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Constructions of B, [g]-sequences
by .
TorLElV KL@VE (Bergen)

L. Introduction. A (finite) B,[g]-sequence is a sequence & = (a,,4,,4a,, .-, a;)
of integers such that no integer has more than g representations as sums of
Summands from a. A survey of results on B,[1]-sequences (up to 1966) is
8iven in Chapter II of [5]. Recent papers on B, [g]-sequences include [4].
Without loss of generality we may assume that

O0=agy<a, <a,< ... <a,.

Asf*llmilflg that a sum contains the summand a; x; times, the sum may be
Written as }J.ox;a; where Yj-ox;=h. Since a, =0, we have YJ_ox;q;
:ZJF. 1x;a;. Further )J_;x; = h—x, < h. Hence we get the following precise
cfinition of a B(g, h,J)-sequence (B,[g]-sequence with J+41 elements): Let
J
Ch, J)= {% = (x4,%;,...,%,)| Xx; non-negative integers and Y x; < h}.
ji=1
Further, Jet

J
D, = D, (a) = {eC(h,J)| ¥, x,a; = k}.
=1

The sequence d = (a,,a,,d,, ...,a,) is a B(g, h,J)-sequence if |D,| < g for all
Mtegers k > 0.
Let
N(g,h,J) = min{a,| (ay,a,,a,, ...,a,;) is a B(g,h,J)-sequence}.

A B(g,h,J)-sequence (aq,a,,a,,...,a;) where a,= N(g,h,J) is called
Optimq|,

The main emphasis in the published literature has been on the behaviour
EiN (g,h,J) for fixed g and h and varying J, in particular the asymptotic
. ha_viour when J — co. In this paper we consider mainly the situation with

arying h, in particular the asymptotic behaviour when h - .

It is easy to see that (0,1,h+1,(h+1)*, ..., (h+1)’"") is a B(1,h,J)-

**quence. Hence

(1) N(g,h,J) < N(1,h,J) < (h+1)"1.

L
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" Let
@ cg,d) = liminr%- £(9.) = hmsupiixhai}-

h—w h—
Clearly, (1) implies that ¢(g,J) <1

2. Known bounds. Kriickeberg [6] proved both lower and upper bounds
on N(1,h,J). His lower bound generalizes to the following.

THEOREM 1. For all g, h, J we have

N(g,h,J)?%{é(J:h)—l}.

In particular c(g,J) = 1/(gJ!).

Proof Let (a,,a,,...,a;) be a B(g,h,J)-sequence. If (x;,x;,...,X;)
€C(h,J), then 0 < }J-yx;a;< ha;. Hence |C(h,J)| < g(ha;+1) and so

1 1(1 /74
aJ?h-(?C{h,J)l—l):E{;( ' )—1}.

Chen [2] gave stronger bounds on N(1,h,J):

N hJ) > {i mi. (J “)(m 1)(" ":“‘)} if his even,
N(1,h,J) > I{J+(h ¥y (JH)( ‘ l)(J_:J“")} if b is odd.

k=1 m=1

From this we can derive

3) 9(1,1);ﬁ(2f).

The best known lower bounds on N (g,2,J) are due to Chen and Klgve [3].
Recently, Hajela [4] proved a lower bound on N (g, h,J) using trigono-
metrical polynomials. His formulation of the bound is such that it can not be
immediately compared to the bound in Theorem 1. However, we will show that
Hajela’s bound is weaker than the bound in Theorem 1.
Let F=J+1 and n= N(g,h,J)+ 1. Then Hajela’s result is

4gm(h!)m . ({zmn2+1/m)l!{2hl)2
meN

<
¥ Bn)ih 2—1/m

or equivalently
2%"gh! 2mn’+1/m _ gh! 2mn®+1/m

h
@ PSS o= m™ ~ - e

for all integers m 2 1,
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From Theorem 1 we get

1(1/0+h 1 (J+1)"

el LF 1P
h hg h!'”~ hg h!
and so
(5) F* < hgh'n.
W wiil show that (5) is stronger than (4). First, we note that for all integers
m>1 we have

1 1 2h 1 1 2h 1 1 2h+1 1
“l1=—} 1— =—(1——r <—
m 2m h+1/2 2h+1 h 2h+1 he

and go

m
< e(i=1/amp™
Herlce, from (5) we get
m gh! 2mn? gh! (2mn?+1/m)
(1= 1/@m)™  2en (1—1/@m)>* ~ 2en (1—1/@m)*

for a1 m = 1, which gives an improvement over Hajela’s bound (4) by a factor
2/3~ 18,

Bose and Chowla [1] proved that if ¢ is a prime power, then

F* < gh'n

-

N(l,h,q—1)<¢"—1 and N(1,h,q) <(q'-+'_'1)/(q—1)
Thege upper bounds are quite weak when h is large compared to J. E.g. they
Bive N(1,h,2) <2"*'—1, whereas (1) gives N(1,h,2) < h+1.
3. Some new constructions. Our first construction is a simple observation.

