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tive 6th root of unity. We use the simple fact that if |a, +a,+a;s| =1, |g,| = 1,
k =1, 2, 3 then there exist 1 <i < j < 3 such that g;+a; = 0. This can be seen
by viewing a parallelogram as four vectors with clockwise orientation in which
case opposite vectors are additive inverses or in the degenerate case adjacent
vectors are additive inverses. We have 1 = |th{2¢b| ="+ +P and
M =1, i=1,2, 3 So we may assume (* = —{", then

‘:h — Ch +cl;+cl3 s cl. c:;gl; = __‘:21,?;'
Consequently, ({")*> = —1. Thus {"* = +i, which is impossible.
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S. CHaLaDUS (Czgstochowa) and Yu. TETERIN (Leningrad)

The notation of this paper is that of [6]. For m linearly independent
vectors n,, ..., n,eZ*, H(n,, ..., n,) denotes the maximum of the absolute

",
values of all minors of order m of the matrix [ : ] and D(m,, ..., n,) the

nm
greatest common divisor of these minors. Furthermore

h(n)=H(m) for m#0, h(0)=0
and for k=1l=2m, k>m.

) D caiiil (k=Ditk—m) 1
colk, I, m) = supnM(H) 11 ),

where the supremum is taken over all sets of linearly independent. vectors
n,, ..., n,eZ* and the infimum is taken over all sets of linearly independent
vectors p,, ..., p;€Z* such that for all i<m

i
(1) no=3 u;p, Uu;€Q;
J=

[ || denotes the usual Euclidean norm.
The aim of the paper is to prove the following two theorems.

THEOREM 1. For all integers k, I, m satisfying k 21> m, k > m we have

'k (k= Dj(2(k —m))
colk, I, m) < ?’I{Lzm.ﬁ—l(m)

where Yy -mx—1 is the Rankin constant (see [4]).

THEOREM 2. For all integers k, I, m satisfying k > 1 > m, k > m and for every
H there exist linearly independent vectors n, ..., n, € Z* such that

Hn,,..., n,,,)}H

i D(ny, .o )
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and
. (D(ny, ..., n,)\&~D=m 1 i
? (Fae) >

The Rapkig constant y,,y, (0 < m < n) can be defined as follows: let d(f)
denote the_ discriminant of a quadratic form f; i.e. the determinant of its matrix.
Then y,,, is the smallest constant with the property that each positive definite

quadratic form f of rank n represents integrally some quadratic form g of rank
m such that

0<d(g) < Ppmd(f)™".
We define also
Yno = Van = 1.
The best known estimations of y,, are based on the relations (see [4])
Tnm = Vnn—ms
Yum < Vem (O™ (m<r <o),
Ym1 = Yun—1 = Pns
Ya2 = 3/2,
where y, is the Hermite constant. These relations imply
Tam = Yan-m < (‘ fl+ 1 b

As a direct consequence of Minkowski’s second theorem for quadratic forms
we obtain also

Yam = Yan—m < Va-
For further estimates we can apply Blichfeldt’s inequality

2 2/n
y,s—r(3+z) .
n \2

It can also be mentioned that the same relations imply Mordell’s inequality
y, < Y- Ve=2 by putting m=1, r=n—1.
Theorem 1 extends and improves the part of Theorem 1 of [5] not covered

by Tlllleorcm 1 of [6], because it can be shown using the above estimates for
Yn,m that

- k (k= 1)/(2(k —m))
?k'!— mk—1

m

U 2N [k=m2\EmIEm \NVZ e\ k= D2k = m)
<mnl(Z) (ST ) o)
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The bound for ¢, (k, I, m) given in Theorem 1 is in some cases, e.g. for k = 4,
| =2, m=1 better than the bound given in Theorem 1 of [6].

Theorem 2 shows that the exponent (k—I)/(k—m) occurring in the
definiton of cy(k, I, m) is the correct one (for any smaller exponent the
corresponding supremum is infinite) and thus extends the result of [2]
concerning the case m = 1.

Proof of Theorem 1. Let 4 be the linear subspace of R* spanned by
ny, ..., n,, ¥ the orthogonal complement of 4" in R anda,,..., @ _,a basis

a;
of the lattice Z*n# and 4 = [ ] . Then by a known theorem (see [3],
By —m
p. 53)
D(ﬂl, any ak_,,,) = 1.

By the Gordan theorem (see [1], p. 28) the absolute values of the minors of
order k—m of the matrix 4 are proportional in some order to the absolute

ny
values of the minors of order m of the matrix [ : ] . Hence

L
H(n,, ..., n,
H(lll, iy llg_,,J - BH

Let us consider the positive definite quadratic form
O voes Xpmmd = 1% 85 o0 X @ —ull®-
By the Cauchy-Binet formula
d(f) =detd A' =Y M?,

where M runs through all minors of order k—m of A. Hence

2
@ an<(f ) m = ()
By the definition of y,,, there exist linearly independent vectors by, ..., b, _,
e Z*n# such that the quadratic form

g(xys .oer Xe—t) = Iy by +ooot Xy B ill?
has determinant

©) d(g) < Pemmu-rd (N4,

bl

Let B = [ ¢ |, ¥ be the linear space spanned by by, ..., by, and 2 be the
bk—l

orthogonal complement of ¢ in R*. Then
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(6) gcF, P2

By Theorem 2 of [1], 2 is spanned by linearly independent vectors p,, ..., p,
€ Z* such that

I _
(7 L]l h(p) < /|det B BY| = d (g)"*.

Inequalities (4), (5), (7) imply

! k\k-brzk=m) (g on )\ &k
h(p) < yi2, .- —_—Ly )
N I €

and (6) implies (1). Hence by the definition of c,(k, I, m)
kD2 k—m)
Co U(., L m) =< ?Jlff—zm,k-l (m)

and the proof of Theorem 1 is complete.

