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Using the Minkowski-Siegel mass formula, Magnus [10] proved in 1937
14t there exist only finitely many inequivalent positive definite primitive
INtegra] quadratic forms of class number one (i.e., for which the equivalence
tlass and genus coincide). Subsequently, Watson [15] proved by algebraic
Methods that there are no such forms of rank exceeding 10, and in a sequence
of Papers published between 1963 and 1984 (see [19] and the references given

€re), sought to determine all classes of forms of class number one in ranks
3 through 10,

It is known that there exist positive definite integral quadratic forms of

Mall rank which have class number exceeding one, but which satisfy the

Caker condition that their class and spinor genus coincide (see [13; pp.
l4‘115] for such examples of rank 3 and 4; see, e.g., [11], [2], or [13] for
“Scriptions of the spinor genus). Binary forms of fundamental discriminants
'4ving this property correspond to imaginary quadratic fields for which the
s €al class group is a group of exponent 4 [6]. Estes and Nipp have recently

Own that quaternion orders whose norm forms satisfy this property are
Precisely those which admit a natural factorization [5].

The question of whether forms having the property described in the
Previous paragraph exist in ranks exceeding 4 was posed to the second author

Y W. Kantor. It is the purpose of this note to answer this question in the
8ative. Specifically, we prove the following:

e Theorem. Let f be a positive definite integral quadratic form of rank
qxce-‘-’di'ng 4. Then the class and spinor genus of f coincide if and only if the class
"d genys of f coincide. ;

T Let f be a form of rank n satisfying the conditions of the theorem.
h‘?ughout the paper, L will be a quadratic lattice corresponding to the form
> In the sense of [11]; that is, L is a lattice on a quadratic space (V, Q)
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such that L has a basis {v,, ..., v,} for which the n x n-matrix (B(v;, v)) is equal
to (0%f/dx,0x;), where B is the symmetric bilinear form on V defined by
2B(u, v) = Q(u+v)—Q(u)— Q(v). Note that the norm ideal nL is contained if
2Z. As the properties to be studied here are invariant under scaling, it will
be assumed throughout that nL = 2Z. d(L) = det(B(v;, v))) will denote th¢
discriminant of L; for a prime p, write d,(L) = p*, where p°||ld(L). h(L), h,(L)
and g(L) will denote the numbers of isometry classes of the genus of L, isometry
classes in the spinor genus of L, and spinor genera in the genus of L
respectively. As the spinor genus is contained in the genus, h(L) = 1 clearly
implies hy(L) = 1.

The main tool to be used in the proof of the theorem for forms of rank
5 and 6 is the Minkowski-Siegel mass formula. A history of the development of
this classical formula and references to the pertinent literature are given, e.g., i?
[3]. In the present context, the mass is given by

hiL) I
mL) = X 6@

where L, ..., Ly, are representatives of the distinct isometry classes in the
genus of L and O(L,) is the orthogonal group of L,. It will also be necessary 1
consider the analogous sums m,(L) taken over representatives of the isometr)
classes in the spinor genus of L. A proof analogous to that of [9; Satz 1] show$
that the mass of a genus is always equally distributed among the spinor gener?
in the genus; thus, my(L) = m(L)/g(L). Now, for a prime p, define m,,(L}
=d, (LY V?/a (L), where o, (L) = «,(2f) is the p-adic density of the form yij
and define

M, (L) = m(L)(1=p~?)(1=p~%)...(1=p* " *)(1 —ep™),
where n = 2s or 2s—1, e = 0 when n is odd or p = 2, and otherwise & is the

Legendre symbol ((*i;igﬁ) (m,(L) is essentially the “p-mass” defined in B3

and M (L) is this p-mass divided by its “standard value”). It is useful to not¢
that M (L) = 1 when p}2d(L), and that both m,(L) and M (L) are invariant
under scaling and duality. With these notations, the mass formula takes the
form

(%) m(L) = 2z~ + V4 [T r'(j/2) [ m,(L)
i=1 P

where the last product extends over all rational primes p.
In the application of the above formula, the computation of the Jocd!

densities merits further comment. For odd primes p, the values of a,(L) can b

routinely computed as described, e.g., in [12] (with the correction to formul?