ConstrucTiON 1. If (@, = 0,a,,4a,, ..., a,) is a B(g, h,J)-sequence, then so is

(Ova_{_a}—lta.l_a.f—h vonry aJ_a]’aJ)'
Proof. Define x* by

xF=x;_; forl1<g<j<J-1,

x}‘xh-—i X;.

i=1 _
We note that if xeC(h,J), then Z*eC(h,J). Further,
J J 1
Y xla,—a;_)=k if and only if Y x¥*a,=ha,—k.
j=1 j=1
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Hence
J
{xeC®h, Nl 3 x;(@,—a;-) = k}| = |Dpay -4l S g  for all k.
j=1

CONSTRUCTION 2. Let h>2. Let (0,ay, ..., a;) be a Blg,,h,J)-sequence
and (0,by, ..., by) a B(g,,h,K)-sequence with b, > 1. Let A > (h—1)a,. Then
0,ay,a;, ..., a;,Aby, Ab,,..., Aby)

is a B(g,4,,h,J +K)-sequence.
Proof The elements of C(h,J+K) are of the form (x,j) where
% =(X{,Xg,...,X,) and §=(y;,¥3,..., y)- In particular, xeC(h,J) and
jeC(h,K). Let k=rA+s where 0 <s < 4. If (x,y)eD,, then
J
Y. x;a;=s (mod A).
j=1

Since 0 < Y j-1x;8; < ) j=1%;a; < ha; < 2(h—1)a; < 24, this implies that

J K
(6) Y x,a;=s and Y yb;=r
i =1 =1
or
J X
(7) Z x;a;=A+s and Zl’jbj=?'—1-
=1 . J=

Since there are at most g, X€ C(h,J) and at most g, ye C (h, K) such that (6) if
satisfied, there are at most g,g, (X, 7)€ D such that (6) is satisfied. Similarly,
there are at most g,g, (X, y)eD, such that (7) is satisfied.

We now show that (6) can be satisfied only if r # 1 and (7) can be satisfied
only if » = 1. This then proves that |D,| < ¢,9,. First, if (6) is satisfied, thes
YK 1y;b; =r. Since b; > 1 for all j, this implies that r =0 or r > 1,ie. r# 1-
Next, ‘suppose that (7) is satisfied. Then

J J
a; Yy x;= ) x,a,=A+s> A>(h—1)a,,
=1 j=1
ie. YJ-1x;>h—1, and so }j-,x; =h. Hence y;=0 for 1 <j<K. This
implies that

J K J
rA4+s= Y xa;+ Y, y;Ab;= ). xa;=A+s
i=1 j=1 j=1
and hence r= 1.

To get building blocks for Construction 2 we need good short sequence?
We first determine the optimal B(g,h,1)- and B(g,h,2)-sequences. Next wé
construct some good B(g,h,3)-sequences.
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THEOREM 2. For g > h+1 we have N (g,h,1) = 0, and (0,0) is the optimal
B(g, h, 1)-sequence.
For g < h we have N(g,h,1) = 1, and (0, 1) is the optimal B(g, h,1)-sequence.

Proof. Trivial.

THEOREM 3. For g > (h+2)(h+1)/2 we have N (g,h,2) = 0, and (0,0,0) is
the optimal B(g,h,2)-sequence.
For h < g < (h+2)(h+1)/2 we have N(g,h,2) = 1, and (0,0,1), (0,1, 1) are
the optimal B (g, h, 2)-sequences.
For g < h we have N(g,h,2) = [(h+1)/g] , and the optimal B(g,h,2)-
Sequences are (0,a, [(h+1)/g7) for all a such that 1 <a< [(h+1)/g] and
gcd(a, r(h-}-l}/g-l):l. '

Proof. The part with g > h is trivial. Consider g < h. First, we show that
N(g,h,2) > h/g. Consider (0,a,b) where 0 <a<b < h/g. For 0<a<g we
ve ab>0, ga—aa =20,

ab+(ga—oa) = a(b—a)+ga < g(b—a)+ga= gb<h,

and (xb)a+(ga—wxa)b = gab. Hence (ab,ga—aa)e D,y for 0 < a < g and so
ID,.s| > g+1. Therefore (0,a,b) is not a B(g, h,2)-sequence. This proves that
N(g,h,2) > h/g, ie. N(g,h,2) > [(h+1)/g] .
~ Next, consider (0,a,b) where b= [(h+1)/g] and ged(a,b) = 1. Con-
Sider D, for some k such that D, is non-empty. Let (y,,y,)€ Dy be such that
V1< x; for all (x,,x;)eD,. Let (x;,x;)eD,.

