ACTA ARITHMETICA
LVIIL1 (1991)

On Entry 8 of Chapter 15 of Ramanujan’s Notebook II
by

Dieter KrLuscH (Kiel)

1. Sections 1-7 of Chapter 15 of Ramanujan’s second notebook [9] are
Mainly devoted to asymptotic expansions of series [3]. At the beginning of
Section 8 Ramanujan indicates a method of calculating the error in the
asymptotic expansion

(L1) Y e —=1)"t=R@+o0(l) (t—-0+)

nzl

Where

(12) R(t)=2—i+%\/§((§)+%.

He gives the hint that the identities ([4], [6))
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(13 T = o
) 3 i‘) {9;(0]r)— 1} cos ardr ugl e o
_ n sinh(n,/2a)—sin(n,/2a)
2./2acosh(n./2a)—cos (m, K2a),
Where ¢ > 0 and 9, (0}z) is Jacobi’s elliptic theta function of zero argument, can
used to prove the following exact formula extending (1.1):

ENTRY 8: If © >0, then
@) ¥ (-

n=1
T 12 Jeos (n/4+2n /nn 'r)——e'z“‘"‘_"ﬁcos(n/4]
=R(@)+ [=— > n - ;
2 cosh (2r./mn/t)—cos (2n./nn/)
That such an exact formula exists is ‘truly remarkable’ ([4], p. 124). B. C.

Berndt ([2], pp. 50-51) called (A) ‘one of the most interesting and incredible

Ormulas in the notebooks’ representing an analogue of the well-known
transformation property of 35 (0]7).
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Entry 8 was proved by B. C. Berndt and R. J. Evans in [4]. Their method
of proof is mainly based on Poisson’s summation formula, the transformation
of 9,(0jr) and the equations (1.3).

It may be surprising that there is an eclegant alternative exact formula of
type (A) which we will prove and generalize in the present small note.

2. Note that (A) can be rewritten in the form ([4], p. 125)
@) Y-

nz1
—R@+} [T Z _m{sinh(zu\/M)—sin(zu,Xm:t)_i}
cosh (2 /nmjt)—cos (2r/nnjr) )

n;l
We prove: If 7 >0, then

e o302 sinh (\/nr/n)—sin (/nt n)}
® ZE -0 =Re+H 2 {msh(\/nt/n)—cos(J nz/n) '

Remark. Obviously (A) and (B) yield a new deep transformation
formula for the infinite series on the right.

Proof of (B). Instead of the first equality in (1.3) we use ([11], p. 24)

n=1 Maz1

valid for —1 < Res = ¢ < 0. Then the partial fractional expansion

(-1 = 1—~%+2Jc Y {4n?n*+x*}"!  (xeR")
nz1

and Mellin’s inversion theorem yield

e 2 x{4nPn®+x*} 7 = — j r(s){(s)x"*ds
n=1 {fl
where xeR*, (c) denoting the line (c—ico, c+iw), ce(—1,0). Thus in-
troducing the real parameter te R*

2.1) 2t ¥ x*{dn?n? + x4} = ZLI T () (s)x~%*¢ ™

nz1 {c)

Observe the absolute convergence of ) > (k" for Res < —1/2. Then we get by
(2.1)

m?

2.2) o@®=2tY ¥
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with

(23 I(t)=— I I ()L () (2s)7*ds

T (o)
Where ce(—1, —1/2).

The inversion of summation and integration is justified by the asymptotic
€quality

(24 [T (o +it)] ~ (2m) /2e~™2 |g]o= 12 (|t] = o0)
Uniformly in any finite o-interval of R, and by
@5) Ls)=0(*) (eI = o0)

in any half plane ¢ > o, with constant u = pu(e,).
Equation (2.2) is the key. By absolute convergence we can invert the order
of summation on the left of (2.2) to obtain with the right equality of (1.3)

2

26 = l -
) L :;1 4n’n? m=1 ”'4"'(7/2“)2

2 a2 {sinh(M)—sin (\/,?/n)}
4 a1 cosh(\fm/n}—cos{\/M) '

Now consider I_(7). Note that the integrand
@7 Y =TEEHE)T™ @ >0)

1S meromorphic in C with the only simple poles at s =0, 1/2, 1. The simple

Poles of I'(s) at a = —n (neN) are cancelled by the simple zeros of {(s) at

$= _2n (neN). The sum of residues is (1.2). Thus by (2.4) and (2.5) the
hragmén-Lindelsf principle and Cauchy’s theorem yield for (2.3)

28 I.(t) = R()+1.(v)

Where ¢ > 1, ce(—1, —1/2).
But for ¢’ > 1, xeR* we have the inverse Mellin transform

9) (e-1)"1'= ﬂ § T (s){(s)x"*ds.
)

Hence by (2.4) and (2.7) we get for 1 >0, ¢'> 1

2.10) Y@ -1t = 2— [ ¥(s)ds = L. (v).

n21 Fe
Thys formula (B) is proved.
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3. We turn to a generalization of (B). Let  denote the vector space of all
arithmetical functions f: N - C. For f,geQ and g,ne N define ([1], §8.3)

(3.1 s,(n) =Y f(d)g(q/d).

d|(n.q)

Then s,(n) is periodic modq and represents a generalization of Ramanujan’s
exponential sum [10] :

(3.2) c,(n)= Y exp{2nink/q} = 3 du(q/d).
Lsizy d(m.a)

We prove: If >0 and s,(n) is defined by (3.1), then
© X smEer-1)""= ?f(dlg(q/d)R(dzﬂ

n=1

1 [t ... (sinh(d/Tn/n)—sin(d | /m/n)}
% dyd 32 .
+4 n dzqu(d]g(q/ : ,.;1 " {cosh(d, /tr/n)—cos(d./tr/n)

Remarks. (i) Take ¢ =f(1)= g(1) =1 in (3.1). Thus (C) contains (B).
(ii) (C) may be regarded as the absolutely convergent generalized Mel-
lin-Ramanujan expansion for the function on the right of (C) (see [7], [8]).