(23) noted in [16]). The calculation of «,(L) is considerably more tedious a?

highly susceptible to error. For these calculations, the authors adopted the

approach of [16]. Here, with L and f related as described above, a;(”
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S 2L N*(f, f) (see [16; p. 105]), where the definition and computation of
N_‘(f,f} are described in detail in [16]. An alternative approach to deter-
r“Hiling the 2-adic contribution to the mass can be found in [3].
Transformations which reduce the discriminant but do not increase the
tlass number or spinor class number also play a role in the proof of the
lh_eﬁrem. Such transformations were introduced by Watson in [14). Here we
Will use the slightly modified lattice-theoretic version defined and denoted by
K, by Gerstein [7]. It can be shown as in the proof of [7; Theorem 3.6] that
€se transformations have the property h(u,L) < h(L). For the purpose of
1S paper, a lattice L will be called u,-maximal if u,L = L or, in the case p = 2,
" (IJZL)Z) = Z,. For later reference, we note that local density computations
Show that M (L) >4 whenever p is odd, p|d(L) and L is p,maximal.
Oreover, M,(L) > 1/8 whenever n = 5 and L is p,-maximal; the value 1/8 is

ained, e.g., when
0 17 [0 1
~ 51 1¢2
L [1 0] [1 0] N2

s U, (here U, denotes the group of 2-adic units).

| The final ingredient needed in the proof is the explicit determination of the
ocal spinor norm groups 0(0*(L,)) obtained for odd primes p by Kneser [8]
ad for p =2 by the authors [4]. In particular, these spinor norm com-
Putations show that when a genus splits into multiple spinor genera there exists
8 least one prime at which the localization of the lattice has a very special
Sttucture, This fact will be exploited in order to obtain estimates for the
corl'esponding local factors appearing in the mass formula.

th Proof of Theorem — rank 5. To prove the theorem, it suffices to show

A h(L)=1 implies h(L)=1 for the lattices L under consideration or,
f’q“i‘r'alenlly, that h (L) > 1 whenever g(L) > 1. In light of the obvious inequality
|O(L}I = 2, it thus suffices to show that my(L) > 1/2 whenever g(L) > 1.
0 Assume now that g(L) > 1. Then there exists at least one prime g such that
(OT(LQ)) $ U,QZ [11; 102:9]. Fix such a prime g for the remainder of this

tion. Without loss of generality, it may be assumed that L is pu,-maximal for
4 Primes p # g (otherwise, a lattice L with this property and satisfying
W(L) < hy(L) can be obtained from L via a suitable sequence of u,-transfor-
;naﬁons for p # q; L may then be replaced by L for the remainder of the
T8ument). For such L, the standard idélic formula for computing g*(L)
Bsee [11; 102:7]) then yields g(L) < 4; in fact, g(L) <2 unless g =2 and
(0+(L2))0U2Q2 = Q%-

Specializing the mass formula () to the case n =35 gives

5
m(L) =2z~ 52 T] (/) [ m,(L)
=1 2

= 2r"1S2EM) L@ I M, (L) = :,-"%(_)n M (L).
P P
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To complete the proof, we now proceed to analyze the product ]_[, M l,(L)-

Consider first the case g = 2. In order for 0(0*(L,)) 2 U,0Q3 to hold, L
must have a Jordan splitting of the type L, = (2u,, 2%u,, ..., 2°us) with
uel, for 1<i<5, 1=¢,<e¢,<...<es, at most two consecutive ¥
ponents equal, and e;.,—e; >4 whenever e;., # ¢; [4; Theorem 3.14].
l<e,<..<es, then M,(L)>2%4325 and m/(L)> m(L)/4 > 1/2. In al
remaining cases, g(L)=2 and M,(L)>2%325; thus my(L)=m(L)/27
M,(L)/1440 > 1/2.

Now consider the case that g is odd. L, must have a Jordan splitting
of the type L,=<u,,qu,,...,q%usy with welU, for 1<i<5 ap
1<e, <...<es [8; Satz 3]. In this case

mq(L)=2—4q—ez+¢4+2¢5 and Mq(L)= 2~4q(eq—e1}+295—6{q2_I)(qa;__l).
Since ¢, —e, > 2 and eq > 4,
ML) = q*(a*—1)(g* - 1)/16.
Now

1 1 1
m(L) = 3m(l) = s MaOMD) TT My(0) > o My(D).

Soif g=5,0rif g=3 and e; > 5, then my(L) > 1/2, as desired.

The only case requiring further analysis occurs when g =3 and Ls
= (uy, 3u,, 3%u,, 32u,, 3*us), in which case M,(L)=233*5 < i(11, 520!
Moreover, it may be assumed that ptd(L) for p # 2, 3, and (since g(L) > 1_)
that 6(0*(L,)) # Q,. From [4] and a computation of 2-adic densities, it
follows that whenever L is y,-maximal but 0(0*(L,)) % Q,, M,(L) > 5/16
(and thus my(L) > 1/2) except in the case that

ng[? :}]J.PJ_Qu), uel,, le:? (ﬂ or [? ;:I

Finally, if L has both 2-adic and 3-adic splittings of these exceptional type
then m (L) = 3%/25. Since m,(L) is not of the form 1/|0(L)|, it again follows tha!
hy(L) > 1.