Then

@®) Xy@+x,b = yia+ysb.

In particular x,a = y,a (modb). Hence x, =y, (modb), and so x, = y, +ab,
Where o >0 by the minimality of (y,,y,). Substituting in (8), we get
X, =y,—o0a. Further, h>x,>ab, and so a<h/b<g. Hence D,
S {(y,+ab,y,—aa) 0 <a<g} and so [D,| <g.

_ Finally, consider (0,a,b) where b= [(h+1)/g] and d =ged(a,b)> 1.
Similarly to the first part of the proof we get

b a a
(EE,QE“GE)ED';;

for 0 < o < g. Hence (0,a,b) is not a B(g, h,2)-sequence.

CONSTRUCTION 3. The following sequences are B(1,h,3)-sequences.
(i) If h is even, 1 <a<h, and ged(a,h+1)=1:

h(h+1) h(h+1)
(O,a, 5 +a, 3 +h+l);
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(i) If h is odd:

hh+1) _ h(h+1)
(0’1, 2 +15 2

1
(o,h+1,M+h+1,%~l+h+z);

+h+2),

2
(iii) If h=3 (mod4):
(0 h—1 (h+1)® h(h+1)
- A
h+3 (h+1)? h(h+1
(0’;,(-;)4_2’(2 )
Proof To prove (i), suppose (x,,X;,X3), (¥1,¥2,¥3)€C(h,3) and

) x1a+x2(h(h+1)+a)+x3(h(h+l)+h+l)

+h+2).

+he2),

2 2
hh+1 h(h+1
=J’,a+y2( (,: )+a)+y3( (2 }+h+1).

We have to show that (x,,x,,x3) = (y;,¥;,y3). From (9) we get

X,a+x,a = y,a+y,a (mod h+1).
Since ged(a,h+1)=1, we get x,+x, =y, +y, (modh+1) and so
(10) X, +x, =y, 4y,

Combining (9) and (10) we get

h h h h
(11) x2§+x3(—i+l)=y2§+y3(i+l).
In particular
(12) X, =y, (mod(h/2)+1).

Without loss of generality we may assume that x, > y,. Suppose that
X, > y,. Since x, <h, (12) implies that x, =y,+h/2+1. By (10), y,=
x,+h/2+41, and by (11), y5 = x+h/2. Hence h >y, +y; = x, +x;+h+1
> h+1, a contradiction. Hence x, =y,. By (10) and (11), x, =y, and
X3 = y5. This proves (i).

To prove (ii) and (iii) we first note that each one of the sequences in (ii) i
obtained from the other by Construction 1 and similarly for (iii). Therefore, it i$
sufficient to show that one of (ii) and one of (iii) is a B(l,h,3)-sequence.
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We prove that the second of the two sequences in (ii) is a B(l,h,3)-
Sequence. Suppose that (x,,x,,X3), (¥;,¥;,y3)€C(h,3) and

(13) x,{h+1)+x2(k(h+1}+h+l)+x3(w+h+2)

2 2
h(h+1 h(h+1
=yl(h+l)+y2(—(—2-—)+h+l)+y3( ( 5 )+h+2).
Without loss of generality we may assume that x; > y;. From (13) we get
(14) X3 =y, (mod (h+1)/2).

