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The equation xyz = x+y+z = 1 in integers of a quartic field
by

ANDREW BREMNER (Tempe, Az)

1. Cassels [2] and Sansone and Cassels [4] showed that there are no
rational solutions of the Diophantine equation

(1) xyz =x+y+z=1.

Small [5] studies the equation over finite fields, and Mollin et al. [3]
investigate the equation over quadratic number fields, finding the finitely many
such fields K in which there does exist a solution for integer units u,, u,, u; of
K of the equation

ul u2 u3 = ul +u2+u3.

Bremner [1] has determined all cubic fields whose ring of integers contains
a solution to (1).

Here, we resolve completely the question of finding all quartic number
fields whose ring of integers contains a solution to (1). There are two infinite
families of such fields. The result is as follows.

THEOREM 1. Let K be a quartic number field with ring of integers Oy. Then
the equation

xyz =x+y+z=1

is solvable for x, y, ze O in precisely the following instances:
(i} The infinite family K = Q (6),

0+ —u+2)0P+2u0?+u+1)0+1=0, ueZ, u#1,
with solution up to permutation
X=—0—W—u+2)0*-2ub0—(u+1),
u—1y=—-0P—W—-u+1)0>+w*-3u+1)0+u-2),
wu—1)z=uP+@—u?+2u—1)0?+@w*+u—1)0+u>.
(ii) The infinite family K = Q (¢),
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P+ —u—2)¢p3+2¢*—(u+1)p+1=0, wueZ,u# +1,3
with solution up to permutation
x= - —(u—u—-2)¢d*-2¢+u+1),
w—1)y=—-¢*—W—u—-1)¢p*—@w*-u+1)d+u,
w—z=ud*+W@—u?-2u+1) P> +W* +u—1)¢p—u?.

2, Let K be a number field with ring of integers O,; suppose that x, y, z are
units of O, satisfying (1). Since

NormK/Q (x) NOl‘mK/Q (y) Norm’(/q (Z) =1

we may suppose, without loss of generality, that

2 Normgp(x) = 1.
Now

x+y+1l/xy=1
so that

V2@ +yx:—x)+1=0

and

[ 2 1 4
(3) 2y = —x+14+x 1—;+?—F.
Put
@ I/x=X

where X is also a unit of O, with, from (2),
(%) Normgg (X) = 1.
It follows from (3) that
1-2X+X2-4X*=W? WeDy,
so that P = (X, W) is a point defined over O, on the elliptic curve
6) E: 1-2x+x2—4x3 = y%,

Conversely, it is clear that a point P = (X, W), defined over Oy, on the
curve (6), with X a unit of O, gives rise via the transformations (3), (4) to a unit
solution x, y, z of the original equation (1).

Now the result of Cassels [2] and Sansone and Cassels [4] is equivalent
to the rational rank of (6) being equal to 0. Further, a simple calculation shows
that the rational torsion group on (6) is cyclic of order 3, with generator (0, 1).
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3. We first describe points on E, given by equation (6), that are defined
over a quadratic number field. '

It is easy to see that if a point P on E has coordinates in a quadratic
numbser field k, then k is of type Q(/1—2a+a>—40a?), for some (non-zero)
ae Q. For denoting the conjugate point under quadratic conjugation by P,
then P* = P— P is reversed under conjugation, and so is of type P* = (a, f \/E),
withk = Q (\/E), o, fe Q. But then d f? = 1 —2a+a?—4 a3, as required. More
precisely, we have the following.

LemMA 1. Let P € E with coordinates of P = (xp, yp) in a quadratic number
field.

Then either

) xp=t€Q—{0}, yp=./1-2t+12—4¢
or
8) xp+t(t—1)xp+t =0 for some te Q—{0}
with +yp = (2t—1)xp+1.

Proof. Take the straight line [ (defined over Q) through P and P. Then
| meets E in a third rational point Q.

If Q = o, the point at infinity, then [ is of type x—x, = 0, and (7) follows
immediately.

Otherwise, the only possibilities for Q are (0, + 1), and by replacing P by
—P if necessary, we may suppose that Q = (0,1). Then ! is of the form
y = mx+1, me Q, whence the points of intersection are given by

1-2x+x?>—4x3 =m?>x*>+2mx+1,

so that x, is a root of

. 4x2+(m*—1)x+2(m+1) = 0.
Putting m = 2t—1 gives

xp+t(t—1)xp+t =0, yp=Qt—1xp+1,

as required.

COROLLARY. If x is a unit of its quadratic field, then either (i) +P = (1,2i),
(—=1,2/2) or (i) +P = (i, 1+i), (=i, 1—i), (—1+./2, —443./2), (—-1-/2,
—4-3./2).

Proof If x is a unit of Z, then x = +1 and (i) follows from (7).

