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Algebraic independence of the values of certain functions
at a transcendental number
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1. Introduction. Throughout the present paper, we denote by K an
algebraic number field of finite degree, and denote by I its integer ring. Let
f(z) = (f,(2), ..., f,,(2)) be a column vector of m holomorphic functions in the
unit disk whose coefficients in their Taylor series expansions at the origin all lie
in the field K. Suppose that f(z) satisfies the functional equation

(M) fz)=A@)f(z)+B(z) (reN,r=2),

where A (z) is an m x m non-singular matrix with entries in K [z] and B(z) is
a column vector of degree m with entries in K [z]. In [9], Mabhler first studied
the algebraic independence of the values of the above type functions at an
algebraic number in the unit disk, and later, several mathematicians improved
his results. For such studies, we refer the reader to the papers by Mahler [9],
Loxton and van der Poorten ([7], [8]), Kubota [6]. Nesterenko [12] and
Nishioka [14]. At the present stage, we have the following result as a special
case of the recent result by Nishioka [14] (see also [6] and [12]).

THEOREM. In the notation as above, put a(z) = detA(z). Suppose that
Ji(2), ..., [, () are algebraically independent over the field K(z). Let » be
a nonzero algebraic number in the unit disk satisfyving a (') # 0 for any
I (I1=0,1,2,...). Then the numbers f, (), ..., f,,(«) are algebraically indepen-
dent,

In connection with this theorem, we study in the present paper the

transcendence degree of the field Q (w, f, (w), ..., £, (w)) over the field Q, where
@ is a transcendental number in the unit disk. Our main result is the following

Throrem 1. Let f,(2), ..., [, (z) be m holomorphic functions in the unit disk
whose coefficients in their Taylor series expansions at the origin all lie in the field
K. Suppose that f,(z), ..., [, (z) are algebraically independent over the field K (z)
and f(z) = (f,(2), -... [,,(2)) satisfies the functional equation (M). Let
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be a transcendental number in the unit disk. Then we have

trdegyQ (o, /) (@), ..., [, (®)) = [(m+1)/2].
Let F,(z) be the function defined by

18

(1.1) F.(2) = 2" (reN, r=2).

y=0
By Loxton and van der Poorten [8], the r—1 functions F,(z), F,(z?),....
..oy F(z"1) are algebraically independent over the field C(z). Since F,(zf)
satisfies the functional equation F,(z) = F,(z")+z' we have the following

COROLLARY. Let F_(z) be the function defined by (1.1), and let @ be
a transcendental number in the unit disk. Then we have

trdeg,Q (@, F,(w), F,(@?), ..., F (@ ") = [r/2].

Remark 1.1. Theorem 1 and its corollary are analogous to the results on
the special values of exponential and elliptic functions (see Chudnovsky [3],
Nesterenko [11], Philippon [16] and Diaz [4]).

In Theorem 1, if m = 1 or 2, we have only the trivial lower bound because
of the transcendence of w. In these cases, however, we can prove the following
results (Theorems 2 and 3 below).

THEOREM 2. Letf(z) be a transcendental holomorphic function in the unit
disk whose coefficients in its Taylor series expansion at the origin all lie in the
field K. Suppose that f(z) satisfies the functional equation

f(@)=a@)f(z)+b(z) (reN, r=2),

where a(z), b(z)e K [z]. Let @ be a nonzero complex number in the unit disk. If

f(w)eQ(w) and a(w™) # 0 forany | (1= 0, 1,2, ...), then w is a transcendental
number and we have the following measure of transcendence of w: Let
P(x)e Z [x] be a nonzero polynomial whose degree is at most d and whose height
is at most H. Then, assuming dH = 3, we have

P ()| > exp { — C, log (dH)loglog (dH) (dlog(d + 1)+ (log (dH))*)},

where C, is a positive constant depending only on K, r, , a(z), b(z) and f(z). In
particular, the type of transcendence of w is at most 3+¢ for any ¢ > 0.

Remark 1.2. The transcendence of w in the theorem is an easy con-
sequence of a special case of the Theorem quoted above. But we shall prove it
without using the Theorem. Of course our main purpose is to obtain a good
lower bound for |P(w)|.

The above measure is very sharp with respect to the degree of the
polynomial P(x). To emphasize this fact, we state the following
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COROLLARY. In the notation and the assumptions of Theorem 2. let
P(x)e Z [x] be a nonzero polynomial whose degree is at most d and whose height
is at most H. Then, assuming d > H > 3, we have

|P(w)| > exp{—C,d(logd)*loglogd},
where C, is a positive constant depending only on K, r, w, a(z), b(z) and f(z).

Remark 1.3. The above corollary implies that any complex number
o satisfying the assumptions of Theorem 2 is an S-number of order 1 in the
sense of Sprindzuk [17]. In this connection, we also note that the following
result of Chudnovsky is known: The number ¢" is an S-number of order 1 (see
Chudnovsky [3], Chap. I, Theorem 2.8).

