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ACTA ARITHMETICA
LIX.1 (1991)

A limit theorem for the Riemann zeta-function near
the critical line in the complex space

by
A. LAURINCIKAS (Vilnius)

In honour of Professor J. Kubilius
on his 70th birthday

Let s = g+it be a complex variable and let {(s) denote the Riemann
zeta-function. H. Bohr noted in [2] that asymptotically the behaviour of the
(-function in the half plane ¢ > 1/2 is governed by some probabilistic laws.
This idea has been implemented in [3], [4], [7].

Let meas {4} be the Lebesgue measure of the set 4 and

vr(...) =%meas{te[0. Tl ...}

where instead of dots we write the conditions which are satisfied by t. Let

C denote the complex space. About 1940 A. Selberg (unpublished) has shown
the following theorem.

THEOREM A. If a measurable set A < C has positive Jordan content then

l ] 2 2
lim vr(ﬁ,@/ﬁﬂ“) = %”e-x “Ydxdy,
A

T—w /Inln¢

Note that Theorem A can be found in [8] where its proof is also sketched.
It is easy to see that the sets in Theorem A constitute a convergence-
determining class. Let % (S) denote the class of Borel subsets of the space S.
Then it follows from Theorem A that the probability measure

In¢(1/2+it)
1) (———_ A), AeB(C).
AW e €20

as T — oo converges weakly to the normal probability measure
l —-yx2 2
— [ (e "2 4xdy.
2n’;

Here we use the norming factor /2 'Inln T to obtain the normal distribution
with parameters 0 and 1.
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Let P be a probability measure on (C, Z(C)). The function
w(t, k)dér [ Isle™*#sdP, teR, keZ,
C\{0}

is called the characteristic transform of the measure P [10].
The lognormal probability measure on (C, #(C)) is defined by the

characteristic transform
&, B 2 k2
w(t, k) = exp ARG

The lognormal distribution function G(x) is defined by

Cixhm @(lnx), x>0,
=10, x<0,

If 12<06<1 and {(s)#0, aeR, then {(“(s) is understood as
exp{aln{(s)} where In{(s) is defined by continuous displacement from the
point s = 2 along the path joining the points 2, 2+it and o+it.

Since the function h: C - C defined by the formula h(s) = ¢* is con-
tinuous, we have from the weak convergence of the probability measure (1) that

the probability measure

P(x)= [ e *du.

) v (VTN T (12 1 ine d), AeB(C),

converges weakly as T — oo to the lognormal probability measure.
The aim of our note is to extend the result of A. Selberg to the strip
12<0<1/241/InT.

THEOREM. Let 1/2 <6 <1/2+1/InT. Then the probability measure
vp((WETRT (5 1it)e A), AeB(C),
converges weakly as T — oo' to the lognormal probability measure.
COROLLARY 1. Let 1/2< 6 <1/24+1/InT. Then the probability measure

( In{ (o +it)
V| —

2-1Inl TEA)’ R
nin

converges weakly as T — oo to the probability measure
1
__” (2004
e xdy.
2n7,

COROLLARY 2. Let 1/2<a < 1/2+1/InT. Then the distribution function

vr(L (o +ig)!VETIIRT < x)

converges pointwise as T — oo to the lognormal distribution function G(x).
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COROLLARY 3. Let 1/2 <06 <1/2+1/InT.Then the distribution function

, (argC(a+it} <x)
"2 'nInT
converges pointwise as T — oo to the normal distribution function @ (x).
Note that in [8] the limit theorems for |In{ (o +it)| and [In|{ (o +it)|| when
c=1/2 or o(l)=06—1/2>1/InT have been obtained but the strip
1/2<e6<1/2+1/InT was not considered.
For the proof of the theorem we shall use some properties of spaces of
analytic functions. Let

InT

and let H(4;) denote the space of analytic functions on 4, equipped with the
topology of uniform convergence on compacta.

It is well known that there exists a sequence {K,} of compact subsets of
A; such that

I |
4, = {SEC, > <% < I}

[+ #]
Ay = (J Kra-

n=1
Moreover, the sets K, can be chosen to satisfy the following conditions:
{a) KT',n < KT.I‘I+1;
(b) K < 4; and K compact implies K = K, for some n.
For f,geH(4;) let

o

_ QT.u(f’ g)
+(f; = AT S
er(f, 9) El L+era(f, 9)

where

0r.a(f, 9) = sup |f(s)—g(s).

seKT n

Then g is a metric on H(4,) which induces the usual topology. Note that the
theory of spaces of analytic functions is comprehensively presented in [5].