In order to prove Theorem 2 we introduce the following notation.

For a matrix P € .#;,(Z) we denote by P (j,, j;, ..., jx-1) the square matrix
of order [ obtained from P by omitting the columns j;, < j, < ... < ji—;and by
SQ(P) the set of the matrices P(j,, j,, ---, jx-1) corresponding to all sequences
Jusdas eossJy~psuch that 1 €, <j, <€ iy <k

Let us order the set SQ(P) lexicographically, i.e. let P(j,, ja,---s Ji-1)
precedes P (jy, j3, ..., jx—i) if the first nonzero difference j;—j,s =1, 2, ..., k—I,
is positive. Finally, let A € #,, ; be the matrix obtained from P by adding the
vector n=[1,n,...,n""1,0,...,0]eZ* (t < k) as the first row.

LEMMA. Let 1 <i, <i, <...<i—; <t If the rank of A is at most |
and every matrix in SQ (P) which precedes P (iy, i, ..., ix—,) is singular then for
every s=0,1,..., k—1 and every sequence jsi1, js+2, -+, jx-1 Of positive in-
tegers such that

I, <js+1 <Js+2 <...<ji-1 <Kk
we have
(8) Aot P(yy «oos s it g5 ++os Ju= = 0 (mod ),
In particular
detP(iy, iy, ..., ik-;) = 0 (mod n* 7).

Proof. We proceed by induction on s. The case s = 0 is obvious. If | = k
we put SQ (P) = {P}. Assume that our lemma is true with s replaced by s—1.
Let us apply to the matrix A4 (i, ..., is—1, js+1, .-, jx—1) the Laplace expansion
with respect to the first row. In the expansion the summands involving
determinants of the matrices preceding P (i, i5, ..., Iy Js+15 ---» Jx—1) are equal
to zero. Leaving out of account these summands we obtain
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0=detAd (il‘! ey is—l:js-l—l, ...,jk_{}
= (_l)i‘—:ﬂi._ldetp(il, ey is‘jsi'l! "',jk—l}

minft, jg+ 1 — 1}

+ Z (_])'_’nr_ldetp(ilﬁ--" is—l, rrjs-l—lr---;jk-l)

r=is+1

k=1 min{tjg+1—1)

+ Y, Y (1WA PUy oo desas dinan oo T Vo it s ven Ji=05

o=s+1 r=je+1

where by convention ji—;+; = k+ 1. The determinants that occur in either sum
are divisible by n*~!, by the inductive assumption. Hence

e~ tdet P(iy, ..., iy jos 1y - or Jr—p) = 0 (mod n**71)

and (8) follows.

Remark. The above proof follows the proof of the lemma in [2], which
corresponds to the case ¢t = k.

Proof of Theorem 2. We define the vectors n, ..., n, as follows:

n,=[1,n..,n"0..0], n=[0,..,010..0] @2<i<m),
=

where n > H is a positive integer. Clearly
9) H(ny,...,n)=n"", Dny,...,n,)=1,

thus (2) is satisfied. Suppose that linearly independent vectors p,, ..., p,€ Z*
satisfy (1) and put

P P
P=\|:|, 4= ! (1<i<sm).
- P

The matrix P is of rank | and so by (1) are 4,(1 <i<m). Let P(iy, i,, ..., ix-)
be the first non-singular matrix in SQ(P). If iy, > k—m+1 we expand
det A, ,—k+m(iys ip, --os fk——1) With respect to the first row and obtain

0 =det Ay _,—gemliys gy oems ig1=1) = (=1 Py, by oy By

thus since the right hand side is different from zero, we have a contradiction.
Therefore, i;,_; < k—m+1 and applying Lemma with 4 = A, t = k—m+1 we
obtain

det P(iy, iz, ..., ixg—p) = 0 (mod n* '),
ldet P(iy, iy, ..., fe_g| = ™",
Hence, by the Hadamard inequality and by (9)

6 — Acta Arithmetica 57.2
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! - H(n,, ..., n,_))tt-!mt—m;
2 h(p. > k=1 _ (25 -oos Bl
il=_[1 (pl) n (D{ul, - nm)

which proves (3).
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The notation of this paper is that of [1] and [3]. The aim is to improve the
results of these papers by proving the following

THEOREM. Let k > 1 and ay, ..., a, be non-zero complex numbers such that
a,e Q(a,/ag, ..., a,/ag) = Ko The number of integer vectors m = [n,, ..., 0]
such that

O<n <n<..<m<N, N2>3
and K(ac,+)::‘=lai x™) is reducible over K, is

- _1y (log N)'°
k—min{1,3f(k— 1))
O(N (oglog N)°

where for k < 4 the logarithmic factors can be omitted.

The above theorem constitutes an improvement upon Theorem 2 of [3]
only for k = 3,4, 5. However, in view of possible other applications we
formulate the lemmata for arbitrary k > 4. The proof of Lemma 2 has been
simplified by Professor J. Browkin.

LemMA 1. Let k > 4, vectors p, q € Z* be linearly independent, a;(0 < i < k)
be non-zero algebraic numbers such that

o € @ (/g --.r @y/e) = Ko,

k k
D(y, 2) = (/Nxoo (%0 + X, " 2%), INkyo (@o+ X, &y~ 2™%).
i=1 i=1
If D(y,2)e Q[y, z]\Q[z] then either there exists a vector ye Z* such that
p=v¢=0, h@)=1

or there exist three linearly independent vectors r,, r,, ry € Z* such that r,p = 0
implies r.,q =0(1 i< 3),

P () =P (g (<i<j<?3
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