8) and P(7).

The radical vectors of ¢, are as shown in Fig. 19, with meZ.

3.6. Let now A be a Ringel algebra. Then there is exactly one [ull convex
tame concealed subcategory C = C, of the category R, such that
A= @ C,[E, B] for a sequence E =(E,, ..., E) of pairwise nonisomorphic
simple regular C,-modules and a sequence B = (B,, ..., B,) of branches. Let h,
be the smallest positive (connected) radical vector of ¢.,. Further, there is, by
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i O\E, /o 0\53 'ﬁk
| I 14 ]

Fig. 17. TP

[Ri3; 5.2], a full convex tame concealed subcategory C_ of R, (uniquely
determined by A) such that 4 = @[B, E']C, is a tubular coextension
(the dual procedure to the tubular extension) of C_ for some sequence
E' = (E}, ..., E;) of pairwise nonisomorphic simple regular C_-modules and
a sequence of branches B’ = (B, ..., B,). Let h, be the smallest positive
radical vector of g.. Then from [Ri3, 5.2], I', is the disjoint union

PAVTEv \ TivTevad
veQqg
where P4 = #° is a preprojective component, 24 = 9~ is a preinjective
component, 7 § is a tubular P, (k)-family obtained from .7 ° by a finite number
of ray insertions in the tubes containing the modules E,, ..., E, 74 is
a tubular P,(k)-family obtained from €= by a finite number of coray
insertions in the tubes containing the modules E, ..., E;, and each 74, ye Qg,
where Qg is the set of all positive rationals, is a stable tubular P, (k)-family of
tubular type n,. The form g, is positive-semidefinite of radical rank 2,
Zhy+Zh_, is a subgroup of rad g, of finite index, h,+h_, is a sincere positive
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radical vector and the nonsincere positive radical vectors are positive multiples
of h, and h_. Every connected positive radical vector x of g, is of the form
X = aoh +awhw, where a,, o, are nonnegative rationals, and, if ay, = po/r,,

(PorTo) =1, @ =P/Fu> (Po>Ts) =1, then ry, < the maximal coordinate
of hy and r g the maximal coordinate of k. For each ye Qg u{0, o0},
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the tubes of rank 1 in 7¢ consist of indecomposable modules X with
dim X = aghy+a,h, and y=a /o, (the index of X). Then u,(d) is the
cardinality of the set consisting of all 7€ Qg U {0, oo} such that the tubes of
rank 1 in 4 contain indecomposable modules of dimension 4. Hence
u,(d) < m d, where m, denotes the maximum of the coordinates of h, and h__.
Therefore u (d) < 24, 3d, 4d, 6d whenever n, = (2, 2, 2, 2), (3, 3,3), (2, 4, 4).
(2,3, 6) respectively. Thus we have proved the second part of the letnma below.

LEMMA. A is nondomestic of linear growth.

Proof. In the above notation, for each prime p, there are infinitely many
pairwise nonisomorphic indecomposable 4-modules X with dim X = h,+ph_.
Suppose that A is domestic and let F, ..., F,: mod k[x] — mod A be a family
of functors satisfying the corresponding conditions (1) and (ii"). Let
dim F(k[x]/(x—A) =r; i€k, | <i<n Thus, dimF,(k[x]/{(x—2)") = mr,.
From our assumptton, there are prime numbers p #¢q, 1 €i<n,and a, beN
such that h,+ph_ = ar, and hy+gh, = br,. Since h, and .h_ are not sincere,
this implies that ar; = br; and consequently p = ¢, a contradiction. Therefore,
A is nondomestic.