We consider two cases.
Case I, x5 = y;. From (13) we get
(15) 2%, 4+ X, (h+2) = 2y, +y, (h+2).
Hence 2x, =2y, (modh+2) and so x, =y, (modh+2). This implies that
*1=y,. By (1), x, = y,.
Case II, x5 = y; +(h+1)/2. We will show that this is not possible. From
(13) we get
(16) 2%, + %, (h+2)+h(h+ 12 +h+2 =2y, +y,(h+2).
In particular 2x,+1 =2y, (modh+2) and so x, =y, +(h+1)/2 (modh+2).
here are now two subcases: .
Case II (i), x;,=y,+h+1)/2. Then h=Zx,+x3=y,+y;+h+1
2 h41, a contradiction.
Case (II) (i), y, = x,+(h+3)/2. Then (16) gives y, = x,+(h—1)/2.
ence h>y,+y, = x, +x,+h+1 > h+1, again a contradiction.
Finally, consider the first of the two sequences in (iii). Suppose that
‘xl’xlsxa)s (.VpJ’z,J’s)EC(h,:") and

_ 2
(17) x,hzl+x2(h+l) +x3(h(h+1}+h+2)

2 2

h—1 h+1)? h(h+1
=¥ 5 +y2( 2) +y3( (2 )+h+2).

Then

Xy

x = +
2 3 2 ¥y 1 2 y 3 2 2
Without loss of generality we may assume that

h—1+x h+3} h—~1+ h+3
2 375 ESS! 2 Y3 2

S - 2
h=1_ h+3 _  h=1__ h+3 (mod(hﬂ))

X
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Since

- 3 h+3 h+1)2
h—1 h+gh+<2{+}

<
0<x—=5—+x%3 2 2

there are again two cases to consider.

h=1, h+3 _ h—1_ h+3
2 X3 3 _yl 2 Y3 2

—2x, = -2y, (mod#).

Since (h +3)/2 is odd, this implies that x, = y, (mod (h+3)/2). Without loss of
generality we may assume that x, > y,.
Case I (i), x, = y,. Then x, = y,, and so (17) implies x, = y,.
Case I (i), x, = y, +(h+3)/2. Then y, = x;+(h—1)/2. From (17) we get
x; =y, +(h—1)/2. Hence, x,+x, =y, +y,+h+1>h+1, a contradiction.
h—1 h+3 h—1 h+3+(h+l)2

Case [, x, . In this case,

Case II, x, > +Xx5 g +, 3 5 . Then
h+3 h—1 h+3
(x;+x3) 3 Zx;——txX3—
h—1 h+3 (h+1)? _ (h+1)? h+3
o > =th—-1)—+2.

Hence x,+x3 > h—1 and so x;+x, = h. This implies that

3h+1 h—1 h+3
(18) 2xy = 3 +y, 3 +y, 7

Hence 2x, = 2+2y; (mod (h—1)/2) and so x, = 14y, (mod (h—1)/2). From
(18) we get x, = (3h+1)/4 and so x, = 1+y,+(h—1)/2. Combining this with
(18) we get

h—1 h—1
0= T(l +yi+yl) 2 5

a contradiction.

THeOREM 4. For all h we have

N(,h3) < h”‘:”u L'%'J +1.

In particular 5/12 < c(1,3) <¢(1,3) < 1/2.

Proof. The theorem follows directly from Construction 3 and 3)
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A direct search has shown that for 1 < h < 24 we have

N3 =100, [HIJ +1

2 2

and Construction 3 gives all the optimal B(1,h, 3)-sequences. Whether this is
true for all > 1 is an open question.

CONSTRUCTION 4. If g =22 and m = 1, then
(0,m,(g+ 1)m* +gm,(g+ 1)m* +(g+ 1)m+1)

is q B(g,2mg, 3)-sequence. .

Proof. We order the elements of D, as follows: (y,, ¥5, ¥3) < (X1,%5,X3) if

ym+ys(m+1) < x;m+x;(m+1)
or if
yim+y;(m+1)=xm+x;(m+1) and y, <x,.
Let (¥1,2,y3) be the minimal element of D, under this ordering. Let
yi=gm+d, fori=1,2,3 where 0<4,<m.
Let (xy,X%;,%3)€D,. Then
(19)  x,m+x,((g+)m*+gm)+x5 (g + )m* +(g+ \)m+1)
= ym+y,((g+1)m*+gm)+y, ((g+ 1)m* +(g+ 1)m+1).
In particular
xym+x3(m+1) = ym+y;(m+1) (mod(g+ 1)m*+gm).

Hence
(20) xym+x3(m+1) = ym+yy (m+1)+a((g+ 1)m*+gm)
Where @ > 0 by the minimality of (y,,y,,y,). Further

a((g+1)m* +gm) < x;m+x5(m+1) < 2mg(m+1) < 2((g+ 1)m* +gm).
Hence, =0 or a=1. Let
e = [{(xys%3,X3) €Dy Xym+x5(m+1) = ym+yy(m+1)+a((g+1)m*+gm)}|.

