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On some complex explicit formulae
connected with the Mobius function. 11

by
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1. The present paper is a sequel to [1] and the notation of that paper is
used throughout. We show an application of the theory of the m-function
presented in [1].

The explicit formula which expresses the summatory function of the
Mobius p-function, M (x) = Y.<, #(n), in terms of the zeros of the Riemann
zeta function { (s) is well known. According to Titchmarsh ([5], p. 318) if we set

My (x) = (M (x—0)+ M (x+0))/2

then under the assumption of the Riemann hypothesis and the simplicity of the
complex zeros ¢ of {(s) we have

x° > (—1)y(2n/x)*

(D Mol = 2 072" B emint D)
where the sum over ¢ converges after grouping the terms into suitable blocks.
The main purpose of the present paper is to obtain the classical formula
(1.1) without assuming the Riemann hypothesis, as an application of the
analytic properties of the m-function presented in [1].
More precisely, we prove the following theorem.

THEOREM. There is a sequence T,, 2" ' T, < T, < 2" T, (n = 1), where T, is
an absolute positive constant, such that

. l dk9_1 ) e xs
(12) M,(x)= }L‘E,I %T (ko—l)!ds"""l:(s_g)k s (S)]m
Imo|<Th

© (1) @n/x
2= L Gapn{an+ 1)

where k, denotes the order of multiplicity of the non-trivial zero g of the Riemann
zeta function.
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2. In the proof of the theorem we shall need the following lemmas.

LemMA 1. (H. Montgomery, cf. [2], Th. 9.4)) For any given ¢ > 0 there
exists a Ty = T, (¢) such that for T = T, the following holds: Between T and 2T
there exists a t for which

K(@xit) P <c,tt for —1<0<2,
with an absolute constant ¢, > 0.

Remark on notation. Let T,, where

2.1 ', LT, <2'"T,, n=1,2,...
be such that by Lemma 1
(2.2 IE(@+iT) P <c, TYV?* for —1<0<2.

The function {(s) has no zeros on the line ¢t = T, of course. This yields the
grouping of the non-trivial zeros ¢ of {(s) which will be used in the present
paper.

The next lemma recalls some basic facts on the m-function proved in [1].

LemMAa 2 (see [1], Ths. 1, 2, 3). For z = x+iy, y > 0 we define the
m-function by the formula

(2.3) m@=1lm Y ;E[(S Q)k.,ﬁ]
) no P (k,—1)!dste? C(s) =g’
O<Ime<T,
where k, denotes the order of multiplicity of the non-trivial zero ¢ of {(s). The
function m(z) is holomorphic on the upper half-plane and can be continued
analytically to a meromorphic function on the whole complex plane, which
satisfies the functional equation

(2.4) m@z)+m(2) = 42,

where

A(z)= -2 i #—r(ln—)cos<2—ne")
n=1

n

is an entire function of order 1 of the variable z, = e™*. The only singularities of
m{(z) are simple poles at the points z = log n on the real axis, where n is a product
of different primes or n is equal to 1 with residues

res m(z) = —u(n)/2ni.

z=logn

Remark. In the previous note [1] we have chosen T, (n < 7, < n+1)in
such a way that

K@+iT) ' <c, T for —1<0<2
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where ¢, and c, are absolute constants. It is easy to see that all theorems on the
m-function are also true if we group the zeros of {(s) using Lemma 1.

LEMMA 3. The series m(z), z = x + iy, is uniformly convergent for y > 6 > 0,
almost uniformly with respect to x.

Proof We have

@ 1 dke"l e
m (Z) = ,,;1 ( g (kp _ 1)' dske— 1 [(S—Q)ka C (s)].‘:o)

Tn<Iime<Tn+1

1 gt e =
+ ; (ka_ 1)' dske—l [(S_Q)koc(s)]s=a = n;o mn (Z)

14<Ime<T,

4

where by Cauchy’s integral formula, for n > 1

3/2+iTh 3/2+iTn+1 —1/2+iTn+y “12+iTn sz
m,(2) = =—( + f o+ o+ )rods
" 2ni —1/2+iT, 3/2+iT, 3/2+4iTn+ —1/2+iTn+1 C(S)

