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! - H(n,, ..., n,_))tt-!mt—m;
2 h(p. > k=1 _ (25 -oos Bl
il=_[1 (pl) n (D{ul, - nm)

which proves (3).
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ACTA ARITHMETICA
LVII (1991)

Reducibility of lacunary polynomials, XI
by

A. ScuinzeL (Warszawa)

The notation of this paper is that of [1] and [3]. The aim is to improve the
results of these papers by proving the following

THEOREM. Let k > 1 and ay, ..., a, be non-zero complex numbers such that
a,e Q(a,/ag, ..., a,/ag) = Ko The number of integer vectors m = [n,, ..., 0]
such that

O<n <n<..<m<N, N2>3
and K(ac,+)::‘=lai x™) is reducible over K, is

- _1y (log N)'°
k—min{1,3f(k— 1))
O(N (oglog N)°

where for k < 4 the logarithmic factors can be omitted.

The above theorem constitutes an improvement upon Theorem 2 of [3]
only for k = 3,4, 5. However, in view of possible other applications we
formulate the lemmata for arbitrary k > 4. The proof of Lemma 2 has been
simplified by Professor J. Browkin.

LemMA 1. Let k > 4, vectors p, q € Z* be linearly independent, a;(0 < i < k)
be non-zero algebraic numbers such that

o € @ (/g --.r @y/e) = Ko,

k k
D(y, 2) = (/Nxoo (%0 + X, " 2%), INkyo (@o+ X, &y~ 2™%).
i=1 i=1
If D(y,2)e Q[y, z]\Q[z] then either there exists a vector ye Z* such that
p=v¢=0, h@)=1

or there exist three linearly independent vectors r,, r,, ry € Z* such that r,p = 0
implies r.,q =0(1 i< 3),

P () =P (g (<i<j<?3
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and l(r,) < 2,1(r,) < 2,1(r;) < 4, where I (r) is the sum of the absolute values of
the coordinates of r and h(r) is their maximum.

Proof. Let in the neighbourhood of z = o0 one of the zeros of D (y, z) be
given by the Puiseux expansion

y(@E) =co 2+ Z ﬁzﬂ_b".
j=1

where 0 < b, <b, <..., ¢, #0 (since (D(y,2),y)=1 we cannot have
y(2) = 0) and either ¢, # 0 or ¢; =0 for all j > L
Let po =g, =0,

k
U {api+a:} = (w1, ..., w}, wherew; <w, <...<w,

and let
S,={i: 0<i<kap+q=w)}.
We have | > 2 since otherwise for all i <k
ap;+q; = apo+4o = 0,

contrary to the linear independence of p, g
From the divisibility

k k
D(y, 2|(INxo (%o + Y. @ ¥ 2%), INkyo(to+ Y, &,y P z7%)
i=1 i=1
it follows that for some conjugates o, o of a; we have

k
9@ = do+ 3, ahy(@P 2 =0
i=1

k
h@ =+ ) i y@ ™"z %=0.
i=1

However,

g2 = Z 2 “105‘)3“"+(Z e piey) 2 P o (2,

A=1 ieS;
e B D
A=1 ieSa

where if ¢, = 0 the remainder terms are missing.
If ¢, =0 we have for all A <1

Y oich=0; cardS; > 2.
ieSa
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I
= | {e,—ei,: i€S,, i #1i,}
A=1

where i, =min§;, ¢, =0, ¢; = [0, 2 0,1,0,...,0] (1 <i<k).
Since the sets §, are disjoint, the vectors of the set R are linearly
independent and every reR satisfies

arp+rq =0.
Moreover
1 1
cardR= Y (card§,—1)>1% Y cardS, > 3(k+1)> 2.
i=1 =1

Hence for r,, r,, r, we can take any three vectors of R.
Therefore, assume that ¢, # 0. Then g(z) = h(z) = 0 implies

1) Tk =0, T oics” =0

eS8y
hence card §, > 2, card §, > 2.
If card §, +card S, > 5 we take for r,, r,, r, any three vectors of the set

{e,—e;: i€S, i#ijule—e,: ieS,i#i}.

If card S, = card S, = 2 let 8, = {i;, j,}, 8 = {ip. Jji}-
If p;, = p;, we take

Y =¢€;,—¢€,
If p;, #-ph, but p;, = p;, we take
Y =¢;—¢,.
If p;, # p,,, and p;, # p;, we infer from (1) that
Y aipicd ey = o (pj—pi) e, #0,

— -p; —1
Z a?Pt Co P l — afl (pjj pl'l)cﬂ 5 Cy # 0,

ieSy
hence for some y, v

w—b, =w,; Y och#0;
S,
—wy=b, =—-w,; Y afcgh#0.
ieSy

It follows that 1 <p<l, 1 <v<! and
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witwy = w,+w,.
We take

r,= €;, — €, r, = e}'—eh, Fy = ei,+e,-1-e,-“—e;v.