Let § be the Ringel algebra of type (2.4, 4) considered in 3.3, Then
S=®@®C,JE.B]= @[ B)C,.where €, = C. E. Bar¢asin 3.3, C_ is the
tame concealed category kQ'/I" of type (2, 3. 4) given by the quiver Q' of Fig. 20

e
S
k5 ’1 ﬁ\‘a

Fig. 20

N
~ N

Fig. 21

and the ideal I generated by ys and flx, B’ consists of one branch {b}, and E’
consists of one simple regular C_-module depicted in Fig. 21, lying in the tube
of rank 3 in ¢~ shown in Fig. 22, where we replace any module by its
dimension vector, and the vertical lines have to be identified in order to obtain
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a tube. Hence, in our example, i, and h, are as shown in Fig. 23. Moreover,
PS = PP = PC 3 = 2= F3 is obtained from .7 ” by one ray insertion in the
tube T2, this changed tube is shown in Fig. 24, and .75, is obtained from .7 €=
by one coray insertion in the described tube of rank 3, and this changed tube is
illustrated in Fig. 25

Remark. The Euclidean algebras of type # (p, ¢) and all Ringel algebras
are simply coanected. It is expected that every simply connected algebra of
polynomial growth can be obtained from such algebras by extensions and
glueings.

3.7. There is a well-known conjecture that a simply connected algebra A is
tame if and only if the Tits form g, is weakly nonnegative, that is, g,(x) = O for
all positive vectors xe K,(A4). We now pose the corresponding problems
concerning simply connected algebras of polynomial growth.

Let 4 be a simply connected algebra and ¢ = gq,. Denote by rad * ¢ the set
of all nonnegative vectors x from K (4)®,Q = Q" such that g(x)=0.
A subset V of rad " q is said to be a half space provided ax+byeV for all
x,veV and a, he Q" (the set of all nonnegative rationals). The dimension
dim ¥ of a hall space 1 is the maximal number of linearly independent (over Q)
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vectors of V. Finally, the rank r} of rad* ¢, is the maximum of the dimensions
dim V of all half spaces V of rad™ q,.

PROBLEM 3. Prove that a simply connected algebra A is domestic if and only
if ry <1

The corresponding problem for partially ordered sets is solved in [NZ].

ProBLEM 4. Find a characterization of simply connected algebras of
polynomial growth in terms of the Tits form.

4. Galois coverings of tame algebras

In this section we describe Galois covering techniques playing an important
rdle in the study of algebras of polynomial growth.

4.1. Let R be a locally bounded category and let G be a group of k-linear
automorphisms of R. We assume that the action of G on R is free, that is,
gx # x for each object x of R and g +# 1 in G. Following Gabriel [G] consider
the quotient category R/G. The objects of R/G are the G-orbits of G
in the set of objects of R. A morphism f: a—b of R/G is a family
S =(fJ)e]]R(x, y), where x, y range over a, b respectively and f satisfies the
relation g(,f,) = ,, /.. for all g and all x, y. The composition ef of f: a—b and
e: b—cin R/G is defined by ,ef, = } . .e, , f,; this sum makes sense since R is
locally bounded. The canonical projection F: R — R/G which assigns to each
object x of R its G-orbit Gx and to each morphism £€ R(x, y) the family F¢
such that , F&,. = g or 0 according as h =g or h # g, is called the Galois
covering of A = R/G with group G. We have the following isomorphisms
induced by F:

@ R(x, y)> A(Fx,a), @ R(y, x)> A(a, Fx).

Fy=a Fy=a

ExampLES. (1) Let R, be the bound quiver category kQ'/I’, where Q' is the
quiver

X-2 - | agn ag
e 101 EC2E.
B-2 B- Bo By

and I' is generated by o; _ a;, B;— 1 B;, %i— 1 B;— Bi—1%;, i€ Z. Let G be the infinite
cyclic group of k-linear automorphisms of R, generated by the shift g:
g) =i+1, glo) = a;+, 9(B;) = Pi+1. Then A, = R,/G is the bound quiver
category kQ/I, where Q is the quiver

GoP
4 [}

and [ is generated by o?, f* and aff— fa. Observe that @ A, is isomorphic to
k[x, yIHx?, v2).
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(2) Let R, = kQ/I, where @ is the quiver

B e Rl Rl [ I
l)' 2 l?—n l/n ln l)'z
. Zﬁ—l*ﬁoﬁﬁlﬁ;-?ﬁ—...

