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Introduction. Arithmetical properties of linear recurrence sequences have
been extensively studied in recent years.

The problems considered are: lower bounds (see [Ma], [Mil], [M.S.T.],...),
explicit computation of the zeros (see [Mi2]), bounds for the multiplicities (see
[B.T.], [Be], [Ku]), lower bounds for P(u,) (see [Ste], [Shol,...), explicit
computations of the repetitions (see [Mi3]),...

Several main tools are used in these studies: p-adic analysis (e.g. in [Ku]
and [Mi2]), hypergeometric functions (e.g. in [ B.T.]), linear forms in logarithms
(e.g. in [Mil], [M.S.T.], [Mi3],...), theorems on diophantine approximation of
algebraic numbers (Roth-Ridout theorem in [Ma], Roth-Schmidt—Schlickewei
theorem in [Ev] and [P.Sch.]). Among these tools the only one which
automatically leads to “effective” results is the theory of lower bounds for linear
forms in logarithms.

The second part of the survey [C.M.P.] is devoted to the arithmetical
study of linear recurrences. This is also the subject of several chapters of the
book [Sh.T.].

Many of these problems are much easier for binary sequences than for
ternary ones. Indeed, several problems on ternary recurrence sequences remain
open.

In Section I of the present paper we expose some preliminary facts
concerning a general linear recurrence sequence (u,). In Section II we develop
a practical and easily applicable method, based on p-adic arguments, for
solving (in the unknown n) an equation of the form u, = ¢ where ¢ is
a given rational integer. In Section III we consider equations of the form
u, = +pj'...pl" in the unknowns (n, y,, ..., y,), where {p,, ..., p,} is a fixed set
of prime numbers. We propose two elementary methods for finding upper

* Most of this work has been done while the second-named author held a visiting research
position at the University of Strasbourg.
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bounds for the exponents y,, ..., y, so that the solution of the above equation
is reduced to the solution of a finite number of equations of the type discussed
in Section II. These elementary methods depend of the existence of some
auxiliary primes possessing certain properties and, in this sense, they are based
on ad hoc arguments. Nevertheless, it turns out that they work in every
particular case we studied. In Sections II and III we give several numerical
examples.

Among ternary linear recurrence sequences, it seems that Berstel’s
sequence (b,), which is defined by b,=b, =0, b,=1, b,=2b,_,
—4b,_,+4b,_; for n > 3, plays a very special réle. Firstly, it is the only
known example of a non-degenerate ternary linear recurrence sequence which
has six zeros (by definition, a non-degenerate linear recurrence sequence has
only finitely many zeros). It was proved in [Mi2] that it contains exactly six
zeros. Beukers has just proved that six is the right upper bound for the number
of zeros of non-degenerate ternary recurrence sequences of integers. Secondly,
Berstel’s sequence contains many repetitions, indeed it was proved in [Mi4]
that the equation b, = t+b,, for rational integers m, ne Z, has exactly 21
solutions (m, n) with m < n, and these solutions were explicitly computed. For
the problem studied here, ie. the equation u, = +2"3° it seems again that
Berstel’s sequence has remarkable properties: we can prove that there are
exactly 44 solutions (n, r, s).

I. Preliminaries. We consider a kth order linear recurrence sequence (u,)
defined by

Ug = Cgy veey Up—q = Cx—1, Upip = Qg u,,+k_1+...+aku,,, n =0,1,2,...,

under the following assumptions:

() cgs ---» k=1 and ay, ..., a; are given rational numbers, g, # 0,

(i) the polynomial g(X) = X*—a, X* '—...—a,_; X —a, has k distinct
roots which we denote by w,, ..., o

Under the above assumptions it is a well-known fact (see [C.M.P.] for
example) that the general term u, of the recurrence sequence is equal to

1) u, = i o; 0f,

where each a; belongs to the field Q (w,, ..., ®,), and has the shape: algebraic
integer x (D (g))~'/%, where D (g) is the discriminant of the polynomial g (X).