Since the sets S, §;, §,US, are disjoint, the vectors ry, r,, r; are linearly
independent, unless i,=i,= 0. However, in the latter case

rl[l,..., l]=rz[l,.-.’ 1]=0, ra[l,...; 1]=2,
thus the same conclusion holds.

LEMMA 2. Let k>4, p, q, @, D(y, z) have the meaning of Lemma 1,
Po=4qo =0. If D(y, )€ Q[z] and KD # 1, then either there exists a vector
ye Z* such that

(2) 0<h(y) <Co@),
(&) yp=7v4=0,
or there exists a decomposition
' t
@) {0,1,....k}= | I, I, disjoint,
i=1
where [(k+1)/3] =12 2, cardI;, > 2 and
) p=p fori,jel, (1<A<]).
Proof. Let

k
on {p.} = {vy, 03 ..., v}, Wherev, <...<u,

and let

Since p, =0 and p # 0 we have I > 2.
By Gauss’s lemma we obtain

D (2)| Ny 4(2),

where A(z) is the content of J (Zf;,_, o, yP 7%) viewed as a polynomial in .
Hence K4(z) # 1 and

ARNI(Y o,2%) (<A,
Jela
which implies cardI, 22 (1 <A <))

If for some distinct A, u <1 we have

cardI,+cardI, < 5,

Reducibility of lacunary polynomials, X1 169

we take in Theorem 1 of [5] after a suitable renumbering of the variables x;

P=a,+ Y ox, Q=+ ) X,
iela\ia} ieluMiu)

m=g—q, GelL\{i,})) m=a—q, (iEIp\{ip})
and obtain the existence of integers y;, (ie I,uI,\{i;,i,}) such that

0 < max Jy| < C, (),
Y n@—a)+ Y v@—aq,)=0.

fel 3 \{ia) ielu\{iu}
Taking ; .
Y= Z Tl’fel_( E ?i)ei,\_( 2 ?!)ei,.
felavlu\{iaiu) iela\(ia) el \iu}

we find (2) and (3) with C,(a) = 2C, ().
If for all distinct A, u <[ we have

card I, +cardI, > 6
then in particular for every A <!

cardI,+cardI;., > 6
where I, = I,. On summing over A we obtain

1 [
61< Y cardI,+ Y cardl 4y =2(k+1)
i=1 i=1
which gives the desired bound for I
Before proceeding further we recall the definition of ¢, (k) from [1]:

h(p) h(q)

Co (k) = sup lan:m:Tl’

neZk
¥l

where the infimum is taken over all pairs of linearly independent vectors
P, q € Z* such that n = up+vq, u, ve Q. The next lemma is an improvement of
Lemma 2 of [1].

LemMa 3. Let k > 4, o, have the meaning of Lemma 1, m = [m,, ..., mJ]. If
O=mog<m <..<m, (my,...,m)=1 and KNxyo(},_ ,2x™) has a
squarefree reciprocal factor f(x), then either

(6) deg £ < co (k) [Ko: Q1* mff~2/=D

or there exists a vector ye Z* such that

Q) O0<h()<Co@ and ym=0

or there exist three linearly independent vectors ry, r,, r3€Z* such that
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@® Ir)<2, Ir)<2, I@)<4
and

) max{jr;m|, [r,m], [rym|} < 4./co(k)mf=22E D (r m, r,m, rym),

or there exists a decomposition
1
{0,1,...k} = U I,, I, disjoint,
A=1

where 2 <1< [(k+1)/3), cardI, > 2 (1 <A<) and

max |m;—m,|
10 Aslijela < 2 k R—Z}.ﬂl—l)_
( ) g.c.d. (mj_m") CO( )mﬁ
A=sli,jel s
Proof. By the definition of c,(k) and by Theorem 2 of [2] there exist
linearly independent vectors p, ¢ € Z* such that

(11) m = u,p+0oq

where

(12) h(p)h(g) < co (k) mf=2/=D

and wu,, vo€Z. By Theorem 1 of [2]

(13) colk) < 2.

In view of symmetry between p and ¢ we may assume that
h(p) < h(q),

hence

(14) h(p) < MmL*‘I"z‘**".

