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On some complex explicit formulae
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1. Let M (x) denote the summatory function of the Mdbius u-function,

M(x) =} un).
nsx
Then M (x) is the difference between the number of squarefree positive integers
n < x with an even number of prime factors and of those with an odd number
of prime factors.

An explicit formula which expresses M (x) in terms of zeros of the
Riemann zeta function under the assumption of the Riemann hypothesis (RH)
is well known (see e.g. [4], p. 318). Assuming the RH and the simplicity of
complex zeros ¢ of the Riemann zeta function { (s), Titchmarsh showed that
there is a sequence 7, n < 1, < n+1 such that, denoting

My(x) = (M (x+0)+M (x—0))/2,
we have

X2 (=1renx

Ly Mo =ln 2 rG 2 L ottt 1)
lime|<tn '

Following some ideas of J. Kaczorowski’s paper (see [2]) we will
investigate expressions similar to the series over Riemann zeta zeros g in (1.1),
considering this series as a function of a complex variable x. More precisely, we
will describe the analytic character of some functions m (z) and .# (z) defined in
the case where there are no multiple zeros ¢ of the Riemann zeta function, for
Imz > 0 as follows:

(12) me=lm T 7o

0<Iime<T,

and
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(13) #@)=lim 2 ) Z:ZQ)

[']
O<ime<T,

where the summation is over all non-trivial zeros ¢ of {(s). The sequence T,
yields a certain grouping of the zeros.

If {(s) has a multiple zero at s = g, the corresponding term in (1.1), (1.2)
and (1.3) must be replaced by an appropriate residue. In the following we will
consider this general case.

First we show that m(z) is a holomorphic function for Im z > 0. Next we
continue m(z) analytically to a meromorphic function on the whole complex
plane, which satisfies a certain functional equation. The functional equation for
m (z) connects the values of the function m at the points z and z. Hence from the
behaviour of m(z) in the half-plane Imz > 0 it permits one to deduce its
behaviour for Im z < 0. Finally, we describe all singularities of m(z).

As an application of analytic properties of the m-function, in the next note
we will obtain the classical formula (1.1} without any hypothesis.

In 1985 A. Odlyzko and H. te Riele in their joint paper [3] showed that
lim sup, .., [M (x)| x~ /2 > 1.06, which yields a disproof of the Mertens conjec-
ture. What is generally expected is that the true value of this limes superior
is co. The method we use in this paper may be used to improve on the 1.06
constant.

2. For any complex number z = x+iy from the upper half-plane
H = {zeC: Imz > 0} let us consider the integral

esz
J )

taken round the rectangle (—1/2, 3/2, 3/2+iT,, —1/2+iT,) where the T,,(n < T,
< n+1) are chosen so that

ds

2.1) < T

{(o+iT)

for —1 <06 <2 and ¢, is a numerical constant (seec [4], Th. 9.7). Then the
integral along the upper side of the contour tends to 0 as n— oo, and by
Cauchy’s theorem of residues

-1/2 & 3/2 e 3/2+i0 z

2.2 d d
ey Tl

where for Imz > 0
) 1 gk K, €
(2.3) mA=n L g [(S_Q) ¢ <s)]s=o

O<Ilmeo<T,

ds = 2mim(2)
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and k, denotes the order of multiplicity of the non-trivial zero ¢ of the zeta
function. If there are no multiple zeros of the zeta function then

=1 e 1
24 m(z) = lim o<,§<1 v (g)'( )

The analytic character of the m-function is described by the following
theorems:

THEOREM 1. The function m (z) is holomorphic on the upper half-plane H and
Jor ze H we have

(2.5 2mim (z) = m, (2)+m, (2)—e3*/? z %
n=1

where the last term on the right is a meromorphic function on the whole complex
plane with poles at z = log n if n is a product of different primes or n is equal to 1,

-1/2 esz
(2.6) m(z) = _mfﬂw o
is analytic on H and

3/2 P
2.7
@.7) m, (2) = _g,zC()

is regular on the whole complex plane.