Proof of Theorem — rank exceeding 5. The proof of the theore™
for forms of rank 6 can be carried out similarly to that given for rank 5 in th®

preceding section. The only additional feature is the appearance in the mas$
formula of a factor equal to the value of an L-series. Specifically, when n =

the formula (*) specializes to

{p(3)
360m2 L1 ML)

m(L) =
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Where

o () - g

Ef‘) denoting the Jacobi symbol (see [3: p. 266]). The factor { p(3) is bounded
fom below (independently of D = —dL) by 2— Y esam ™3 = 2—A(3) > 0.94
(). So ¢,(3)/n® > 0.03 and

1

stfi_iightforward computations of the local densities involved now show that in
Allinstances [1, M, is sufficiently large to ensure m (L) > 1/2. Here the relevant
OWer bounds for the values of M » are as follows: if L is p,-maximal, then

2(L) > 5/23527; if 0(0* (L)) 2 U,Q2, then M,(L) > p**3(p*—1)(p*—1)/2°
When p is odd and M,(L)> 214375 when p = 2.

Due to the explicit knowledge of all primitive positive quadratic forms of
®lass number one and rank exceeding 6 (not just those having restricted local
Structures, as is currently the case in ranks 5 and 6), it is unnecessary to extend

€ computations involving the mass formula to these higher ranks.
0 To complete the proof of the theorem, suppose there exists an L satisfying
ﬂs(L) =1, g(L)>1 and rkL>7. As before, fix a prime g for which
.(0+(Lq)) $ U,Q;. By applying transformations y, for p # g, obtain a lattice
{"zsuch thatﬁﬂ 0*(1‘.,,)).;9 Ung, h(L) =1 and Lis u,-maximal for all p # ¢
hus 6(0*(L,)) =2 U,Q} for p # q). Then L, =<{q"uy, ..., q"u,) with 0 <e,
iy Se, and w;eU, for 1 <i<n. If g #2, then 6(0* (L) 2 U,Q; forces
ff* e for i #j. Let t = [3e,], let L = piL, and write L, = <u,, ¢"*u,, ...,
e ""*,,). Then 0< f;,f3<1 and it follows that (0" (L)) =2 U,QZ. Thus
9(L)=1 and h(L) = hy(L) = 1. Moreover, as f;>(j—3) for 4 <j<n and
"27, it follows that ¢'°|d(L). If g =2, then e, = 1 and ej42—e€; >4 for
S1,..,n—2. Let t = [4(es—2)], let L = py L, and write L, = (2u,, 2*u,,
v 2nyy Now 2<fi, f, <3 implies that 6(0*(L3) 2 U,Q%; so again
fg)=1 and h(L) = h(L) = 1. Here f;—f, = es—e, >4, and so f, > 6 for
=3. Since n> 17, it follows that 222|d(L).
In summary, there. must exist a lattice of class number one whose
timinant is either divisible by 2?2 or by ¢'° for some odd prime g.
Onsequently, a form whose determinant is divisible by such a prime pbwer
[]llst appear among the forms of class number one described in [17], [18] and
div.?']'- However, it can be seen by inspection that no form having determinant
1sible by a prime power exceeding 2'¢ or ¢®, for an odd prime g, occurs in
®e lists. This contradiction establishes that no L with h (L) =1, g(L)> 1
tk L > 7 exists, and completes the proof of the theorem.
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Remark. The theorem proved above remains valid when the class and
spinor genus are replaced by the proper class and proper spinor genu$
respectively; that is, under the assumptions of the theorem, the proper class and

proper spinor genus of f coincide if and only if the proper class and genus of

f coincide. The modifications of the prior arguments which are required 10
prove this result are as follows. Note first that the transformations g, do not
increase the proper class number or the number of proper classes in a prope!
spinor genus. If the proper class and proper spinor genus coincide, then it
follows easily that the class and spinor genus must also coincide. Hence, a5
shown earlier, this cannot occur when the rank exceeds 10. Moreover, there iS
no distinction between class and proper class, or spinor genus and propef
spinor genus, when the rank is odd. For ranks 8 and 10, the forms (from [17]’
[18]) which give rise to h(L) = 1 can be seen by inspection to admit imprope!
automorphs; thus, class and proper class again coincide. Finally, the mas$
formula can be used to resolve the remaining case of rank 6. For if m; (L)
denotes the value obtained by summing the reciprocals of the orders of the
rotation groups O*(L,) over a complete set of representatives for the prope’
classes in the proper spinor genus of L, then it is straightforward to show that
m; (L) = 2m(L). It thus follows from the computations described earlier that
mJ (L) > 1/2 whenever g*(L) > 2, yielding the desired result.
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