Using Theorem 2, we can prove the following

THEOREM 3. Let f,(z) and f,(z) be two holomorphic functions in the unit
disk whose coefficients in their Taylor series expansions at the origin all lie in the
Jield K. Suppose that f, (z) and f,(z) are algebraically independent over the field
K(z), and satisfy the functional equations

fi(2) = a;,(2)[i(Z)+bi(z) (reN, r=2)
respectively, where a;(z), b;(z)€ K [z]. Let @ be a transcendental number in the

unit disk. Then we have

trdegoQ (@, f (w), £, (@) = 2.

If w and f,(w) are algebraically dependent, then we have further the
Jollowing measure of algebraic independence of w and f,(w): Let P(x,y)
€Z[x, y] be a nonzero polynomial whose total degree is at most d and whose
height is at most H. Put t = d+log H, and assume t > 1. Then we have

D, Iy f — { ¥
|P (e, f; ()] > exp {— C,d*"® (log1)"?}

Where C, is a positive constant depending only on K, r, @, a;(z), b;(z) and f;(z).
In particular, the type of algebraic independence of v and f,(®) is at most 9+¢
Jor any ¢> 0.

2. Notation and lemmas. Hereafter we use the usual notation as follows.
For any algebraic number « with minimal defining polynomial

0(x)=ay(x—o)(x—o") ... (x—a*"MeZ[x] (a,>0),

Wwe denote by |E| the house of %, i.e. the maximum of the absolute values of the
Toots of Q(x), and by M (x) the Mahler measure of o, i.e. the number which is
defined by

x—1
M (@) = a, [] max(l, [«?), o =u0.
i=0
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For any polynomial P (in any number of variables) whose coefficients are
algebraic numbers, we denote by deg P the degree of P in the variable x, by
deg P the total degree of P, by H (P) the height of P, i.e. the maximum of the
houses of the coefficients of P, and by L (P) the length of P, i.e. the sum of the
houses of the coefficients of P. For a formal power series f(z)eC[[z]], we
denote by ordf(z) the order of zeros of f(z) at z =0.

Now we give several lemmas. The first two lemmas are basic tools for the
proof of all our theorems. The following result gives the construction of the
(so-called) auxiliary function.

Lemma 2.1. Let f,(2), ..., f,,(z) be m holomorphic functions in the unit disk
whose coefficients of their Taylor series expansions at the origin all lie in the field
K. Suppose that f(z) = (f,(2), ..., f,,(z)) satisfies the functional equation (M) in
Section 1. Let N be a positive integer. Then there are algebraic integers
a(igy iyy oo ig)€ly (0<iy, iy, ..., i, < N), not all zero, satisfving the following
properties: For all iy, i, ...,i, with 0 <ig, i,...,i, <N, we have

la(fo, i1y .oy i) < exp(C4Nlog N),

where C, is a positive constant depending only on K, m, r, A(z), B(z) and f(2),
and the function

N N ) . ) w0

¥, wse Yo Wllosdys consb)2P i P ool ime ¥ b2
i0=0i1=0  im=0 h=0
satisfies the inequality ord E(z) = (1/2)N™*!, ie. b, =0 for all h with h
< (1/2)N"*1. Further, for all h with h= (1/2)N™*', we have

[b,| < exp(CsNlogh) and  DYMsi*lp e, .

where C5 > 0 and Dye N are constants depending only on K, m, r, A(z), B(z)
and f(z).

Proof. For each i, we write the Taylor series expansion for f;(z) at the
origin as

a0

fi(2) = Z ﬁ.hzﬁ'

h=0

Then, similarly to the proof of Lemma 1 of Becker-Landeck [1] we can show

[/ill < Coexp{Cilog(h+1)} and  Diosthvlvip cp

for all i and h, where C, > 0, C, > 0 and D, € N are constants depending only
on K,m,r, A(z), B(z) and f(z). Using Siegel's lemma (see for example,
Waldschmidt [18], Lemma 1.3.1) together with these facts, we can construct,
similarly to the proof of Proposition 1 of Nishioka [14], the auxiliary function
E (z) which satisfies all the properties stated in the lemma. We omit the details.
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The following result is a special case of the result of Nishioka [13] (see
also Becker and Nishioka [2]), which gives an estimate for the orders of zeros
of certain functions.

Lemma 2.2 (Nishioka’s estimate for the zero order). Let f,(2),...,
Ju(2)eC[[z]] be m formal power series, and put f(z) =(f,(2), ..., [, (2)).
Suppose that f(z) satisfies the functional equation

f2)=A@)f(Z)+B(z) (reN,r=2),

where A(z) is an m xm non-singular matrix with entries in C(z) and B(z) is
a column vector of degree m with entries in Cl(z). Let Q(z, x,..., X,)
€C[z, x,,...,x,] be a polynomial with deg.Q <M and deg,Q
SN (I<i<m)where M=2NZ=1.1fQ(z,f,(2), ..., [n(2) # O, then we have

ord Q(z, f,(2), ., fu(2) < CgMN™,
Where Cg is a positive constant depending only on m, r, A(z), B(z) and f(z).

