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0. Introduction

Recently we have proved the following theorem of uniform Artin-Rees type:

THEOREM 1 [6]. Let S be a J—2 ring. Let N be a finitely generated
S-module, with M a submodule of N. Then there exists a positive integer k, such
that, for all integers k > k, and for all maximal ideals m of S,

MAmFN = mt k(M nm* N).

Remark. In fact, the proof of Theorem 1 shows we need only suppose that
Reg Spec(S/P) be open, for all PeSpecS, rather than that § be a J—2 ring.
Furthermore the proof actually establishes that, for all integers k > k, and for
all prime ideals P of S,

(1) (M A PN), = (P*"% (M ~ Pt N)),.

All rings in this paper are commutative, Noetherian and have an identity
element.

This theorem provides a positive answer to a generalized version of
a question of Eisenbud and Hochster [8], which arose in connection with their
proof of a generalization of Zariski’s Main Lemma on holomorphic functions.
For a uniform Artin—Rees theorem of a different type, in the context of analysis,
see [3, 9] (and the 1984 preprint mentioned in the latter). In fact, there is an
overlap in some of the basic ideas in all these papers, and it may be worthwhile
pursuing this connection. For example, we immediately deduce from Theorem
1 the following “uniform Chevalley estimate” {(cf. [3]):

(*) Supported by an SERC postgraduate studentship.
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COROLLARY. Following the notation and hypotheses of the theorem above, for
m.2rv nonegative integer r there exists a nonnegative integer s such that, for all
raximal ideals m of S,

Mrm*Ncm M.

The proof of Theorem 1 depends on the concept of what we shall here call
Zariski-regularity (to be defined below); this is a development and generaliza-
tion of Zariski’'s “key” to his proof of the Main Lemma on holomorphic
functions [18, p. 193]. For comments on the history and background of these
ideas and of the Main Lemma, see [15, 6] and references cited there.

The purpose of the present paper is to bring out certain general features of
the notion of Zariski-regularity, and to give further properties of it (involving,
in particular, the vanishing of a suitable Tor). Our hope is that this will suggest
possible adaptations of the theory. (The implicit question raised in connection
with [1, Corollary (6.3)] should be noted, though it may be that the basic
considerations involved are of a different nature.) We also take the opportunity
1 discuss some extensions of our work, related matters and open questions.

1. Zariski-regularity and the vanishing of Tor

First we establish some notation. Let R be a (Noetherian) ring, and let N be
a finitely generated R-module with M a submodule of N. Consider
P,QeSpecRwithP=20Q.Set A = R/Q, P=P/QeSpecA,B=@,,07/Q0"**
and

L= @ Q' (N/M)/Q"" ! (N/M)

rz0

~ @ QO N(MAQN)+Q™*'N) (as B-modules)

rz20

= @ L%, in an obvious notation.

rz0

Note that L (and so &,,,L") is a finitely generated B-module, with
B a finitely generated algebra over the domain A.

DEeriNITION. The prime ideal P is said to be Zariski-regular (with respect to
(M, N; Q) if
(i) for all r =0, LY is a free Ap-module, and (i) PeRegSpec 4.

Remarks. (a) As will be apparent from the proof of Theorem 2 below, (i) is
equivalent to the following:

(iy Lp is a flat Ap-module.

Thus P is Zariski-regular (with respect to (M, N; Q)) if and only if N/M is
normally flat along Q at P and P corresponds to a smooth point on the variety
defined by Q.
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(b) We find it convenient to add quite mild hypotheses to ensure that the
above concept is flexible and tractable. These extra hypotheses, which will
stand from now on, are as follows:

(i11) RegSpec A is open;
{iv) Np is a free Rp-module and
(v) (Q/Q"* 1), is a free Ap-module, for all r > 0.

Condition (iit) can be ensured by assuming, for example, that R be a J—2
(or, more strongly, an excellent) ring (cf. § 0); note also that 4 is a domain. As
for condition (iv), we remark that in the proof of Theorem 1 we reduce to the
case where N itself is a free module, while in Zariski’s original paper [18] we
are in the case N = R right from the beginning. Finally, as for condition (v),
this is ensured in [18] since there R 1s regular, being a polynomial ring (see (i1)
together with [ 13, Theorem 36 (4) and Theorem 27 (ii)]). More generally, in [6],
(v) is ensured by the use of generic flatness. In fact, the proof of Theorem
2 below shows that

{PeSpecA|(Q/Q"*")p is a free Ap-module, for all r > 0}

is a (nonempty) open subset of Spec 4, and that (v) is equivalent to R being
normally flat along Q at P.