If x is a unit of a quadratic field, then Norm (x) = =1, so necessarily in (8),
t = +1 and the result follows.
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We now give a similar argument which deals with the cubic case, leading
to the result of Bremner [1] in a neater manner.
For suppose that PeE, with the coordinates of P = (xp, yp) lying in
a cubic number field.
Take a parabola through P and its two Q-conjugates, with equation
dy = px*+qx+r, d,p,q,reZ,d#0, (d,p,q,r)=1.

This parabola meets E in six points, two of which occur at o, and three of which
form a conjugate set over Q. The remaining point Q of intersection is thus
rational.

If Q = o, then p = 0 so that x, satisfies

2 (1=2xp+x3—4x3) = (gxp+7)?,
ie.
©) 4d*xp+(q* —d*) xp+(2qr+2d%) xp+(r*—d*) = 0.

If @ # o, then as before, we may suppose that Q = (0, 1). Then r = d, and x,
satisfies

A?(1-2x+x2—4x% = (px? +qx+d)*.
Removing the root at 0, x, thus satisfies the residual cubic equation
(10) PPx3+(2pq+4d) x3+(q*+2pd—d¥) xp+(2gd+2d%) = 0.

If now x, is to be a unit of the cubic number field, then in the first instance, at
(9) above, it follows that r>—d? = +44d?, which is impossible. So the second
instance must hold, and from (10),

(11a) +p? = 2qd+24d?,
(11b) p*|2pg+4 4,
(11¢) p?lq*>+2pd—d>.

Now (d, p) = 1, otherwise (c) leads to a contradiction of (d, p,q,r) = 1. Then (a)
forces d = 1 and 2| p; and (b) forces p|4 and 4 p. Consequently p = +2, and
(a) gives g = 1, —3. Hence the only solutions are (p,q,r.d) =(+2,1,1,1),
(£2, —3,1,1). The former pair returns X = xp of norm — 1, contrary to (5).
And the latter pair returns the cubic fields given in Bremner [1].

4. Suppose now that PeE with coordinates of P = (xp, yp) lying in
a quartic number field; further, we assume x, is a unit of the field. Take the
cubic curve I' through P and its three Q-conjugates, with equation

(12) dy = px*+gx*+rx+s, d,p,q,r,s€Z,d+#0, (d,p,q,r,s)=1.

Then I' meets E in nine points. Three of these occur at o, and four form
a Q-rational set. The remaining two points of intersection are thus defined (as
a pair) over Q.
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(i) Suppose that one of these points is 0. Then p = 0, and there is a further
zero at o. The quartic satisfied by x, is
d*(1-2xp+xp—4x3) = (qx3+rxp+5)?,
ie.
P xi+Qar+4d)x3+(r*+2gs—d*) x3+Q2rs+2d¥) xp+(s*—d?) = 0.

The requirement that x, be a unit, with Norm(x,) = 1, implies

(13a) q* = s?—d?,
(13b) q*12qr+44d?,
(13¢c) q?|r*+2qs—-d?,
(13d) 4| 2rs+24d>.

Now (q,d) = 1, otherwise (a), (c) contradict (d, g, r, s) = 1. Then (b) forces q|4;
and since d # 0, (a) gives ¢ = 4, (s,d) = (5, +3). But now (b) cannot hold.
Consequently no unit solutions x, arise in this instance.

(ii) Suppose the residual pair is individually rational. It cannot be the pair
{(0,1),(0, —1)} for then d =5, d = —s, forcing d = 0. In virtue of (i), we can
thus assume it is a double root at one of the points (0, +1). In any event,
d* =5s? and —2d?® =2rs, so that d = +5, r = —s.

The quartic satisfied by x, is

s2(1-2x+x2—4x%) = (px3 +gx* —sx+5)?,

ie.
PPx*+2pgx*+(q>—2ps) x*+(2ps—2gs+45*) x+2gs = 0.
The requirement that x, be a unit of norm 1 gives
(14a) p? = 2gs,
(14b) P*12pq,
(14c) p*lq*—2ps,
(144) P*12ps—2qs+4s.

Now (p,s) = 1 otherwise (c) gives (p,q,s) # 1 where (d,p,q,r,s) # 1. So (a)
gives s = 1, p2 = 2q. Now (d) gives p|4, 44p, and since 2|p, then p = 2¢
(e = £1), g = 2. Thus x, satisfies the quartic

(15) x*4+2ex34+(1—g)x®+ex+1=0.
Denoting a root of (15) by ©, we recover the following unit solution of (1):

7 — Acta Arithmetica LVIL4



380 A. Bremner

XxX=—0°-2:0%+(—1)O—¢,
(16) y=¢60%*+0,
z2=03+e0*—cO+(1 +5).