We have to show that ng+n; <g.
First, we consider the case « = 0. By (20),

x; =y; (modm+1).

Hence x, = y, + f(m+1), where
(1) B

\%
(=}
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by the minimality of (y,,y,,ys). Substituting in (20) and (19) we get

(22)
(23)
(24)

T. Kleve

X =y, +B(m+1),
Xy =y, +pm,
X3 = y;—pm.

In particular, 0 < x5 = y;—fm = (¢;—f)m+06,. Hence

(25)
Further,

2mg = X, +X, = gm+0,+e,m+0,+ f(2m+1).

Rearranging, we get

(26)
Define ¢ by
@7

(28)

¢=1
=0

B

B <e,.

0 (2g—&y—e))m—(8, +3,)
h 2m+1 ’

. (2g—e,—&;)m—(0,+0,)
f e, <
g 2m+1

otherwise.

Combining (21) and (25)28) we get

(29)

Next, consider the case o = 1. Similarly to the case a =0 we get

(30)

(1)
(32

ny < &3+ @.

X, =y, —1l+y(m+1),
X, =y,—(g+1)m—1+ym,
Xy = Y3 +(g+1)m—ym.

We have 0 < x, =egm+d,—1+7y(m+1). Hence

(33)

Y= (1—em—34,)/(m+1).

Further, 0 € x, = (e,—g—1+4+7y)m+d,—1 and so

(34)

Define ¥ by
(35)

(36)

Then, by (34),
(37)

1
Y= g+l—ez+E(l—52}.

v=1 ifd,=0,
y=0 if5,>0.

yZg+l—e,+y.
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Next, 2mg = x;+X;+xy=¢8m+8,+e,m+06,+esm+5;—2+7y(m+1).
€arranging, we get

1
(3g) Y < 29—61—62—63—m+1(29—81—82—83+51+52+53—2}.

We note that

2gm 2 y +y,+y; = (6 +E3+E3)m+6, +6,+05.

Hence

(39) g +e,+63 < 2g

and

(40) e te,+6;,<2g  if 8,408,485 >0.
Define x by

@)  y=1  if2g—e,—e,—e3+0,+0,+3;5 > 2,

4) y=—1 ifm=1,0,=06,=06,=0, and ¢, +¢,+&, =24,
(43) x=0 otherwise.

Then, by (38),

(44) V< 2g—€—8,—E3—X.
Combining (37) and (44) we get
(45) ng < 14+Qg—e,—e,—&3—x)—(g+1—¢,+¥)
46) =g—&—&—(—VY.

Further combining (29) and (46) we get
(47') n0+nl 59"‘@"‘*‘1‘1"4”

If ¢—g, —y—y <0 we are finished. Suppose that ¢ —e, —x— > 0. This is
Possible only if

48) p=1, =0, y=-1, y=1
Or
(49) d=1, g, =3=¢=0.

In the first case 0,=0,=0,0,=0=1-y, 6,+e3=29=2g—1+y. In the
Second case, 8, >0, and, by (40), e,+&; <2g—1. Since 2g—g, —&,—&;
+8,+8,+0, <2, this implies that 8, =0,=0, 6, =1=1-y,¢,+&,
=2g—1=2g—1+1. Hence, in both cases,

(50) &, =0, e,+e,=29—1+y, 6,=08,=0, o,=1-y.
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Since ¢ = 1 we have, by (27),
2m+1)e; < 2mg—me, — 1+ ¢
=2mg-—mQ2g—1+y—e3)—1+4.
Rearranging we get (m+1)e; < (m—1)(1—y). Hence &; = 0 and so by (29)

(51) & L
Next, since ¢, = §, =0, we get, by (33),
(52) y= 1.
Further, substituting (50) in (38) we get
(53) y<1—y+2¢y/m+1)< 1.

Combining this with (52) we get n, < 1. Hence, by (51),
ne+n, <2<g.
This completes the proof of Construction 4. From the construction we gel
THEOREM 5. For g =2 and all h we have
N(g,h,3) < (g+1)(m*+m)+1
where m = [h/(2g)7] . In particular

1 g+1
49 g

Remark. From Theorems 4 and 5 we get &(g,3) < (1/g)c(1,3) for g > 6.