Proof of (C). We require a generalization of the Ramanujan—Crum
expansion ([11], pp. 10-11; [5])

(3.3) Y e, (mn = C(S)ZIIP(Q/d)d'—’ (Res > 1).
nz1 diq

This is given by ([8], (3.2))

(34) );, So(mn™ = C(s)}f (dg(g/d)d™ (Res>1).

Since s, (n) is periodic mod g the series on the left of (3.4) converges absolutely
for Res > 1. Thus (2.7), (2.9) and (3.4) yield for geN and ¢’ > 1

£ T s —1)"" = ﬁ § ¥ (&)X f(d)g(g/d)d™*ds
nx1 ) a
=Y f(d)g(q/d)I.(d*).
dlg

By (2.8) we get
(3.6) Y s, e —1)"" =Y f(d)g(a/d{R @)+ (d*7)}

a1 dlq

with ce(—1,—1/2) and R defined by (1.2).
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By (2.2) and (2.6) we have
(.7) % S e/ @)
q

1z _ sinh (d./tn/n)—sin (d./Tn/n) }
— JEE d 32 ]
4 \/; % fdglaid) -);:1 " {cosh (d\/ tr/n)—cos(d./tn/n)

Thus by (3.5143.7) formula (C) follows immediately.
From the great variety of possible choices of the functions f, g€ @ in (C) we
_el'? only mention briefly the interesting case when s, (n) reduces to Ramanu-
Jan’s exponential sum (3.2), i.e. when f(d) = d and g(d) = u(d) in (3.1). Observe
;E’:l]t Euler’s totient function ¢ () is given in terms of the Mdbius u-function by
» P. 26)

¢(q) = Y du(g/d) (qeN).

dig
Thus (C) yields the exact formula

nz1

2 ] 1 2 2
‘(D) Y c () (e™~1) 1=ZWQH%\/%C(%)}:ﬂ(d)+g;2d~;p(g)

dig dlg
+lﬁ Y d'2y (Q) 5 (g)m {Sinh (d\,fm/n)—sin(d,fm,’n)}'
AN g d/ s \n cosh (d,/mt/n)—cos (dy/nt/n)

This is an ordinary Mellin-Ramanujan expansion in the sense of [7]. For
9=1, (D) yields again (B). For ¢ =2 we have c,(n) = (—1)". Since

1, g=1,
n(d={
E ) 0, ¢g>1,

(D) reduces to the exact formula for the alternating case of (B):
(B'} Z (_l)n(etnz_l)-l

nzl

= 1_“_Z+l\/£zdm,u (2) Y (g)m{sinh (d/nr/n)—sin(d\/nt ")}
4 12t 4 T 412 d)Si\n cosh(d./nt/n)—cos(d./nt/n) '
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Constructions of B, [g]-sequences
by .
TorLElV KL@VE (Bergen)

L. Introduction. A (finite) B,[g]-sequence is a sequence & = (a,,4,,4a,, .-, a;)
of integers such that no integer has more than g representations as sums of
Summands from a. A survey of results on B,[1]-sequences (up to 1966) is
8iven in Chapter II of [5]. Recent papers on B, [g]-sequences include [4].
Without loss of generality we may assume that

O0=agy<a, <a,< ... <a,.

Asf*llmilflg that a sum contains the summand a; x; times, the sum may be
Written as }J.ox;a; where Yj-ox;=h. Since a, =0, we have YJ_ox;q;
:ZJF. 1x;a;. Further )J_;x; = h—x, < h. Hence we get the following precise
cfinition of a B(g, h,J)-sequence (B,[g]-sequence with J+41 elements): Let
J
Ch, J)= {% = (x4,%;,...,%,)| Xx; non-negative integers and Y x; < h}.
ji=1
Further, Jet

J
D, = D, (a) = {eC(h,J)| ¥, x,a; = k}.
=1

The sequence d = (a,,a,,d,, ...,a,) is a B(g, h,J)-sequence if |D,| < g for all
Mtegers k > 0.
Let
N(g,h,J) = min{a,| (ay,a,,a,, ...,a,;) is a B(g,h,J)-sequence}.

A B(g,h,J)-sequence (aq,a,,a,,...,a;) where a,= N(g,h,J) is called
Optimq|,

The main emphasis in the published literature has been on the behaviour
EiN (g,h,J) for fixed g and h and varying J, in particular the asymptotic
. ha_viour when J — co. In this paper we consider mainly the situation with

arying h, in particular the asymptotic behaviour when h - .

It is easy to see that (0,1,h+1,(h+1)*, ..., (h+1)’"") is a B(1,h,J)-

**quence. Hence

(1) N(g,h,J) < N(1,h,J) < (h+1)"1.
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