LeEMMA 1. Let K be a compact subset of A;. Then for every ¢ >0 and
g >0

meas {t€ [0, T, sup|{(s+it)| = e(In T)***1} = o(T)

as T - oo.
Proof. In virtue of the Chebyshev inequality
(3)  meas{ze [0, T], sup|{(s+it)| > e(ln T)*/**=}
sek

T
< ng’f ¢ (s +it)|d.
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Let L, be a simple closed curve enclosing the set K. Then by Cauchy’s theorem Proof. By Cauchy’s theorem
. 1 . l(z+i7) {(z+ir)
= — dz. !
vt 2mi ,:[ g Vi) = {{Z—ar)z
Therefore where L is the circle of radius (In T)™'® with centre at s = ¢,. Hence
{'(op+it) = B(ln T)?3 [ | (z+it)| |dz].
seK L
where &, is the distance of L, from the set K. Thus for sufficiently large T Therefore the estimate (6) gives us
T 1 T vp(IU (o4 +it)] = &(In T)?3/24)
(4) fsup | (s+it)dr < | ldz| [ 1L (z+it)|de ,
0 seK 2 T Lt 0 B d ay . d
T+|Imz| =£7T(In T)”z“{] z| E[ |¢ (Re z +it)|dt
2 ‘51- [ 1dz| _"_[m |{ (Re z +it)|dT & o ’
B “ar D, O
= [ |dz| | I (Rez+it)\de. _ B
‘57 Lr 0 x This proves the lemma.
Here B denotes a number (not always the same) which is bounded by LeMMA 3. Let 1/2 < 6 < 6. Then for every e > 0,¢e, > 0and for k =1,2,3

a constant. Let gg,y = inf{Rez, ze L}. We can choose the contour L, to

(k) 5/d+e\ -
satisfy the condition o¢ 1 =1/2—2/InT. Then ;= 1/InT, and by (4) vr(l{® @+ > e(n T) J=o() as T-o0.

T T Proof. First we shall prove that
(5) [supll(s+it)ldt = B|Ly|InT sup [[{(o+it)ldt aer 1 [®(s+ i)

0 5K aZo0,1 0 7 Iy = 7 meas {re [0; T, QT(I_W’ 0) > 8} =o(l).
where |L,| is the length of L. Since in virtue of the functional equation for the (In'7)
Riemann zeta-function (see, for example [15]) In fact, applying the Chebyshev inequality and Lemma 1 we obtain

{(1—a+it) = B(lt}+ 1) (e +it), - SUDsex ., |C (54 i7)]
. . . (8) IT'Q I Z 2 5/4+eg : :
in view of the estimate ([14], [6]) Toa=y (nT) + SUPgek .., L (s +i7)|
T 1 & ,- SUPsek [C{S+ET}|

6 1/2+it)|dt = BT (In T)/* _ L § o
(6) £|C( /2+it)|dt (InT) cT ugl ﬁ!ST (1nT)5;4+e;+supssxT‘" 1€ (s +i7)|

0
sekr (s +it)] <(In T)3/4+e,/2
we deduce that SUDaeitir.s |+ 1)) NIV

2 SupseK'r,u 1: (S+ET)| _
sup | [{(o+it)dt = BT (InT)", + Js (0 TV + supwr, LG dr = o(1).
a=aa, 1 0 !up-exT,”|{($+ir)r;{ln Tysid+e 2 n
Hence in view of the estimate (5) and (3), since |L;| = B, the proof of Lemma Let for Ae%(H(4y)
1 is complete. ] SBEs
Let s+it
: 1 Q0r(4) = ?meas {IE[O! T], (In T)5/4+e & A}
Ty =zt (In )13 Then from (8) we deduce that for every bounded continuous function X on
H
LEMMA 2. For every ¢ >0 (47)
9) [ X(NdQ; = X (0)+o(1).

ve(l'(op+it) 2 e(InT)**2*) =0(1) as T — 0. Hedi)
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In fact, let 6 > 0. Then
(10) [ X(Nde,—X©)= [ (X()—X(0)dQr

HidT) Hidr)

= | (X(-X©)dQr+ [ (X(N)—-X(0)dQ;.
er(f.0)<é eT(f.0)=d
From the properties of the space H (4;) and from the continuity of X it follows
that for every &> 0 there exists 6 > 0 such that for all T>0

(11) | | (X(N—X(0)dQq| <e.
er(f.0)<d
Let us fix such a &. Since X is bounded, from the estimate (8) we see that there
exists T, such that for T2> T,
(12) | | (X(N—X0)dQq] <e.
er(f.0)2 3
From (10)«(12) we find that for T > T,
| X (f)d0r—X (0)| < 2e.
H(4r)
‘This proves (9).
Since the differentiation operator D is continuous on H(4y) (this is
a simple consequence of Cauchy’s formula), the function X (D(f)) is continuous
and bounded (see, for example [1], p. 29). Consequently, from (9) we find that
as T —
[ X(D()dQr = X (0)+o(1)
H(4T)
and upon transformation of the integral (see [17, Appendix 11, formula (1)) we
obtain
| X(NHdQD~ ' =X (0)+o(1).