For g = 2 Construction 4 gives the sequence (0,m, 3m?+2m, 3m? +3m+ 1)
For m < 10 this is optimal, and this and the one obtained from it by
Construction 1 are the only optimal B(2,2m, 3)-sequences. We conjecture thal
this is true for all m. For g > 3 it appears that the sequence in Construction 4 is
not optimal. E.g. for 1 <m <4 an optimal B(6,12m, 3)-sequence is (O,m,?m’
4+3m—1,7m?*+4m), and so N(6,12m,3) = Tm>+4m, whereas Constructio?
4 gives (0,m, Tm*+6m, Tm* +Tm+1).

Based on the limited numerical data available, it appears that N (g, 2mg
3) ~ (g+1)m* when g is fixed and m — oo.

For m = 1, Construction 4 gives the B(g,2g, 3)-sequence (0,1,2g+1,2g+3)
However, we can prove that (0,1,g+3,g+5) is a B(g,2g, 3)-sequence for all g
Hence N(g,2g,3) < g+5. Moreover, for g <50, N(g,29,3) = g+5, and we
conjecture that this is true in general.

1
_é 3 “{-. i ¥ Q
& c(g,3)<¢(g,3)

THEOREM 6. For all g= 1, h> 1, J, K we have
N(g.h,J’+K}é((h—1}N(g,h,J}+1)N(1,h,K}
and ¢(g,J +K) < é(g,0)é(1,K).

Constructions of B,[g]-sequences 77

Proof. Let (0,a,,...,a;) be a B(g,h,J)-sequence with a,; = N(g,h,J)
and (0, b,, ..., bg) a B(1, h, K)-sequence with by = N (1,h, K). We cannot have
b, =1 and b,—b,-, = 1 simultaneously since this would imply

l‘bl"‘l'bj_l = l'bJ

Which is impossible for a B(1,h, J)-sequence. Therefore, Construction 1 shows
that we may assume that b, > 1. From Construction 2, with A = (h—1)a,+1,
It follows that

N(g,h,J+K) < (h—1)N(g,h, D)+ )N (1,h,K).

In particular

N(g,h,J+K) < hN(g,h,J)N(1,h,K),
Which implies that

N(g,h,J+K) . N(g,h,J),. N(1,h,K
—(%H—K%) < lim sup%—)hm sup—(-—~—)

lim sup T
h—+m h—=w

h=w
le. ¢(g,J +K) < é(g,J)e(1, K).
TueoreM 7. For all g, =1, g, > 1, h>1, J we have
N(g192,h,J +3) < ((h—1)N (g, b, J)+1) (g, + 1) (m* + m) + 1)

Where m = [h/(2g)] .
Further

., _ g,+1
c(g1g2!J+3)$c(gl)"')_;-T'
g2

Proof Combining Constructions 1 and 4 we get the B(g,2gm, 3)-
Sequence

(0,m+1,(g+1)ym*+gm+ 1,(g+ 1) (m*+m)+1).

This is in particular a B(g, h, 3)-sequence, and m+1 > 1. The Theorem follows
from Construction 2.
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Polynomials whose powers are sparse
by
Don CoppersmiTH (Yorktown Heights, NY) and James DAVENPORT (Bath)

Erd6s [Erd] defines Q(N) as the least possible number of nonzero
Coefficients (“the number of terms”) in the square of a polynomial f (x) with
€xactly N nonzero real coefficients. Erdds proves the existence of positive
Constants C,, C, such that

Q(N)<C,\N'™C.
Verdenius [Ver] extends this result in two directions. He works with
Complete polynomials f, that is,

N-1
fxy= Y dx', d,#0, O0<i<N-L
i=0

He also establishes a similar inequality for cubes. Letting Q,(N) denote the
leagt possible number of terms in the kth power of a complete real polynomial

of degree N —1, Verdenius gives positive constants C, 5, C; 3 such that for any
nteger N > 1,

0, (M) 2y, NORWH e, O (N)sz Cy g 2%,

In the present note we extend this result to kth powers for each integer
2 2. Our main theorem is:

THEOREM 1. Given an integer k = 2, there are positive constants Cy,
Cyx such that for any integer N =1,

Qk(N) < Cl_kNl _Cz'k.

Remark. Schinzel [Sch] has studied a similar problem for fields of prime
Characteristic p. For any integer k not a power of p, he obtains polynomials
With arbitrarily many terms, whose kth power has at most 2k terms. He also
Obtains lower bounds.

Two consequences of Theorem 1:

THEOREM 2. Given an integer k = 2, there are positive constants Cjy i,

Cotnr2 < j < k, such that for any integer N > 1 there,is a complete polynomial

(X)eR[x] of degree N—1 such that the number of terms in each power
F(x),2 <j <k, is bounded by C, ;N Cuik,
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