= Mpy (Z) +my; (Z) +m,3 (Z) + My (Z)

For y 2 6 > 0 we have by (2.2)

324iTn oz 32 ox—Tay &31%/2 /2
[May (2)) = — —ds| < —do « u
" 2 |_ 1/25+i1‘n £(s) —g/z Il (a+iT)l e
1 [3/2+iTnss g2 T gy @31%I12
[m,, (2)) = — ] ds| « 3112 | =« (e”Trd—e~Tr+19)
" 2n 3/2+iT, £(s) Tn e’ o ’
3/2 X —Thn+1y 3|x[/2 12
e e 7;«(1
Imy3 (2)] < - do < ,
" —{/2 I (0 +iTo+ ) efn+1

Tn+1 dt e|x|/2
Mg (2)] < €2 5 < T(e‘T""—e'T"*“’).
Ta

Similarly we estimate mg(z) since
3/2+14i  3/2+4Ti  —12+Tii  —1/2+14i sz
m (2) = 5— + + +
0 2mi (—1/25+ 14i 3/2£ 14i 3/2£T1i - 1/25+ T,i) {(s)
and |{(6+14i) ' <c, for —1<a<2
Finallya we observe that Zrclo=0 Imnl (Z)I’ :°=O lmn2 (z)la :tn=0 |mn3 (Z)I and
Y20 Imaq (2)| are convergent for & > 0 and by the Weierstrass criterion the
series m(z) is uniformly convergent for y > é > 0 almost uniformly for all x.
The next lemma is a generalization of the classical theorem of M. Riesz [4].

LEMMA 4 (see [3], Th. 42). Let w, =a,+ib, (n =1, 2,...) be complex
numbers such that la,| < A, b, < b, <..., lim,,, b, = o0 and let c5 be an
absolute positive constant. Moreover, let the series

ds
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f@= Y A&, A,eC,

n=1

converge for y = Imz > 0 and satisfy the conditions

(2.5) | X A =0(y™%), N-oo,

n=N+1

for y—0* almost uniformly with respect to x = Re z, and

N .
26) |3 A, =o(1"), N-oo,
n=1
for y—0~ also almost uniformly with respect to x = Re z.
If f is holomorphic at the boundary point x,€R then the series
Y 1 A,exp (w, X,) is convergent to f(x,). Moreover, the convergence is uniform
on every compact real interval consisting of regular points of f only.

Remark. It is easy to verify that this lemma is also true if the series
converges after grouping the terms into suitable blocks. In [3] this lemma is
formulated with c¢5 = 1, but it is easy to see that we can take ¢; > 1 as well. In
the following we take cg = 2.

LEMMA 5 (see [3], Th. 4.3). Let f be as in Lemma 4. Suppose that for some
Xo€R, geC and ro, > 0 we have

f(z) = glog(z—xo)+h(z)

Jor |z—xy| < ry, Im z > O, where h is holomorphic in the whole disc |z —xy| < ry.
Then for T tending to infinity

A, e"* = —glog T—gC+h(xo)+gltz—l+o(l)

Imw,<T

where C is the Euler constant.
3. In this section we consider a function analogous to the series over the
non-trivial zeros of the zeta function in (1.1), but as a function of the complex

variable x.
For Imz > 0 we define # (z) by

(3.1) M(2) = j m(s)ds,

z+ioo

the path of integration being the half-line s = z+iy, 0 < y < co. For any a on
this half-line

M(2) = Jl(a)+;'m(s)ds.
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The function .# can be continued analytically along any path on the complex
plane not passing through the poles of the m-function. .# has logarithmic
branch points at z = logn, where n is equal to 1 or n is a product of different
primes (see Lemma 2). For those n there exists 1 = n(n) > 0 such that for
iz—logn| <n

(3.2) M(2) = —’;L’:?log (z—logn)+¢(2)

where g is holomorphic in the disc |z—log n} <  and depends on the choice of
the particular branch of #.
For a real x let us write

(3.3) My(x) = lim Re A (x+iy).
y=0*

From the above analysis it follows that this limit exists for every x which is
a regular point of #, and also for x = logn, where n is equal to 1 or n is
a product of different primes, by (3.2), since lim,_ ¢+ Arg(iy) = n/2. Further-
more, since for any x, > 0,lim, o+ Arg(xo+iy) = 0,lim, o+ Arg(—x,+iy) =7
and lim,_,+ Arg(iy) = n/2, we have

(3.4) Mo (x) = (Mo (X+0)+ Mo (x—0))/2

for every real x.