and T is generated by o0, %4 2%+ 3, BiBiv1Biv2Biva Vi0— Bivier, i€Z. Let
G be the infinite cyclic group generated by the shift g: g(i) = i+ 1, ¢(i) =i+ 1,
go) = a1, g(B) = Biv1, g(7) = vi+1. The quotient category A, = R,/G is the
bound quiver category kQ/I given by the quiver @

GO—'OZ})
¥ [}

b 4

and the ideal I = (354, B*, ya—f7>. and @ A, ~ T, (k[x]/(x*) (cf. 2.5).
(3) Let R, = kO'T. where O is the quiver of Fig. 26 and I is generated by

/\/ /\/ /W N,

Fig. 26

a7, i€Z, and let G be the infinite cyclic group generated by the shilt g:
g(@) = oiv1, g(B) = Bists 90 = viv1, 9m) =mi-y and g(&) = &;4,. Then
A5 = R,/G is the bound quiver category kQ/I, where Q is the quiver of Fig. 27
and [ s generated by yfi

b o
PN

27

1

r‘r:,

(4) Let R, = kQ/T, where Q is the quiver of Fig. 28 and [ is generated by
all paths a2, B2, aBa, paf. Let G be the free (nonabelian) group of k-linear
automorphisms of R, generated by the z-shift and #-shift. Then A, = R,/G is
the bound quiver category kQ/I. where Q is the quiver

GO
z 8

and I is generated by a?, B2, afla, faff (cf. 2.6).
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4.2. Let A =kQ/I be a locally bounded category and assume that the
fundamental group (1.3) [7(Q, [) = T (Q. x, )/ N(Q, m{]), x,) of (@, 1) is
nontriviai. We now construct a Galois covering

F: R=k(Q/T- A =kQ/I

with group G = I1,{@, I) called the universal Galois covering of kQ/I (see [Gr],
[MP]).

Let W be the topological universal cover of  with base point at x,, that
1s, the vertices of W are the homotopy classes of walks starting at x, and
for two such vertices y,, y, we set vy, —»y, in W if and only if there exist
representatives w;, w, of the classes y,, y, respectively and an arrow « in
Q with w, = aw,. There is a natural (left) action of IT,(Q, x,) on W. Then the
normal subgroup N(Q. m(I), x,) acts on W and we denote by 0 the orbit
quiver W/N{Q, m(J), x,). Moreover, the induced action of I7,(Q, I) on 0 glves
a map p: Q — (. Thus we have a functor p: k0 — kQ. Finally, we denote by I the
ideal in kO generated by all liftings, through p. of generators of I. Consequent-
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ly, we obtain the required Galois covering
F: R=k(Q/T— A =kQ/I

with group I7,(Q, I).

In examples (2), (3), 4) of 4.1, R=kQ/f=R, for A=kQ/I = A,
i =2, 3, 4. On the other hand, for A = A, = kQ/I in (1), R = kQ/I is different
from R, . Indeed. @ is the quiver of Fig. 29 and [ is generated by all paths a2, f2

Fig. 29

and aff—Ba. Here A, = R/H, where H = I1,(Q, I) is the free abelian group
generated by the horizontal a-shift ¢ and the vertical f-shift h. Moreover,
R, = R/(gh™ ') is not simply connected but R is simply connected. Observe also
that the categories R,, R, and R, are simply connected.

LEMMA, Let A be a triangular locally bounded category. Then A is simply
connected if and only if A does not admit a proper Galois covering.

Proof. Suppose that A is not simply connected. Then there is a presen-
tation A ~ kQ/I of A with IT,(Q, I) nontrivial. Hence the above-constructed
Galois covering R = kQ/I — kQ/I = A with group IT,(Q,I) is proper. Conver-
sely, let F: R —» A be a Galois covering with nontrivial group G. Then, by [Gr],
A is a G-graded category. Take a presentation f: kQ/I > A of A such that f (x)
is G-homogeneous for any arrow « in Q. Then there is a presentation kQ/T ~ R
of R such that F is induced by a morphism (3, ) =(Q, I) of bound quivers
[Gr]. Further, by [MP], the Galois covering kJ/I - kQ/I factors through
F and hence I1,(Q, I) is nontrivial. Therefore A is not simply connected and we
are done.