Note that formula (1) permits us to extend the definition of u, to negative
n: if we put u, =u_, (for n=0,1,2,...), we have

Uprk = —(WG-r/a) tp -y —-..—(ay/a) up oy +(1/a) uy,.

From now on we will consider u, for ne Z.
For the study of (u,) we will work p-adically with an odd prime p which
fulfils the following conditions:



Arithmetical study of recurrence sequences 359

(P1) lal, <1 G=1,...0; la),=1;
(P2) D @), = 1;
(P3) uj,<1 (=0,...,k=-1).

Note that these conditions imply ||, < 1 and |, < 1fori=1,... k.

Let p be a prime satisfying these conditions. Choose a positive integer
S such that wf = A (mod p), for some A€Z and all ie {1, ..., k} and take the
p-adic (p—1)th root of a unity which satisfies a = 4 (modp). Then
o} =a(l+pp),i=1,...,k, for some B, ..., B, integral over the ring Z, (of
p-adic integers). Let m, Ne Z. Then

()] Um+NS = Z o, f TN = Z g o a (1+pp)

i=1 i=1

a0

=a" i Yoo M)ppi=a"Y N)p b

r= r=90

o
i
-

where
k
bmr = Z o; @y ﬂr

Note that b,, € Q, |bnl, < 1 for all m, r and b, = u,, for all m. In particular,
(3) Un+ns = a Uy = AN U (mOd p)

IL Solution of the equation u, = c. We want to find all the indices n for
which u, = ¢, where ¢ is a given rational number. Very often, in practice, we
know a finite set .# such that u,, = c for every m in .# and we want to prove
that .# is indeed the set of all indices m such that u, = c.

THEOREM 1. Let S and A be as above. Suppose we have chosen A in such
a way that the orders of A mod p and mod p? have the same value R. Suppose
that either ¢ £ 0 (mod p) or ¢ = 0. Let # be a complete system of residues
modulo S such that # = # and which satisfies the following conditions:

(i) u,, = c for every m in M,

(i) if u, = cA” (mod p) for some re{0,1,..., R—1}, then ne 4,

(iii) upn+s # Au, (mod p?) for every me MA.
Then u, = ¢ implies ne A.

Proof. Let a be the p-adic (p— 1)th root of unity such that A = a (mod p).
Note that our choice of A implies 4 = a (mod p?).

Suppose that u, =c. Take meZ? such that n =m (modS) and put
n = NS+m where N € Z. From (3), we have u, = up,.ys = A" u,, (mod p) and
condition (ii) implies me # =u,, = c. Thus, c = A" ¢ (mod p). Suppose ¢ # 0
(mod p). Then A¥ =1 (mod p), a® = 1 and u,—a"u,, = c—c = 0.1f c = 0, then
automatically u,—a"u, = 0. So, in both cases, using (2), we are left with
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[+

0=a"y )P b

r=1

If N # 0 then, after division by a"Np, we get

@ 0=bn+ Y (V) E—bn.
r=2

Since p is an odd prime, |p"~'/r|, < 1 for all r > 2, and (4) implies that p|b,,. It
follows from (2) with N = 1 that apb,,; = u,+s—au,, hence p*|u,.s—au,,
Together with 4 = a (mod p?) this yields p?|u,+s— Au,, contradicting con-
dition (i). Therefore, we necessarily have N = 0 and consequently n = me #,
as claimed.

We shall give several applications of Theorem 1 (see Examples 1 to
4 below).

Remark. In most cases it is preferable to choose a prime p among those
that split completely in the field K, because for such p the value of S divides
p— 1, while, for all other primes, S is generally of the order of p™ with m > 2. In
all the examples given in the present paper our prime p splits completely in K.