(ii1) If neither (i) nor (ii) happens, then necessarily the residual pair is not
individually defined over Q.

By Lemma 1, the intersection therefore contains either a double point at
x =t, te Q—{0}, or contains the pair of points corresponding to the roots of
x2+t(t—1)x+t = 0, e Q—{0}. In particular, the sextic polynomial represen-
ting the intersection of the curves (6) and (12) either contains a repeated root at
x = t, or contains the quadratic factor x%+t(t—1) x + t. Note now that p # 0.

The intersection is given by

17 (1 -2x+x2—4x3% = (px>+gx? +rx+s)2.

A rational root x = t implies 1 —2¢+t2—4¢3 is square, so that perforce ¢t = 0,
a contradiction.

Consequently, on writing (17) as a sextic equation for x, then it possesses
x> +t(t—1)x+t,te Q—{0}, as a quadratic factor. Since we are assuming x is
a unit of norm 1, the residual quartic is of type x*+ax3+bx*+cx+1,
a,b,ceZ. It follows that

(18) P> x+2pgx>+(q*+2pr)x*+(2qr+2ps+4d?) x> +(r* +2gs—d?) x?
+2rs+2d*) x+(s*—d?)
=p*[x*+t(t—Dx+t][x*+ax> +bx?>+cx+1].
By Gauss’ Lemma, p?[x2+t(t—1)x+t] has integer coefficients, so that
(19) t=u/p, ueZ, u#0, (up=1.

The right-hand side at (18) is [p? x% +u(u—p) x +up] [x*+ax3+bx? +cx+1],
and equating coefficients of powers of x,

(20a) 2pq = p*a+u(u—p),

(20b) q*+2pr = p*b+u(u—p)a+up,
(20¢) 2qr+2ps+4d? = p’c+u(u—p)b+upa,
(20d) r’+2gs—d? = p*+u(u—p)c+upb,
(20e) 2rs+2d? = u(u—p)+upc,

(209 s?—d? = up.

If n is an odd prime factor of p, then it follows easilythatp=gq=r=s=d=0
mod . Thus +p must be a power of 2. Suppose next p =0 mod4. Then
sequentially, (a) implies ¥ = 0 mod 4, (b) implies g = 0 mod 4, (c) implies d =0
mod 2, (d) and (e) imply r = s = 0 mod 2, contradicting (p, q,r,s,d) # 1.
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Since we can assume without loss of generality that p > 0, thenp = 1 or 2.
However, (a) implies p|u?, and from (19) we have (p,u) = 1. Necessarily
therefore p = 1.

Substitute into equations (20), and use (f) to eliminate d*:

(21a) 2g=a+u(u-—1),

(21b) @ +2r=b+u(—1)a+u,

(21¢) 2gr+2s =c+u(u—1)b+ua+4u—4s?,
(214d) r’+2gs = 1+u(u—1)c+ub—u+s?,
(21e) 2rs = u(u+1)+uc—2s%

Use (21a) to eliminate g, and, after multiplying (b), (c), (d) by s,s,s?,
respectively, use (21e) to eliminate r:

(22a) 4sb = sa®—2u(u—1)sa+duc+du(u+1)+@*—2u+u?>—4u)s—8s?,
(22b) (u(u+1)—2us—2s%)a+uac+(u?(u—1)—2s)c—2u(u—1)sb
+ut (W —1)—8us+(—2u*+2u+4)s*+8s° =0,
(22¢) w?cr+2ul(u+1-2s*)c—4us’b+4s°a
Fu? (Ut 12— 4@+ 1) s> +du(u—1)s® = 0.

Use (22a) to eliminate b: there results

(23a) —(u—1)sA2+2uAC+4(3u—1)s(s*—u) = 0,
(23b) -2 A2+ Ut CP -4 (WP -1)(s>—u) =0
where

(24) A=ua—(u?(u—1)+2s),

(25) C=ctu+1-25—25.

Multiply (23b) by A2, and use (a) to eliminate C (recall from (20f) that
d? = s*—u):

26)  S(A2—4d)(— P +2uP—u+d) A +4u(Bu—1)*d?) = 0.
If s2(A%>—4d?) # 0 then it follows that
W -2u*+u—4) A2 =4uBu—-1)>24?

_‘ 2
(1-2+4-2) - (200204,
u u u u

so that
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which in virtue of the remarks of the final paragraph of Section 2, forces
A =0=2Bu—1)d, a contradiction. Accordingly, s*>(42—4d? = 0 and we
have either I: A =2des (= +1), or II: s =0.

Case L If 4 =2d¢, then (23) gives C = —2sde. Solving (24) for a,

27 a=2/s—de)+u(u—1)

and from (21a),

(28) qg=1/(s—de)+u(u —1).
Thus

(29) s—de=a= +1

so that

30) st+de=au

whence solving (29), (30) for s, d,

(31) s=a(u+1)2, de=au-1)2.