We now propose the following definition (see [S3]). A locally bounded
category A is said to be standard provided A admits a Galois covering R — A
with R simply connected. If A is (locally) representation-finite, this notion
coincides with that introduced in {BoG].
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PROBLEM 5. Let R be a simply connected tame locally bounded category
and let R— R/G = A be a Galois covering with A bounded. Is G torsion-free?

Recall that, in case R is locally representation-finite and simply connected,
G is a free group [BoG], [BrG], [MP].

4.3. Let R be a locally bounded category. An R-module M is called locally
finite-dimensional if dim, M (x) is finite for all objects x of R. We denote by
MOD R the category of all R-modules, by Mod R (resp. mod R) the category of
all locally finite-dimensional (resp. finite-dimensional) R-modules, by Ind R
(resp. ind R) the full subcategory of ModR (resp. mod R) formed by all
indecomposable objects, and by Ind R/ ~ (resp. ind R/ ~) the set of isoclasses of
objects in Ind R (resp. ind R).

Let G be a group of k-linear automorphisms of R. The group G acts on
MODR by the translations 9 —) which assign to each M e MODR the
R-module °M = Mog~!. For each M e MOD R we denote by G,, the stabilizer
{geG|*M ~ M}. Throughout this section we assume that G acts freely on
ind R/~. Observe that this is true in case G is torsion-free.

Let F: R—R/G be a Galois covering and F;: MOD R—-MOD R/G the
push-down functor [BoG] which assigns to each Me MOD R the module
F,MeMOD R/G defined as follows: For each object ae R/G, we set

(F,M)(a) = @D M(x),
where x ranges over all objects x of R such that F(x)=a; if a®b is
a morphism of R/G, the map (F,M)(«): (F,M}a)—(F,M)(b) assigns to
(1) € Do M(x) the family (3. M(,a)pu,))€ D ,cr M(y), where .z, is deter-
mined by Y, F(,o) = e

THEOREM [G]. The functor F, induces an injection from the set
(ind R/~)/G of G-orbits in ind R/~ into (ind R/G)/~.

44. Let ind, R/G be the fuil subcategory of ind R/G consisting of all
objects isomorphic to F,M for some MeindR, called indecomposable
R/G-modules of the first kind [DS3], and ind,R/G the full subcategory of
ind R/G formed by the remaining indecomposables, called indecomposable
R/G-modules of the second kind. The category R is called G-exhaustive if
ind R = ind, R. Denote by F.: MOD R/G -» MODR the pull-up functor which
assigns to each N e MOD R/G the module F.N = NoF e MOD R. The support
suppM of M e MOD R is the full subcategory of R formed by all objects xe€ R
such that M(x) # 0. A module YeIndR is called weakly G-periodic {DS3] if
supp Y is infinite and supp Y/G, is finite. We have the following charac-
terization of indecomposable R/G-modules of the first and second kind.

ProrosiTiON [DS3]. For X eind R/G the following conditions hold:
(1) Xeind, R/G if and only if F. X ~ @ Z;, where all Z,eindR.
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(2) Xeind,R/G if and only if F.X ~ @, Y,, where all Y, are weakly
G-periodic.

As.a consequence we have. the following corollaries.

CoROLLARY 1 [DS3]. If G acts freely on Ind R/ ~, then R is G-exhaustive.

COROLLARY 2 [DS3]. If R admits a weakly G-periodic module, then R is
not G-exhaustive.

Now we formulate a handy sufficient condition for R to be G-exhaustive.
For each object x of R, denote by R{x) the full subcategory of R consisting of
the objects of all supp M, where Meind R is such that M(x) 0. Then,
following [DS2], R is called locally support-finite if R(x) is finite for all xe R.
Observe that, if R is locally representation-finite (for each x € R, there are only
finitely many isoclasses of Meind R with M(x) #0), then R is locally
support-finite.

THEOREM [DS3]. Let R be a locally support-finite category. Then
IndR = ind R. In particular, R is G-exhaustive for any group G of k-linear
automorphisms of R acting freely on ind R/~. Moreover, in this case:

(1) R/G is tame (resp. domestic, of polynomial growth) if and only if so is R.
2y F,'G~Tgy.