THEOREM 2. The function m(z) can be continued analytically to a meromor-
phic function on the whole complex plane which satisfies the functional equation

(2.8) m@Ez)+m(z) = —2 Z &c s(n ’)
where the function on the right-hand side has the period ni and is an entire

Sunction of order 1 and type 2m as a function of the variable z, = e™*.
* More explicitly, we have for Imz > 0

1 -1/2 e” 1 3/2 P e3z/2 © u(n)
= ds +— ds—
"= TO I 100" I 5P G—log

Jor Imz <0

m@) = —m@-2 @ (2:e_’>

and for Imzj < =

(*) Let us remark that this definition does not depend on the particular form of the sequence
(T,) satisfying (2.1). (We make use of this comment in part II)
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t

g re
m(z) = — Sz—log2m—inj2) - )
( 2mi —1/5‘—.'@ C(l—s)
—_1_. B gSe—log2n+in2) _~ ) r (s) i - 2(= 2ni)fn
2m i C(l—s) =
1 32 g2 e3l2 © H(N)

f

toa L% I B el

THEOREM 3. The only singularities of m(z) meromorphic on C are simple
poles at the points z = logn on the real axis, where n is a product of different
primes or n is equal to 1 with residue

2.9) res m(z) = —pu(n)/2mwi.

z=logn
3. Proof of Theorem 1. We have by (2.2) for ze H
2nim (z) = m, (2)+m, (2) +m; (2)

where the last integral

3/2+i esz
ms(z
2= Jz o
since Res =3/2>1 and 1/{(s) = ) >, u(n)/n®, is equal to
@0 3/2+i0
— z —slogn = _ p32z/2 ”(n)
m; (2) "; u(n) 352 e ds e "Z T (—log )’

The inversion of the order of integration and summation is justified for ze H
by the uniform convergence of the integral and the series.

Since |I'(—1/2+it)] « exp(—nt/2), the functional equation for {(s)
implies

| 1| 2./2nlsin(3/2—it) (n/2) )T (= 1/2+it)]
lL(—1/2+in)| I (3/2—it)l

« |32 im2 _ p=i3/2=im2 I (—1/2 +it)| < 1.

Thus we have

-1/2 Z - —-x/2
s| e 2 [edt =
0

—l/£+co @d

and m, (z) is absolutely convergent for y = Imz > 0.

Im, (2)] =

4. We shall first prove that the function m(z) analytic for y > 0 can be
_continued to a meromorphic function for y > —n.
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Let us consider the integral
-1/2+iw e;z

my (2) = _{./2 C(S)

convergent for y > 0. By the functional equation for {(s) we get

—-1/2+iw _ . r (S)
4.1 = — (z—log2r—in/2) _ =~ \"7
4.1) m, (2) —{/2 e C(l—s)

_l/?+im e,s(z—loan+in/2) F(S)
- 1/2 C (1 —S)
= myy (z)+my; (2).

Since | (—1/2+it)/{(3/2—it)] « e™?2, my,(2) is regular for y >0 and
my,(2) for y> —=x.

We have
—1/2+iwo . I'(s)
4.2) m,.(2) = — ge—log2n—inj2) _~ ) o
( “( ) —1/5“—&» C(l—S)
i r(s)
+ es(z log2n—in/2) d
- 1/5‘.-1‘@ {(1—ys)
=1I,(2)+1,(2).

It is easy to verify that the integral I, (z) is convergent for y < . Since m,, (2) is
regular for y > 0, the integral I, (z) is convergent for 0 < y < n. Thus we can
reduce I,(z) to a case of Mellin’s inversion formula as follows. We have
formally

[ o) “( ) —1/2+i0 .
(43) Il (Z) = — Z [l N4 -" es(z—logZu—m/2+Iogn)r(s) ds.
n=1 —-1/2—iw

To justify the inversion of the order of summation and integration for
0 < y < we will see that the integral and the series converge uniformly.
First, by Cauchy’s theorem of residues

-1/2+iw© .
(44) _ 5 es(z—loan—m/Z-f-logn) F(S) dS
-1/2—im
—1+4+iw
- -“ es(z log2x —in/2 + logn) r(s) dS+21tl res es(z log2n—in/2 +logn) F(S)

1-iw s=0

1+ic0
_ j. es(z—losh'i"/z““") r (s) ds+2xi.