It follows from (m,, ..., m) = 1 that (u,, vo) = 1. If we had v, = 0 it would
follow that uy = +1, h(m) = h(p) and thus by (13) and (14)

m, = h(m) < Co (k){k-l}!k < 2(&—1)4'& < 1,
which contradicts m, > k = 4. Therefore,
(15) (ug, vg) =1, vy #0.

Let us consider polynomials

k
G = JNgyo(Y a;y"z%),
j=0

k
H = JNgyo(Y o,y ?z7%),
j=0

D = (G, H).
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We distinguish three cases:
(i) PeQlz], KD(z) = 1,
(i) DeQ@[z], KD(z) # 1,
(i) De @[y, zZ]\Q [2].
In the case (i) we infer from (15) as in [1], p. 316 (with the simplification
resulting from wy, = 1) that

deg f < 8[K,:Q1*h(p)h(g),
which implies (6) in view of (12).

In the case (ii) by Lemma 2 either there exists a vector y € Z* satisfying (2)
and (3) or there exists a decomposition (4) satisfying (5). In the former case
y satisfies (7) in view of (11). In the latter case the decomposition in question
satisfies (10) since by (5) and (11)
while by (12)

max |g;—q;| < 2c, (k) mff =2/~ D),

i<j
In the case (iii) by Lemma 1 either there exists a vector y € Z* satisfying (2)

and (3) (provided C, («) = 1) or there exist three linearly independent vectors
ry, ¥y, ry such that r;p =0 implies r,q =0 (1 <i<3),

P (rig) =(r;p)(q) (1 <i<j<?3)

and (8) holds. In the former case y satisfies (7) in view of (11). In the latter case
we find by (11)

(ryp) (r;m)—(r;p) (r;m)
= (rp)(rjuop+r;009)—(r;p)(rigp+riveg) =0 (1<i<j< 3.

Hence either max {|r,m|, |rym|} # 0, thus max {|r,p|, |rspl} # 0 and by (8)
and (14)

max {r m, ey, lryml} _ max {ir, pl, Ir,, Irspl}
(rym, rym, rym) (ryp, rap, r3p)

<4 Co (k] m,‘hzuzm— I),

< 4h(p)

which implies (9), or r,m = rym = 0, thus
max {|r,m|, |r,m|, |rym|} = (r,m, rym, rym),

which again gives (9).
Proof of the theorem. It is enough to prove the theorem for the case
where a,, a,, ..., a, are algebraic numbers, since then the general case
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follows in view of Lemma 5 of [3]. Replacing g; by a; in order to conform the

notation to that of [1] let us assume that o, ..., a, are algebraic and that
o € Q (/% - -, %/ag) = K.

If

(16) O=ny<n <...<m <N

and K(Zj=o“1 x™) is reducible over K, we infer from

K(i a;x") = A; (x) Ay (x), A;eKy[x], degd;>1
j=o0

that
k 2
KNgyo(Y o;x") = [] Nk 4: (),

=0 i=1
hence

k »
17 KNgyo(Y a;x™) is reducible over Q.

j=0

Let us denote by S the set of all integer vectors [n,, n,, ..., ] = n satisfying
(16) and (17) and decompose it into two subsets T and U assigning a vector n to

Tif KNg,o (ZL o @ x") has in Z [x] at least one irreducible reciprocal factor

and to U if all its irreducible factors in Z [x] are non-reciprocal.
It is shown on p. 332 of [1] that

card U = O (N*™1),
thus it remains to estimate card T For k = 2 the required estimate
card T= O(N)

is proved on p. 331 of [1].
Let us consider the case k = 3. Then by Lemma 7 of [4] if n e T then either

3 3
(18) J(Y ayx™™) =ky Y, afx™

j=0 j=0
for an automorphism ¢ of K, and a k,€ K, or there is a permutation
{g, h, i, j> of €0, 1, 2, 3) such that

max {jn,—n|, |n;—n,|} <B.()
3 L]
(ny=nyy ny=my)

where B,(x) is a number depending only on «. Now (16) and (18) imply

(19)

ﬂ1+?l2 = N4y
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and the number of vectors n € Z* satisfying (16) and the above is O (N?). On the
other hand for a vector m satisfying (16) and (19) the coordinates RNpming.»»
Muminh,j) €20 be chosen in at most N ways (one of them is 0) and then by Lemma
6 of [1] with r = 2, A = N, B = B, () the remaining goordinates in at most
2B, () N ways. Hence

card T= O (N?)

as required.
Assume now that k >4, neT and let

(g, ..om)=d, ny=dm; 0<j<h),

k
F(x) = KNgyo( Y a;x™).
j=0
We have

k
KNx.o (JZD o;x¥) = F (xf).