The category R, (4.1) is locally support-finite and, for each neZ, the
category R,(n) is the full subcategory of R, consisting of the objects n—1, n,
n+1. Hence the algebra A, is one-parametric. Similarly, the support of any
indecomposable finite-dimensional R,-module is contained in one of the
categories B,,, me Z, where B,, denotes the full subcategory of R, formed by the
objects m+i and m+1i, —3 < i < 3 (for details we refer to [S1]). Herce R, is
locally support-finite. Moreover, R, is nondomestic of linear growth, and
consequently so is 4,.

PROBLEM 6. Let R be a locally bounded category and let G be a group of
k-linear automorphisms of R acting freely on ind R/~. Assume that R is
G-exhausgivé. Is R locally support-finite?

4.5. A line in a locally bounded category R is a full convex subcategory
L of R which is-isomorphic to the path category of a linear quiver (of type A4,,
A, or _A.). A line L is G-periodic if its stabilizer G, = {ge G|gL = L} is
nontrivial. Let L be a G-periodic line in-R. We associate with L a canonical
indecomposable (weakly G-periodic) R-module B; by setting B;(x) =k for
xeL, B;(x) = 0for x¢ L and B, (a) = id, for each arrow « in L. Then G, ~ G,
is an infinite cyclic group and the group algebra kG; - is isomorphic to the
algebra k[T, T~'] of Laurent polynomials. Moreover, F;B, is an
R/G-k[T, T~ *]-bimodule such that, for each xeR, F,B,(Gx) is a free
k[T, T~'}-module of rank ) ;. dim,B,(y), where W, is a set of represen-
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tatives' of the Gy -orbits in Gx. We denote by & the functor
F,B, ®ur.r-y(—): mod k[T, T~']—mod R/G.

Let £ be the set of all subcategories supp ¥, where Y ranges over all
weakly G-periodic R-modules, and et &, be a fixed set of rcpresentanves of the
G-orbits in Z.

THEOREM [DS3]. Let R be a locally bounded category and G.d‘gzéﬁp“ af
k-linear automophisms of R acting freely on ind R/~. Assume that ¥ consists
only. of lines in R. Then:

(i) Every indecomposable module from ind,R/G is of the form: 45"(V) for
some Le %, and some indecomposable finite-dimensional k[T, T~ ']-module V.

() I'yg=Tg/GVv \ Tyrr-n;

LeZo

where I'yr.r-1) is the translation quiver of the category of indecomposable
finite-dimensional k[T, T~ ']-modules, consisting of a k*-family (k* = k\{0}) of
stable tubes of rank one.

(iii) R/G is tame if and only if so is R.

In 4.1, every full convex finite subcategory of R, is representation-finite
and Z consists only of one line. Hence, A, is one-parametric. The category R,
(4.1) is special biserial [DS3; 5.2] and hence the supports of indecomposable
locally finite-dimensional R,-modules are lines. Therefore, by the above
theorem, A, is tame but, as shown in [S2], it is not of polynomial growth.

We expect that Theorems 4.4 and 4.5 form sufficient covering techniques
for the study of indecomposable finite-dimensional modules over algebras of

polynomial growth. In fact, we believe that the following conjecture is true.. ' ..

PROBLEM 7. Let R be a simply connected locally bounded category of
polynomial growth and let G be a groupp of k-linear automorphisms of R acting
freely on ind R/~. Prove that all weakly G-periodic R-modules are linear. - -

S. Selfinjective algebras

In this section, with the help of Galois coverings, we describe the selfinjective
standard representation-infinite algebras of polynomial growth. The coverings
used here are constructed from the Euclidean and Ringel categories.