EXAMPLES. 1. ug =0, u; = L u, =0, 443 = —Upi—Uyy, +u, We want
to solve

) u,=0, neZ. -

We apply Theorem 1 with # = {0,2}, p=103,§=17, 2 ={0,1,..., 16}.
The only values of n in the range 0 < n < 16 for which u, = 0 (mod 103) are
those of the set .#. Thus, condition (ii) of Theorem 1 holds; u,, and u, 4 are not
divisible by 1032, which shows that condition (iii) is also true. Conclusion: (5) is
true exactly for n = 0,2,

2.uyg=u, =0,u, = 1, U4 3 = —Up43—Un+ +u, In this case, we want to
prove that

©) u,=0, neZ implies ne{0,1,4,17}.

Thus, in this example .# = {0,1,4,17}.

Note that for the application of Theorem 1 we cannot work with p = 103,
because, for this prime, § = 17 and u,,; = 0, which shows that condition (iii)
is not fulfilled. We work with p =163. Then S =54 and we can take
#={0,1,2,...,53}. With the aid of a computer (or even of a pocket-
calculator) one sees that the only values of n in the range 0 < n < 53 for which
u, is divisible by 163 are those belonging to .#, and then that for
ne sS4+ .# = {54,55,58,71} the integer u, is not divisible by 1632 According
to Theorem 1, these observations imply that (6) is true iff ne .#.

3. Same recurrence as in Example 1. We want to solve

] u = —2, nel.
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We apply Theorem 1 with the following choices: p = 103, S = 17, 4 = 56,
R=3,.4# =1{6,12} and ? = {0,1, ..., 16}. It is easily checked that conditions
(i) to (iii) of Theorem 1 hold, which proves that (7) is true exactly for ne 4.

4. Same recurrence as in Example . 1. We want to solve

8) u,=2, nekZ.

We take p =103, S=17, A =56, # = {—2,4} and 2 = {-2, — 1,0,
1, ..., 14}. It is easily checked that for 0 < n < 16 the only values for which
u, = 2-56" (mod 103) for some r are n = 4,15 [in fact r€ {0, 1, 2} since R = 3]
and therefore the only values n in £ for which the above congruence is valid
are those belonging to .#. Thus, condition (ii) holds and it is straightforward to
check also the validity of (i) and (iii). Thus, the only solutions to equation (8)
are n = —2,4.

II1. Solution of the equation u, = +4%'...q}". In this equation q,, ..., g,
are given prime numbers and y,, ..., y, are unknown non-negative integers.
A general and practical method of solution in the case of a second order
recurrence sequence has been developed by Pethé and de Weger [P.W.] and de
Weger [We]. For higher order recurrence sequences the development of an
analogous method is a very difficult task. However, if a specific equation is
given, then a practical method for finding explicitly all its solutions can be
based on the following result.

THEOREM 2. Let p, q be two different primes. Let S be a positive rational
integer such that ©° = A (mod p), with AcZ. Put # = {meZ; u, =0} and
suppose that the following condition is satisfied: there exists a positive rational
integer v such that

u, =0 (mod q*) = Ime .# such that n = m (mod S).
Then u, = 0 (mod q") implies that p divides u,.
Proof. Suppose u, = 0 (mod g*). Then, by hypothesis, there exists me .#

such that n = m (mod S). Put n = m+ NS. We know that u, = A" u, modulo
p (see (3)). Since u, = 0, this implies u, = 0 (mod p), as claimed.

EXAMPLE S. Let uy =u, =0, u, =1 and w13 = —Uppq— U1 +u, We
want to solve

9 u, =+2°, s20.

We first apply Theorem 2 with g =2, p =17, S = 32 (4 = 4). We observe
that
u,=0 (mod2* = n=0,1,4,17 (mod S)

and 0,1, 4,17 € 4. Therefore, by Theorem 2, if 16 divides u, then 7 divides u,.
This means that, in relation (9), we must have s < 3: we only have to solve the
eight equations u, = ¢ for ce{+1, +2, +4, +8}.
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The sequence u, is periodic modulo 53 with period-length 52. One ver-
ifies that we never have u, = —2, —4,8 (mod 53): this excludes the values
¢ = —2,—4,8. For the values ¢ = +1,2,4 we apply Theorem 1 with p = 53,
T=52,P={—-4,-3,-2,..,47 and # =3} if c= -1, M = {-2, -1,
2,7 ifc=1, #={-3,5}ifc=2 M ={—-428}if c=4

Then conditions (i) and (ii) of Theorem 1 are satisfied. Also, an easy
computation shows that condition (iii) of the same theorem holds too: we need
only to compute the values uss; Usg, Usy, Usa, Uso; Uag, Us7; Usg, Ugo Modulo
53% and check that they are # ¢ (mod 53%) for ¢ = —1,1,2,4 respectively.