Let us remark that since the series m(z), z = x+iy, is uniformly conver-
gent for y > 6 > 0 almost uniformly with respect to x (see Lemma 3), we can
invert summation and integration in (3.1), and we get for Imz > 0

1 gre! i
(3-5) A@)=lm ) (k_—_l)!d—s"ﬂ“[(s_g)koszs(s)]=

0<img<T,

and further for Imz > 0

™s

36) M (2) = L A e
GO AD=( X t L g )(ko—l)!ds""‘l[(s_g) sC(s)]m

[
O0<img<T, Ta<lme<Tps+1

= i M, (2).
n=0

What we need is the uniform convergence of the series Y o, #, (2) for
Imz > 0. We have

LEMMA 6. For y = Imz > n > O the series Y o~ #, (z) converges to M (z)
uniformly with respect to y, almost uniformly with respect to x = Rez. Ify =0
and x is not equal to log n, where n is 1 or n is a product of different primes, then
the series Y 2o M, (x) is also convergent to M (x) and the convergence is uniform
in every closed interval containing no points of the form logn.

2 — Acta Arithmetica LVIL4
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Proof. The Cauchy integral formula states that for n > 1

1 | 32+iTw  3/2+iTnss  ~1/2+iTnss S124iTn  goz
M, (2) = o —( + § o+ 0+ § )
2mi —1/2+iTn  3/2+iTn 3/2+iTps1  —1/2+iTns1 s{(s)

= "/lnl (Z)+./”,,2(Z)+./I{n3(2)+.//{,,4(2)
where for y > 6 > 0 we have by (2.2)

3/2+iT, esz 3/2 eax—T,.y
G7 | My @) =— —~__ds| < : —_do
! 2n —1/25+iT,.SC(s) —{/2 lo+iT| Il (¢ +iT)|
eSIxI/Z
(<4

T2 ¢T3’

1 3/2+iTn+ esz 32 . Tn+1t dt
3.8 M = — dsl « 31112 7~ =
G8  Ma@l=5| [ e <E ] B
e s Tns1d
~Tnd_ ,~Tn+1
< 5T (e e )s
3/2 ™~ Tn+1y 312
39 M5 (2)] < - - do « >
G Ml < | o e T © < T e

Thn+1 dt el*2
(3.10) | M, (2) < 2 T2 f - < =

Tn 0T,
and similarly we estimate |.#, (z)|, since |{(6+i14)|"! < c, for —1 <o < 2.

Finally, we see that Y 2o |#,, (2)l and Y =2 ¢ |#,4(2)| are convcrgent for
6>0and Y2l M, (2) and Y 2o |-#,;3(2) for 6 > 0. Hence by the Weier-
strass criterion the series .# (z) is uniformly convergent for y > § > 0, almost
uniformly for all x.

Next we prove the convergence of the series ) o~ o .#, (z) on the line y = 0
at regular points of m(z). Let x # log n, where n is a product of different primes
orn = 1. Let us number the complex zeros of { (s) lying on the upper half-plane
according to increasing imaginary parts: g,, ¢, ..., o that Img, < Img,.,.
Let g, = o, +it, be the last zero before the line t = T, where

e+iTy| '« Ty? for —1<0<2

(e—T,.d_e—T,.ﬂa)

and where there are no zeros of {(s). We have by (2.1)
V2T S Ty-y <, <Ty <2V T, for N sufficiently large.