1-icw

Since Ree~ ¢ los2r—im2+logn) — O /me¥)siny > 0 for 0 < y < m, using Mellin’s
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inversion formula we get

1+ic0
4.5) 5 Mz~ los2r—in/2 +1ogn) " (g) ds — Dprje= ¢ *2miln

1-iw
and by (4.3), (4.4) and (4.5)
4.6) I,(z)= —2mi i @e“"'z"‘/".

n=1

Since Y24 pu(n)/n =0, we have

i H (n) e~ 2ni/ne*
n

i ?(e—hi/u’_ 1)

n=1 n=1
< i l(el‘zﬁlne‘l_l) = i _l_(eZn/ne"_l)
n=1h n=1 1l
1 2n(e—1) 1
< e -t — < €y (X)
n$[§/e"]n e nzlzgx]ﬂ n? 2

and the series on the right of (4.6) is absolutely convergent for all y.
Finally, by (4.1), (4.2) and (4.6), we obtain the following analytic con-
tinuation of m,(z) to y> —n. For |yl <=

RNy 1 () S w2 —togzn—in2y 1 (5)
47) m,(z) = —2mi Y ——Le e "ming e los2n=in2) 7 ¢
@7 m@ P A Ti—3
_ - 1/}+im e.s(z—log272+in/2) r (S) dS
-1/2 {(1—ys)
where the first term is holomorphic for all y, the second for y < © and the third

for y > —m.
In accordance with Theorem 1, (4.7) completes the continuation of m(z) to
the region y > —n.

5. Let us consider the function

_ . 1 dket ! e
(5.1) m” (z) = lim \é (ke—l)!ds""'l[(s_g)k C(S)]Fo

—Ta<ime<O0

where k, denotes the order of multiplicity of the non-trivial zero ¢ of {(s),
defined for z belonging to

(5.2 H™ ={zeC: Imz < 0}.

Since {(5) = -C(_S) we have |{(5)| = [{(s)] and by (2.1) we choose T,(n < T,
< n+1) such that
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. I — €1 —1<0<2.
(5.3) Flo—iT) <T; for —1 <02
If {(s) has only simple zeros, then
5.4 (o) = i y &
. m~ (z) = lim .
G4 o e TR
—Tr<Img<O

Now taking the integral
esz
5((8)

round the rectangle (—1/2, 3/2, 3/2—iT,, —1/2—iT,) with n— co, we have by
Cauchy’s residue theorem

ds

(5.5) 2nim™ (z) = my (2)+m3 (2)+m3 (2)
where
-1/2 esz
5.6 mi (2) = — ds
66 1) —1/5[—:'00((3)
is regular for y < O (the proof similar to that for m,(z)),
-1/2 esz
5.7 m; (z) = ds
'( ) 2 ) 3'/(2 {(s)
is analytic on the whole complex plane and
3/2 2 @© 3j2
(5.8) m; ()= | ds= Y pm [ el gs
3/27ie0 £ (9) n=1 32—

72 o K(n)
= Y n3?(z—logn)

n=1

Thus mj (2) is meromorphic on the whole complex plane. The inversion of the
order of integration and summation is justified for ze H™ by the uniform
convergence of the integral and the series.

Now my (z) analytic for y < 0 we have to continue to y < = just as m, (2)
in Section 4. We have by the functional equation for {(s)

(5.9) my (2) = my; (2)+m3(2)
where

by — I z—log2r—in F(S)
(510) my, (Z) = — _1/25_‘.00 gz los2 /z)mds

is absolutely convergent for y < m and
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-1/2 ) re
(5.11) m;- (z) = — eS(2—|0321:+m/2) ds
" —1/5‘—1'@ {(1—s)
is absolutely convergent for y < 0.
Next we get
(5.12) o) _ll}ﬁw gste—togznrinzy T ()
. m Z) = — z—log2n + i, ds
' -1/2-iw C(I—S)
+ B 1/}'*'1'00 es(z—loan+in/2) F(S)
-12 {a —s)

=I{ (9)+15 (2).