Thus, in the light of Remark (a), conditions (ii) and (v) are equivalent to the
condition that P be Zariski-regular with respect to (0, R; Q).

Our first result establishes the ubiquity of Zariski-regular primes (in the
presence of standing hypothesis (iii) only). Given the remark on [15, p. 651, 1.
‘15], Theorem 2 is a generalization of an infinite version of [18, Corollary 2],
and it sharpens part of the argument in the proof of Theorem 1 (cf. [6]).

We use the notation already established.

THEOREM 2. The set
{PeSpec A|P is Zariski-regular with respect to (M, N; Q)}
is a nonempty open subset of Spec A.
Proof. As above, consider PeSpec R with P 2 Q. Then
L, is a flat Ap-module each LY is a flat 4Ap,-module

—each LY is a free Ap-module.

(See [7, (6.10.1)].)
The result follows easily from [11, Theorem 1, p. 188] (together with the
standing hypothesis (iii)).

We now take a homological tack. It is well-known that, in a local
situation, the freedom of a finitely generated module can be tested by the
vanishing of the associated Tor,-functor at the residue field (cf. {17, Proposi-
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tion 20, p. 92]). A deeper result is that in a regular local situation, the freedom
of a finitely generated module can be tested by the vanishing of the associated
Tor,-functor at a finitely generated module of depth zero (cf. [12, Corollary 6],
and its proof). This leads to the next result, which provides a generalization
(together with its converse) of [18, Theorem 17 (see the remarks following the
proof).

THeoreM 3. Consider P Spec R with P 2 (, where Pe RegSpec A. Then,
for a given nonnegative integer r, the following are equivalent:

(i) LY is a free Ap-module;

(i) MAQNAP*'N=PMnQ N)+M~nQ "N, after localising at
P, and

(iii) there exists s > r such that

Q) (MAQN)+Q*'N)APN=P""(MAQ N+Q !N,

after localising at P.

Moreover, if any one of these conditions holds, then (2) holds for all s > r,
after localising at P.

Proof. (i) = (1) We essentially follow the argument in [6]. Consider the
short exact sequence of R/Q-modules:

MNQ' N)+Q"'N Y
- Qr+ 1 N - Qr+ 1 N
Apply —® g, R/P and localise at P.

Injectivity is preserved on the left, and this is easily seen to yield that
MAPO'NSPMnNQ N)+Q*!N,
after localising at P. Applying —() M, across both sides gives
(3) MAPQNSPMnNQN)+MnQ*'N,

after localising at P. By [16, Lemmas 1.3 and 1.1 (ii)], PQ" = P"*! ~ Q" after
localising at P (see our standing hypothesis (v)). Moreover, by our standing
hypothesis (iv),

0 - L9 50,

(P*1AQYWN =P *'NAQ'N
aftér localising at P. Hence (3) yields that
(4) MAQNAP*IN=PMAQN+MnQ*N,

after localising at P, since it is clear that the R.H.S. of (4) is already contained in
the L.H.S.
(if) = (ii1) This is easy to see: put s =r+1, and recail that Q < P.
(iii) = (1) An obvious adaptation of the reverse of the argument employed
in the proof of (i) = (ii) shows that
(2)=(Tor{ (A/P°*~", L), = 0.

By [12, Corollary 6j, the latter implies that LY is a free Ap-module.
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Finally, suppose that (i) holds, and consider an arbitrary integer s > r.
Repeat the argument of the proof of (i)=(i1), only this time apply
— @ ro(RAP*"+Q)) in place of — @, R/P. The result follows.

CoroLLARY (cf. [18, Theorem 17]). Let P be Zariski-regular with respect to
(M, N; Q). Then, given integers s >r = 0,

(5) MAQNAPN=P " MnQN)+MnQ"'NAnPN,
after localising at P.