If we had f(x) # Jf(x™?) for every irreducible factor f of F in Z[x] it
would follow from (f(x), Jf(x~") = 1, (f(x%), Jf(x™%) = 1 that F has in Z [x]
no irreducible reciprocal factor, contrary to me T Therefore F(x) has an
irreducible reciprocal factor fe Z [x].

If degf > 8¢y (k) [Ko: Q)> m~2*~ Y, then in virtue of Lemma 3 either
there exists a vector y € Z* satisfying (7) or there exist three linearly independent
vectors ry, r,, r,€ Z* satisfying (8) and (9) or there exists a decomposition

1
(20) 11 % YRR k} = U I,, I, disjoint,
A=1
where
k+1
(21) 2:;:5.[7], cardl, >2 (1<i<]))

and (10) holds. _
If deg f < 8¢, (k) [Ko: Q] mft~2/%~ 1) then in the notation of [1] explained
there on p. 329

7
m=[m,,..mlel) S,(N/d).
v=3

Let us denote by S(M; y) the set of all vectors m e Z* satisfying ym = 0
and

(22) O=my<m <..<m<M,
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by S(M; ry, ry, rs) the set of all vectors me Z* satisfying (9) and (20), by
S(M; 1, 1,,...,1) the set of all vectors me Z* satisfying (10) and (22).
For a given set A < Z* let dA = {da: ac A}. We have
[Nf2

1
@) Te U (UodS(N/d; 90, dS (N/d; ry, 1, 73)
d

=1
7
VU248 (N/d; Iy, ..., I)u | @S, (N/d)),
v=3

where UO is taken over all vectors ye Z* satisfying (7), U1 is taken over all
triples of linearly independent vectors ry, r,, ry € Z* satisfying (8) and (9), | ),
is taken over all decompositions (20) satisfying (21). Moreover in the notation
of [1]

(24) SsMme ) SM;y),

0 <h{y) <Ca(=x)
yeZx

(25) S;M <= U SM;y).

0 <h(y) <Csla)
yezZk
We have for y # 0
card S(M, y) = O (M*™ 1),

hence '

(26) card | ), dS(N/d; y) = O ((N/d)*?)
and by (24), (25)

(27) card S, (N/d) = O (N/d)~*) for v =3, 7.

Further, for r,, r,, ry linearly independent, I(r) < 4
card S (M; ry, ry, r3) < M* 3card ¥,
where

V= {{ey; 02 031€Z> max |gf <4M,
1<i<3

max o] < 4./co (k) M* =P =D (o, 0., 0,)}.
1<i€3
Indeed, since dim (r,, r,, r;) = 3 there exists a set I < {1, 2, ..., k} such
that card7 = k—3 and rym (1 <i < 3) together with m; (iel) uniquely
determine m.
For meS(M; r,, r,, r;) we have [r,m, rom, rym]eV, while for iel
me{l,..., M}.

Now, by Lemma 6 of [1] applied with r =3, A =4M, B =4./c,(k)
x M®*—202k=1)

card V< 2 AB? = 128 ¢, (k) M2k~ 3ik=1)
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Hence
card S (M; ry, ry, r3) = O (M*™1),

(28) card | J, dS (N/d; ry, r,, r3) = O ((N/d)*™Y).
By the estimate proved on p. 330 of [1]

card S(M; 1, ..., I) < ¢ (k) M¥~ ¢ Die=D)
and since by (21) k—1> k—[(k+1)/3]1 =23
(29) card | ), dS (N/d; I, ..., I,) = O (N/d)s=3*=b),
Finally by the estimates proved on p. 331 of [1]

M)10
mrdsa(M)-l-cardSs(M)=0(Mk—3m_u (log M) )

(loglog eM)°

hence

N N N\~ (log N)*°
(30) carddS, (E) +card dS, (E) =0 ((E) (loglog N )9)'

It now follows from (23) and (26)30) that

k—3/(k—1) (log N)'°) )‘

card T=0 (N (loglog N)°

which completes the proof.
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Corrections to [1] (see also Note at the end of [5])
p. 329 line —2: for =S5,(M) read v §,(M)
p- 330 formula (51): for S, S,, S;, Sg read dS, dS,, dS,, dSy
for N/4 read N/d.
line — 14: for max {g, h}. read max {g, i}
line — 10: for 1/2(k—1) read k/2(k—1)
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