First we verify the condition (2.5) of Lemma 4. By Cauchy’s integral
formula, since

1 dko"l . e(s—ok)z —en
> mw[(s—e)" STO) l:o =e M, 1(2),

Tn-1<ime<T,




Complex explicit formulae connected with the Mdbius function. 11 301

using the estimates (3.7)«3.10), we get for y > 0

B@=| 5 ¢ g [( . )]
z) = —— o1 @
A - Pk R ArYa T
Tn-1<Ime<Thn
eSIxI/Z @ 1
A T
es\x2 (T Ve, T 1{2 © 1 )
< v + Ty + .
N N n=ne3 A (T —t)y

Further, since for n > N+3 we have T,_,—t, > T,-4/2 (T,-, =2 2" T,
=21 T, > 2T, > 2t,), we obtain

£SIxl2 1
B,(z) « 5 (2 N2y _ Z 2'3’"2> = o(y~?
N

yn N+3 -

for y—»0* almost uniformly with respect to x = Rez.
Next, applying (3.7)«3.10), we get

N 1 d"e‘l ' e(s—ak)b
) ] % ] (ka—l)!ds"v“[(s_e) sC(s) ]
n-1<Ime<T,

Az N 1
173 _y(Tn=
Iyl .= TV, T

e3|!|/2 N-1 1 e ¥YTn—1)
< 3 +

W S, /2 2eru-To THZ

and further, since for x > 0 we have € > x,

e3|x|/2 N-3
2 (2) « (

2(2) =

=e

<

2 /2" 2(: ~2"Ty)
1 1 ) 3152 o~ AT 1)
+ + +
V2T V2R -Th-y) W A
Finally, since for 4 <n < N—3 we have 2"~ 221, —=2"T}) > t,— T,,
ez 1 N-6 1
3 a7+ e
W \&—4T 20,-8T) &—To /2% *(t,—Ty_,)
1 e31x112 o=y (T —1)
+ + = o(h™?)
./2”"3(t,‘—TN_1)) M TE aow

because it is easy to see that all factors are convergent to 0 as N — oo, since
2T, <t, <2V T, and N/ty—To) - 0. The last factor converges to 0
-

G.11) B9«
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because Ty—t, < 8 for N sufficiently large and since y—0~, we can take
—y < c¢g where ¢4 is a positive constant. So, we have verified (2.6) — the
second condition of Lemma 4:

N 1 dko'l
(312 B,@=( Y +§ > )MW

14<imo<Ty n=2
Tn-1<lme<T,

els ez
X [(s—e)"" 570 ]:=o

for y—0~ almost uniformly with respect to x = Rez.
Hence by Lemma 4 according to (3.11) and (3.12) the proof is complete.

= o(yI™?)

N-wo

4. Proof of the Theorem. Suppose first that x > 0 and x is not equal
to a product of different primes and x is not equal to 1. Then by Lemma 2

My(x)=Mx) =Y pum)= —2rni Y, res m(z)

n<x n<x z=logn
and by Cauchy’s integral formula, since m (z) is regular at z = log x we have for
any a> 0
4.1) Mx)= | m@dz— | m(2)dz
I(—a,logx) (—a,logx)

where [ is a simple and smooth curve 7: [0,1]—>C such that —7(0) = q,
t(1) = log x and Im 7 (t) > O for t € (0, 1). By the functional equation for m(z)
(see (2.4)) we obtain

[ m@dz= [ m@di= | (-m@+A@)dz

i(—a,logx) {(—a,logx) (—a,logx)
=— | m@dz+ | A(@d:z
I(—a,logx) I(—a,logx)
and by (4.1)
4.2 M(x)=2Re | m(@dz— | A(2dz
I(—a,logx) i(—a,logx)
where
logx logx o
rn)
4.3) A(z)dz = -2 — dz = — o
l(—a‘,“logx) Ja nzl —j‘a nzl eZ C ( 2")
_ i (_ 1)n ((2.")2:: x~ 2n —(21! ea)Zn)
e 2n)!nl(2n+1) ’
In particular, by Cauchy’s integral theorem and (3.3)
logx +iy —a+iy
44 Re | m@dz=1lmRe( | — [ )m(z)dz

I(—a,logx) y—0+ logx+io —a+ico
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= lim Re(A# (log x+iy)— M (—a+iy)) = M ,(log x)— .M (—a)
y—=0+

because {°8%%i® m(z) dz = 0 by the uniform convergence of m(z) for Imz > 0

(Lemma 3).
~ Moreover, by Lemma 6 (the uniform convergence of the series Yoo M, (2)
for Imz = 0) we get