Thus Theorem 1 implies that

u = —1 = n=3; u,=1=n=-2 -1217,

un=2:n=—3,5; u,,=4=>n=—4,8.

Finally, to solve the equation u, = —8, we apply Theorem 1 with p = 163,
T=162, # ={0,1, ..., 161} and # = {9} to see that u, = —8 iff n=9.
Final conclusion: the only solutions of u, = +2° are the following:

Ug=4, u3=2, u,=1u, =1,
uy=1,u3=—1,us =2, u;=1, ug =4, ug = 8.

Remark. In certain cases, instead of applying Theorem 2, we work as
follows (we keep the notations of Theorem 2): Suppose that g is relatively
prime to a,. Then (,) is a periodic sequence modulo ¢*, for any positive integer
v, with period-length Q, say. Moreover, suppose that (u,) is a periodic sequence
modulo some prime number p # g, with period-length equal to P, where
ged (P, Q) is not “very small”. Then the relation u, = 0 (mod g¢*) restricts the
values of the index n modulo Q@ — and therefore modulo P — to only a “few”
possibilities, say n = n,, ..., n, (mod P).

If we are lucky in our choice of the prime p, it can happen that p divides
u,, for every index j = 1, 2, ..., k, and in this case we get the same conclusion
as the one we obtained in Theorem 2, ie.

u, =0 (modq’) = u, =0 (mod p).

ExaMpPLE. Let ug = u;, = 0,4, = L, Ups3 = — Uy — Uy +u,. We want to
solve

(10) u, = £2'.

Take ¢* = 2* and p = 7, so that P = 32 and Q = 48, gcd (P, Q) = 16. The
relation u, = 0 (modq’) implies n=0,1,4,17 (mod P); ie. n=0,1,4,17
(mod 16) (here n, = 0, n, = 1 and n, = 4). It turns out that uy = u, =u, =0
(we need only the fact that u,, u,, u, are divisible by 7), which contradicts (10).
We conclude therefore that r < 3 and then we solve (10) for these values of r,
case by case, using the method of Section IL
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IV. Study of Berstel’s sequence. Based on the techniques developed in the
previous sections and using some ad hoc tricks (which can be tried with many
chances of success for analogous equations as well) we solved the equation

bn= i2y1,3yz’ y1:y2ez’

where (b,) is Berstel’s sequence: by = b, =0, b, = 1, byr3 =2b,.,—4b,4,
+4b,. The complete solution of this equation is given in the theorem below.
The details of the proof will be published elsewhere (reprints available on
request).

THEOREM. The only solutions (n, y,, y,) of the equation
b,=1+2"-32  nelZ,
where by =b, =0,b, =1, b,,3 =2b,,,—4b,+,+4b,, are the 44 ones listed

below.

n| =26 | =20 | —13 | —12 { —11 -9 -8 -7 -6

271834127113 13710321 =83 | 276 [ 2773 | 275 | 2763 [ 274

n| -5 —4 -3 -2 -1 2 3 5 7
bl 27¢ | 27% | 273 | 27 | 272 1 2 —22 | 24
n| 8 9 10 11 12 14 15 16 17
b| 2¢ —25 | —26 26 28 [ —283| 29 | 21t | pt03

n| 18 19 20 22 24 25 26 27 28

b _212 _2123 212 214 _217 218 21632 _2173 _221

n| 29 | 30 l 36 i 39 | 40 | 43 | 45 ' 91

b,

_218 l 2213 I _224 l225 33 |227 32 I 22832 |22932 | 26034
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