It is easy to verify that the integral I (z) is convergent for y > —m. Since
my, (z) is regular for y < 0, the integral Iy (z) is convergent for —x <y <0
and we can apply Mellin’s inversion formula.
We have formally
@ ) 1/2+iw .
Il— (Z) Z 5 es(z—10321t+m/2+logn) F(S) dS
n=1

-1/2—iw

3

and by Cauchy’s theorem of residues

(n 14+ic0
s‘ es(z—loan+in/2 +logn) r (S) dS.

1-iw

(5.13) I7 (2) = i

To justify the inversion of the order of summation and integration for
—7n < y < 0, we will see that the integral and the series converge uniformly.
Since

. 2n
Ree—(z—1032n+ml2+logn) — -——xsmy > 0
ne

for —m < y < 0, using Mellin’s inversion formula we get

1+4+ic0

(5.14) | etzlos2ntini2¥logn) [ (q) s = 2mie®” "2l
1-io

and by (5.13)

(5.15) If@)=—2m ¥ @ee-zzmyn

n=1

where the series on the right is absolutely convergent for all y.
Finally, by (5.9), (5.10), (5.12) and (5.15)

(5.16) ml_ (z) = i ”( ) & ~2mi/n __ _}/2 es(z—loan—in/Z) r(s)

A [a-9%
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+ _llzj'ﬁm Me—tog2nin2) - ) r (s)
-1/2 " {Q —S)

which completes the continuation of m~ (z) analytic for y < 0 to the half-plane
y < T

6. Proof of Theorem 2. By (4.7) and (5.16) for |yl < =

6.1) m, (2)+my (2) = —4ni ”” e’)
n=1 \ n
It is obvious that
3/2 esz -1/2 Z
6.2) m,(z)+m; (z) = | ds+ | ds=0

~-1/2 £(s) 3/2 {(s)
and by (5.8) and Theorem 1

63) my (2)+m3 (2) =
Thus for |y} < ® we have

m@E@+m (z) = =2 Z ﬂc s(n ’).

Hence according to Theorem 1 for all y <=

m(z)= —m” (2)— i (n) s(zfe")

by the principle of analytic continuation and for y > —=x

m (z)= —m(2)-2 i %n)cos(z—ne“)

n

This implies that m(z) and m~ (z) can be continued analytically over the whole
plane as a meromorphic function. And for all z

6.9 m@+m- (z) = —22”M) (neﬂ.

To prove the functional equation (2.8) observe that if g is a non-trivial zero
of {(s) then so is g. For ze H we have
hf]
£(s) fs=

z 1 d"a‘l

m(z) = lim ——_[s—

moL G|l
O0<Ime<T,

and further setting s = o+it
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e
(s=or*7 (S)]m'

. l 5“‘7_1
mo =l L gl
0<Imo<Tn
Now since {(5) = m we get
. 1 51:,—1 L e.‘vi
mO=Jn L gD [‘S‘Q’k cm]m

0<ime<Tn

and finally

. 1 dke_l esi -
6.5 m(z) = "lg?o a % om(w[(s—a)k"c(s)]ﬁa =m"(2).

Next using (6.4) we have for ze H

m@E =m (2)= —m(z)—-2 Z (n) (n e i)
= —m(3)-2 Z ,u(n) (n e").

and by complex conjugation for ze H- and by the principle of analytic
continuation for z with Imz = 0. This proves (2.8).

Set
_ > pun) 2n _,
A(Z)— —2'.;17008(78 ).

Let z, = e % Then

Az) = -2 Z ”(n) (‘;%)

and since Y o>, u(n)/n = 0, we get

_ (—1)Qnz,)*
B 2,;, I (2k+1)

and if |z,] = r, then
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© (2 2k 3
(6.6) Az <3 Y ((;",:)' = S +e™—2) < 2677
k=1 :
Moreover, we have
- 2rr)*
AN =2 Y oprreksD)
and
4 2 2u)* 2 4 1
3 ir)| = - — Z(p2nr —2m__>_2m-
(6.7) |4 (ir)) 3';1 20! 3(e +e2™) 3> 3¢

for r sufficiently large. By (6.6) and (6.7) the order of A4 (z,) is essentially 1 and
the type is 2m.
Theorem 3 is a simple corollary of Theorem 2.
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