5.1. Let R be a locally bounded category. The repetitive category of R is
the locally bounded selfinjective category R whose objects are pairs (n, x) = x,,
xeR and neZ, and R(x,, y,) = {n} xR(x, y), R(X4+1, ¥) = {n}xDR(y, x)
and R(x y) =0 if p#4q,q+1, where DV denotes the dual vector space
Hom, (V, k) We shall identify R with the full subcategory of R consisting of all
objects x,, xeR. For a sink x of R, we denote by a; R the full subcategory of

36 — Banach Center L 26, cz. |
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R consisting of the objects x, and y,, for all y # x. Further, we denote by vg:
R — R the Nakayama automorphism of R which assigns to each object x, of
R the object x,.;. A group G of k-linear automorphisms of R is said to be
admissible if it acts freely on the objects of R and R/G is bounded. Observe that,
if R is bounded, then the infinite cyclic groups (vg), meZ, are admissible.

The repetitive categories are important objects in the study of derived
categories. Recall that, by a result of Happel [H], if the global dimension of
R is finite, then the stable module category mod R of modR (modulo
projective-injectives) is equivalent as a triangulated category to the derived
category D®(R) of bounded complexes over mod R. For a characterization of
derived categories D°(R) of polynomial growth we refer to [AS2] and [AS3].

ExampLES. (1) Let D be ‘the‘EuclideanAcatcgory defined in 3.3. Then D is
the bound quiver category kQ,/I,,, where Q, is the quiver of Fig. 30 and I, is
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generated by ﬁnan’ )Jnan’ énnn’ én#n_gn))n#n’ r’n(sﬂ’ 5nﬂn+ 1 __an.tllnen-f-l'}’n'ﬁ'lnu-l- 1»

An£n+l—ingn+l?n+1’ d’nén+lo (ann+l’ an(pn+#nln+nnanlﬁl’n’ nEZ'
(2) Let S be the Ringel category defined in 3.3. Then § is the

bound quiver category kQg/fg, where Qg is the quiver of Fig. 31 and

9n+| :
@ny 5n+1
bpn En4n

wn sh

&n

I~
>

x
>
2, ¢
Pn1 NG I
'n—1 An-l
@Wn - Tn—l
bp_q .
Fig. 31

-

IS is generated by :Bnan’ YnOn> énnn’ gn:un_Qn‘ynﬂn’ ﬂnan’ l»bnén+l’ ?PpOn+1s
6nﬁn+1_an"’ngn+1yn+1’7n+l, An£n+l—in9n+1yn+l’ anwntpn+#nln+nnanwm
(U,.,(P,,é,,+10',,+160,,+1, neZ.

5.2. Let B be a Euclidean category, say of Euclidean type 4, and let g, be
the rank of K(B). It is shown in [ANS] that the support of any indecom-
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posable nonprojective B-module is contained in one of the following full
subcategories of B:

Vi(ort ..o B), meZ, 1 <it<yg,,

where x,, ..., x, 1s a suitably ordered sequence of all objects of B. The
categories g, ...a; B are, by [TW], [H], iterated tilted algebras of Euclidean
type 4, and hence domestic. Therefore, B is locally support-finite, domestic and
the Auslander-Reiten quiver 'y of B is as shown in Fig. 32 (we refer to [ANS]

11 li[Ol Z10] ARD 1] F21| #Zl2]

Fig. 32

for details), where .7 [m], me Z, are P,(k)-families of quasi-tubes with tubular
type equal to the tubular type ny of B, Z[m], meZ, are flat components
with the stable parts of the form ZA, and v,7 [m] = F [m+2], vg.4'[in]
= ¥ [m+2], for all meZ. Moreover, there are nonzero maps (in mod é) only
from any of these components to itself and to the components to its right.

Let D be the Euclidean category defined in 3.3. Then the stable parts of
2’ [m] are of the form ZE,, the P, (k)-families 7 [m] are of type (2, 3, 4), and
the projective-injective B-modules are placed as follows: P(1,) is contained in
Z[2m], P(3,) in Z[2m+1], P(2,) and P(8,)} are respectively in tubes of rank
3and 4 of S [2m+1], P(5,) in a tube of rank 2 of .7 [2m+2], P(4,) in a tube
of rank 3 of 7 [2m+2], and P(6,), P(7,) in a quasi-tube of F [2m+ 2] of the
form shown in Fig. 33, where the vertical lines have to be identified in order to
obtain a quasi-tube.