Proof. By equation (2) in the statement of Theorem 3,
MAQNAPNCSP " MAQ N)+Q" "N,

after localising at P. Apply —{)(M n P* N), across both sides, and the result
casily follows.

Remarks. (a) Note that the particular case of (5) where s = r + | appears in
(i) of Theorem 3.

(b} In his proof of his Main Lemma [18], Zariski relies on (5) in the case
where N = R is a polynomial ring over a field, M is a prime ideal, s is arbitrary
and r successively takes the values 1, 2, ..., s—1. In the proof of Theorem
1 [6], we need (5) in the situation where s is arbitrary and r successively takes
the values 0,1,2,...,s—1.

2. Further aspects

(a) An obvious question to ask is whether Theorem 1 continues to hold for
classes of ideals other than maximal ideals. In particular, does equation (1} of
§ 0 continue to hold if we drop the localisation at the prime P? Continuing
with the notation there, let J = @,.,,(M n P*N)/P*~* (M ~ P** N). Then J is
a finitely generated module over the graded ring @, , P". Consider T:= R\ P
as a multiplicatively closed subset of degree 0 elements in the ring @, ,, P". By
equation (1), T™'J = 0so J, = 0 for some t ¢ T. In particular, if P is of co-rank
1 in R, we have

MAP*N =P " (MnAP<N), k> k,

at all maximal ideals except possible the finite set of maximals containing (P, t).

Unfortunately, at present this is all we have to say about the above
questions.

(b) Suppose that k, is a uniform Artin-Rees bound over all maximal
ideals m of the ring R with respect to the finitely generated module N and
submodule M (cf. Theorem 1). By the usual proof of the Artin—Rees lemma
(cf. [2, Proposition 10.9], say), this is equivalent to there being a uniform
bound k, on the degrees of the generators of the C:= @,,, m"-module
H:= @, (M nm"N), as m varies through the maximal ideals of R. Suppose
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further that the number of generators of m has a uniform bound, as m varies.
(Thus these hypotheses are satisfied if R is affine, say.) We now wish to show
that there is also a uniform bound on the number of generators of the
C-module H, as m varies.

Clearly, it suffices to prove that the R-module @* (M nm'N) has
a uniform bound on the number of generators, as m varies. Suppose we
consider a typical maximal ideal m in the stratum of Max Spec R defined by
a prime ideal Q, the stratification being given by Zariski-regularity; thus m is
Zariski-regular with respect to (M, N; Q) (for details see [6]). By the corollary
to Theorem 3,

(6) MAQNAMN=m*"MnQ N)+MnQ* "' NAam*N

for all integers r, s with s > r > 0, after localising at m; hence in fact (6) holds
absolutely for such r and s. Thus each R-module M nm'N, 0 <t <k, has
a filtration of length t+1 with factors which are homomorphic images of
m~"(Mn Q' N), 0 <r<t (recall that m 2 Q, by definition). Letting m vary
through the maximal ideals in this stratum, for which Q is fixed, we see that the
desired result holds on this particular stratum of MaxSpecR. Since
Max Spec R is covered by a finite number of strata, the full result follows.

(c) Finally we wish to note how some of the ideas met above can be used to
simplify and extend some results in [4]. We now drop our standing notation
and begin afresh.

In algebraic language, [4, Proposition 1.7] considers the following
situation: let 4 be a Noetherian domain, and let B= @®,., B, be a finite
homogeneous ring over A which is flat as an 4-module. Let Pe Spec A4, and let
k(P) denote the residue field at P. We wish to consider the Hilbert function

Hp(n) = dim, ) B, ® ,k(P).

Since B, is a flat Ap-module it follows as in the proof of Theorem 2 that (B,), is
a free Ap-module. Hence it follows easily from [10, II, Lemma 8.9] that for each
nz0

H,(n) = dimp B, ® ,k(P) = dim; B, ® (K

is independent of P; here K denotes the quotient field of A. Thus the V of [4,
Proposition 1.7] in fact equals SpecA. (Note that, by their hypotheses, it
suffices to treat the local situation.)
This approach can be used to simplify and clarify other aspects of [4 §1].
(d) Further refinements of the theory are given in [5].
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