45) M, (logx) = Re li _ 14 pe >
4.5) o(logx) = i ; (k,—1)! dske~1 (s=0) sC(s) k=
0<im@<T,
and
o 1 de! LY
(4.6) #o(—a)=Re lim g (ka—l)!ds"e‘l[(s_gy SC(S)]F{

0<Ime<Tn

Therefore, by (4.2){(4.6) we obtain

@7 M(x)=2Relim ¥ 1 d —gfe ™"
' BRI S S k] R AT {O W
<Img<Tn

@© ( _ l)n ((21!:)2" x~ 2n__ (21t ea)Zn)
_,,; @nYnl(@2n+1)

for x # 1 and x not equal to a product of different primes.
It is easy to verify that

@8) 2Relim Y 1 a~ (5—offe—=
' mo 2 k—nidse 1| P TV 5T -,
O<Img<T,
. 1 d"e‘l x5 :l
= lim —— [ (s—g)re
2 %T (k0—1)!ds*=-l[( > TE ks
me|<Tn

since

1 k! x*
; (ko-l)!ds*e-l[(S“")kesC(s)Le

0<Img<T,
1 dke1 x*
B ; (ke—l)!ds“e‘l[(s_g)kesC(s)]Fg

0<Ime<Tn

and setting s = o+ir, we have further
1 ore—1 . X
- L (ke—l)!aa"v"[‘s‘g’ sc(s>l=a

O<lmo<T,
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1 ot [ X
L f=DiaFe [‘s“”k s‘{(s)]m

[4

0<Ime<T,
1 dret L X
= T% o(ko—l)!ds“v“[(s_e) sc(s)L,'
—Tn<lme<

Let k be a positive integral number and let C,, denote the rectangle
(—2k+1-iT,, 3/2—iT,, 3/2+iT,, —2k+1+iT,). Then, since

3/2+i ys
[ =ds=0 for0<y<1,
3/2~iw S
we have
lim ds=0
k= c;f,,. s{(s)
for 0 < x < 1 and by the calculus of residues since res;=o (x*/s { (s)) = —2 we

deduce that for any a > 0

1 dk,— 1 . (e-—a)s @ (ea)2n _
@9) lim 3, (k,—l)!ds*f‘[‘s"g)k SC(S)]S=9+,.§1(—Zn)C’(—Zn)-

|lmq| <Tx

Finally, by (4.7)4.9) for x > 0, x # 1 and x not equal to a product of
different primes we obtain

1 d"e‘l x3
@ Fum=lm T G—poa [6-0r 7).

I!moI<Tn
( 1)"(21[)2" —2n
—2- Z Cn)inl{@n+1)

Now, let x be a product of different primes or x = 1. Then log x is not
a regular point of m(s). We find by (4.5), (4.8) and (4.10) that

_1n2 2n . —2n
M, (log x+0) = §#(”)+1+ Z(2n'))r(zcn(2n+1)

_1;.2 2n .—2n
My(log x—0) = Z #(")'*'1'*' Z (2,,')),(,;()2".;.1)

and by (3.4)

1)" (21!',)2" —2n

(4.11) 2Jlo(logx)=M(x)~—#(x)+2+ Z Cn)nl@2n+1)
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Finally, using (3.2) we get

My (log x) = lim Re(log x+iy) = lim (—H—@Arg(iy)+Reg(logx+iy)>

y-0+ y=0*+ 2r
= —u(x)/4+Re g (log x)

and combining this with Lemma 5 and (4.8) we have

412) My(ogx) = i L a7 b X
(4.12) o(logx) = Lim %: WW[(S—Q) SC(S)]F,'
lime| <Th

(4.11) and (4.12) complete the proof of our Theorem.

Let us remark that if we choose T, in the way (2.1}2.2) in Titchmarsh’s
proof of formula (1.1) (see [S], p. 318), then we can omit the RH assumption,
too. But if we choose T, in the same way as Titchmarsh in our Theorem, then we
can obtain the explicit formula (1.1) without RH, but instead of Za x%/(e ¢ (0))
we will have lim,_q+ Y, e%**%%/(g [’ (g)), which exists as we have proved.
This means that our method permits us to omit RH in a more natural way.
Only in the proof of Lemma 6 (the almost uniform convergence of the series
YoM, (x) to M (x) for real x) we need the estimate (2.2) with & < 1.
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