P 7

Fig. 33
Applying Theorem 4.4 we obtain the following theorem:

THEOREM. Let B be a Euclidean category and let G be an admissible infinite
cyclic group of k-linear automorphisms of B. Then A = @ B/G is a standard
representation-infinite domestic selfinjective algebra and I'  ~ /G is obtained
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from Iy by identifying, via the push-down functor F, associated with the Galois
covering F: B— B/G, 7 [m] with & [m+r] and X [m] with X [m+r] for some
r=1 and all melZ.

5.3. Let R be a Ringel category. It is shown in [NS] that the support of
any indecomposable nonprojective R-module is contained in one of the full
subcategories of R

VR(o: ...04 R), meZ, 1 <t <gp,

where ¢, denotes the rank of K (R) and x,, ..., x,, is a suitably ordered
sequence of all objects of R. The categories o ...05 R, | <t < gy, are
tilting-cotilting [AS2] equivalent to R, and hence are of polynomial (even
linear) growth. Therefore, R is locally support-finite, nondomestic of polyno-
mial growth, and the Auslander—Reiten quiver I is as shown in Fig. 34, where,

7o) e cos |l TN | eee cor| TI2] | oo

A1) #10] A1) #(2)
Fig. 34

for each meZ, 7 [m] is a nonstable P,(k)-family of quasi-tubes of tubular
type equal to ng, 4 [m]=\/ g™ Q.. =Qn(m, m+1), and for

eQma < 1
each yeQn+(, 77 is a stable tubular P,(k)-family of type ng. Further,
vpZ [m] = 7 [m+s] and vg. 4 [m] = 4 [m+s] for some s, 3 < s < gg. More-
over, there are nonzero maps (in mod R) only from any of these components
to itself and to the components to its right.

Let S be the Ringel category of type (2, 4, 4) defined in 3.3. Then the
indecomposable projective-injective S-modules are placed as follows: P(1,) in
one of the tubes of rank 4 in 7 [m], P(2,) and P(8,) in two different tubes of
rank 4 in .7 [m+ 1], P(3,,) in one of the tubes of rank 4 in 7 [m+2], P(5,) in
the tube of rank 2 in  [m+3], P(4,) and P(9,,) in the same tube of rank 4 in
Z [m+3], and P(6,), P(7,) in the quasi-tube of rank 4 in .7 [m+ 3] described
above. In particular, v¢.7 [m] = 9 [m+4], meZ.

Applying Theorem 4.4 we obtain the following result:

THEOREM. Let R be a Ringel category and let G be an admissible infinite
cyclic group of k-linear automorphisms of R. Then A = @ R/G is a standard
nondomestic selfinjective algebra of polynomial growth and I, ~Ta/G is
obtained from I i by identifying, via the push-down functor F, associated with the
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Galois covering F: R— R/G, 9 [m] with 7 [m+r] and I™ with T™*" for some
r=3 and all meZ, yeQp.,,.

5.4. It has recently been shown by the author [S3] that the following
converse to Theorems 5.2 and 5.3 holds.

THEOREM [S3]. Let A be a standard representation-infinite domestic (resp.
nondomestic of polynomial growth) selfinjective algebra. Then A is isomorphic to
@ B/G for some Euclidean (resp. Ringel) category B and an admissible infinite
cyclic group G of k-linear automorphisms of B.

For more details concerning the selfinjective algebras of polynomial
growth we refer to [ANS], [NS], [S3].

The presented classification of standard representation-infinite selfinjective
algebras of polynomial growth raises the following problems.

PrROBLEM 8. Prove that a finite-dimensional algebra A is domestic if and
only if all but a finite number of connected components of I' , are stable tubes of
rank 1.

The Auslander—Reiten quiver of all known classes of algebras of polyno-
mial growth has the following property: all but a finite number of its connected
components are stable tubes. On the other hand, the group algebras kQ,, of
quaternion groups {,, (2.6) in characteristic 2 are not of polynomial growth
and their Auslander—Reiten quiver consists only of tubes of rank 1 or 2, and so
it also has the above property. We pose the following problem.

PROBLEM 9. Characterize finite-dimensional algebras of polynomial growth
in terms of the Auslander-Reiten quiver.
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