H(4T)

Since X (f) is any bounded continuous function, we find that for every ¢ >0
[ (X(N-X(0)d@,D~" = o(l),
er(f,0)02e
and thus (7) is valid for k= 1.

The cases k =2, 3 can be proved similarly.
The estimate (7) implies the relation

|Cm.(cr+ft)| ) B
(13) VT({ln T)* % 1 |0® (g +it)| >¢e)=o(l).
Hence
1£® (o +it)| [K®(e+it) 1
(14) VT((ln T)SMH: 2 &, (ln T)Si‘i-ﬂ] < 5) =o0(1).
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It is easy to see that if

(In T)**+e = 2’
then
I{% (o +it)] !
{I!’! T)S.l'4+£:| +|C<k](6"+f[)! = 5

In virtue of (13)

) ( L% (o + it)| il |
"\(nT)¥**a 4 |(® (o +ir) © 3) o(1);

% (e +it) 1
"T(WT,, = 5) = o(l).

Hence and from (14) the assertion of the lemma follows.

Proof of the theorem. Let x = (2~ 'Inln T)~ V2. For all AeZ(C) we

Therefore

have
(15)  vp(l*(o+it)e A)

. . (o +it)
'.,(C (1/2+1tJC———x(”2+meA)Jro(l)

N vT(C‘(I/2+:‘r)(1 +C{a+it)—C{1/2+ir})KEA)+o(l)

C(1/2+it)

- x - (=120 (12+it)+(a—1/2)*P x
= vT(C (1/2-|—1£)(1+ {(1;2]+r'(:; 2 Tm) EA)+0(]J

where

1
() = [(1—u)l" (12 +it +u(o—1/2))du.
0
Similarly for all 4Ae%(C)
C(12+it
{rystes)

. (C’(ar+ir)_(ar— U2 (12+it) (07— 1/2)*®, (1)
T\(n T)?3724 (In T)?3/24 = (In T)?32% A)

where

Pyr(t) = [(1=w){" (12+it+u(op—1/2))du.
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Since g,—1/2 = (InT)" '3, from Lemma 3 we deduce that

Ur(g*u/zﬂ:)EA) _ ‘,T(M+o(l)eA)+o{l}.

(ln T)23;24 (ll‘l T)Z!}ld
Thus taking into account Lemma 2 we find that for every ¢ >0
(16) v (I8 (1/2+it)] = e(In T)**?%) = o(1).

From the properties of the probability measure (2) it follows that the
distribution function

Vo (0 (12 + i VEIT < x)

converges as T — oo to the function G (x). (See also [11]-[13].) Hence for every
6>0

(17 vp(C(12+i) < (nT)79)

vp (I (1/2+i0) Y271 T < exp { —8(2InIn T)2})
G (exp {—d(2Inln T)'?})+o(1) = o(1).

Now from the estimates (16) and (17) we obtain

(@—1/210 (12+it) _ 1 )=
""( tassi Cimt) = °W

Similarly Lemma 3 and the estimate (17) give us
—1/2)2 1
(19) "T({U 1/2)? | @4 (1)l - ) =)

Il

(18)

IC(12+it)) ~ InlnT
Consequently from (15), (18) and (19) we find that
(20) vr(*(o+it)e A) = vT(C”(1/2+iz)(l +o(l)]"eA)+o(l)
= v (C*(1/2+i0) (1 +0(1) e 4)+o(1).
Since by the results of [9]

T T e
JIC(1/2+i0*de < T+ [IC(1/2+in)P™> """ Tdr = BT,
(1] 0

we conclude that for every Er = ®©

—w

T
ve(IL(2+it)* > Ep) < —l—2j|§(1/2+itJ|2”dz = o(1).
TE:s

Hence and from (20) it follows that
ve(*(a+it)e A) = vp ((*(1/2+it)+0(1)e A)+o(1).

Thus the properties of probability measure (2) prove the theorem.

Corollary 1 is an obvious consequence of the theorem.
Corollaries 2 and 3 are consequences of Corollary L.
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