Solving (25) for ¢, (21b) for b, and (21e) for r, gives the following parame-
trization:

p=1,
g=u(u—1)+e,
r=(a/2+1)u—a/2,
s=ou+1)2,

(32)
de =a(u—1)/2,
a=uu—1+42a,
b=(@+Du+(l—a),
c=oa(u+1).
Taking « = +1, « = —1, gives the respective triples
(33) (a,b,¢c) = W>—u+2,2u,u+1), @W-u—-2,2, —u—1).

An elémentary exercise shows that the quartic of which x; is a root, namely
x*+ax®+bx?+cx+1, is irreducible precisely for u # 1 in the first instance at
(33), and u # +1,3 in the second instance at (33).

It is now possible to recover a solution of the original equation (1), via the
transformations (3), (4).

The first case at (33) leads to the following,
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Let ueZ, u # 0,1, and define
(34) O+ W —u+2)0P+2uf+u+1)6+1=0.
Then
x=—0P—W—-u+2)0*-2ub—(u+1),
(35) w—-1y=—-0—w—u+1)0?+w>*-3u+1)0+u—2),
=Dz =u®P+@—u>+2u—1)0+@>+u—1)0+u>.

Notice again that the quadratic equation giving (3) ensures that y (and hence z)
is both an algebraic integer and a unit, so that despite the appearance of
denominators at (35), there is an automatic guarantee of integrality. (It can in
fact be shown that the equation satisfied by y is

yr—u+3)y +4uy*—(ur+u—2)y—1 = 0;

the equation for z is left as an exercise.)
Similarly, the second case at (33) leads to the following:
Let ueZ, u+#0, +1,3; and define

(36) S+ —u—2)>+2¢*—(u+1)p+1=0.
Then
x=—@—W—-u-2)¢>-2¢d+(u+1),
37 w—1)y=—-¢*—W—u—1)¢*—(w?—u+1)d+u,
wu—z=ud>+@>—u>-2u+1)P?+W?+u—1)dp—u?,

where, as above, y and z are both integers and units of Q (¢).
Case II. If s =0, then (21e) implies

(38) c=—u—1.

The- equations (21) become:

(39a) 2g=a+u(u-1),

(39b) P+2r=b+uu—1)a+u,
(39¢) 2qgr =u(u—1)b+tua+3u—1,
(394d) r=ub—u+1,

with, from (20f),

(40) d> = —u.

Use (39a) to eliminate g in (39b):
(41) 2r=b-3%a*+iuu—-1)a-3u®>u—1>+u.
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Use (39a), (41) to eliminate g, r in (39¢):
42 b@Ea—tu@u-1))=4a-du—-1a®+(—-4u*w—1>+%u)a
| +@u -1 —tu? u—1)+3u-1).
Then, using (41) to eliminate b,
43) r(a—u@m-1))
=tu@—-1a*+(-3v* -1 2+u)a+(} v’ -1 - u—1)+3u—1).
Using (42), (43) in (39d), there results after simplification
44 [WP-2u*+u—4)(a*-2u(u—1)a)
+(@P u—1)*—4u? (u—1)*+4(3u—1)?3)]
x [ua® -2 u? (u—1)a+(u’ (u—1>+4)] =0.
If the first factor is to be zero, then
@W—-2u*+u—4)(a—u@@—1))>+4(3u—1> =0,
so in particular
45) —ud4+2ul—u+4=0%, velZ.

The elliptic curve represented by (45) has rank 1 (and there are integer points
foru = 0, 1, —15); however, in virtue of (40), we are only interested in the curve

of genus 2 represented by
(46) dS+2d%+d*+4 = v%.

But the only integer points on the curve (46) have d = 0, for it may be written

in the form
@ +dP+4 =17

which clearly forces d*>+d = 0, i.e. d = 0. Since we assumed d # 0, only the

second factor at (44) may be zero.
In this instance, then

ua’-2u(u—a+u(u—17>+4 =0,

that is,
47 ula—u(u—1)>+4=0.
Using (40),

d(a—u(u—-f)) =2g &=+1,
so that

ula—u@—1) =2de
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and from (24),
A=2dg;

thus this instance has been covered by Case I
Theorem 1 now follows from the solutions (16), (35) and (37) noting that
the solutions at (16) are the particular cases of (35) and (37) at u=0.
The discriminant of Q(0) at (34) is equal to

—(u—12@u"—5u8—6u>+77u*—304 u + 725 u? — 1006 u + 643);
and the discriminant of Q(¢) at (36) is
u+12@u"—35u+102u°—69 u*—216 u> +499 4> — 402 u + 117).

I am grateful to H. M. Edgar for drawing my attention to this problem.
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