Remark 2.1. In the case m = 1, the result of the above type was first
proved independently by Galochkin [5] and by Miller [10].

Our proof of Theorem 1 depends deeply on a result of Philippon [16]
Which gives a criterion for algebraic independence of several numbers. We owe
the following formulation of the result to Diaz [4]. For any 0eC" and ¢ > 0,

we denote by B(0, ¢) the open ball in C" whose centre is (! and whose radius
IS ¢,

Lemma 2.3 (Philippon’s criterion for algebraic independence). Let
0=,,...,0,) be an element of C", and let o, 3, R and S be four increasing
Junctions on N whose values are at least 1. Suppose that the value a(l)+d(l)
lends to infinity together with . Suppose that there is a sequence of families of
polynomials in K [x,, ..., X,], say {(Q1.15 ---» Quow)}ien (Where ¢ (1) is a function
of le N), satisfying the following conditions: For any sufficiently large |,

(@ Quis...r Quowy have only finitely many common zeros in
B(o, exp(—R(1));

(b) deg Q,; <d(l) and h(Q,)) < a(l) for 1 <i< ()

(©) 0 < max {1, (O); 1 <i< ()} <exp(—S(h).

Let E be the ideal in K[x,, ..., x,] defined by E={QeK[x, ..., x,];
Q{0) = 0}. Then there exists a positive constant Cy depending only on n, E and
(K: Q], satisfying the following property: If k is an integer such that the function
S/o+08)6* is increasing for sufficiently large I, and such that the inequality

SUY*2 > Cofa+1)+8(+D}SU+ 1 (S +RU+ 11

holds for any sufficiently large I, then we have
trdeg,Q(0) = k+ 1.
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Remark 2.2. In the above lemma, h is the height function defined by
Philippon [16]. We do not recall the definition, because we use only the
following relation between h and the ordinary height defined at the beginning

of the present section: For any nonzero polynomial Pel[x,, ..., x,], we
have
(2.1) h(P) < log H(P)+nlog(deg P+1).

The following result is a variant of Lemma 10 of Nesterenko [11], which is
necessary for the proof of Theorems 2 and 3.

LEMMA 24. Let w,,..., w, be complex numbers, and let y,,7,, X,
Y,; (0 < i< m)and Y, be positive numbers. Put Y, = max {Y, ;; 0 <i<m}. Let
{ be a complex number which is integral over the ring Z[w,, ..., w,], and whose

degree over the field Q (w,, ..., m,) is x. Let P be a polynomial in Z[x,, x,. ...,
X,.s V] which is homogeneous in the variables x,, x,, ..., x,, and whose degree in
the variable y is at most »—1. Suppose that the polynomial P satisfies the
conditions

deg, P<Y,;, (0<i<m), logH(P)<Y,,

<
—':J:X $10g|P(U)0‘ (u[! ] wma C)l _.}'

where wy, = 1. Then there are positive numbers v, ..., yg depending only on
Oy, .oy Wy L, %, 7, and y, satisfying the following property: If Y,, Y, >y, and
X >7y,Y, where Y=Y, +Y,, then there exists a homogeneous polynomial Q in
Z[xgy, Xyy ..., X,,) which satisfies the conditions

deg, 0<7Y,; (0<i<m), logH(Q) <y,
—7,X <loglQ(wg, @y, ..., )] < —75X.

Remark 2.3. In Lemma 10 of [11], Nesterenko only assumes the
estimate for the value deg P+log H(P). On the other hand, in the above
formulation of the lemma, we assume separately the estimate for
deg, P (0 < i< m)and for log H (P) because of our purpose. This change does
not affect essentially the structure of the proof. We also note that, in [11],
Nesterenko noticed that the argument upon which the proof of his lemma was
based had first been used by Chudnovsky.

Remark 24. In Lemma 10 of [11], Nesterenko assumes that w,, ..., @,
are algebraically independent over the field Q. We owe the removal of this
assumption to Nishioka [15].

3. Proof of Theorem 1. In what follows, we denote by ¢, c,, ... positive
constants depending only on K, m, r, m, A(z), B(z) and f(z). Let ¢ and g be
positive numbers satisfying
m+2—g I:m +1

) 2+4e 2

1
] and 1{2:=£<1+£.
logq
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For any leN, we put N, = [¢']. For f(z) and N = N,, we take the auxiliary
function which satisfies the properties stated in Leinma 2.1, and denote by E,(z)
this function. Since the functions f, (z}, ..., f,,(z) are algebraically independent
over the field K(z), by Lemmas 2.1 and 2.2, we have

(32) LNPH! < ord E, (2) < ¢, NI,

Let f(z') = A(2)f(z2)+B(z), and let De N be the least positiw_:_ integer sEch
that a(z):= Ddet A (z)e I [z] and such that the entries of a(z) A(z), a(z) B(z)
lie in I;[z]. Put
=1

(3.3) r,={J] a(@™)}™E,").

v=0
LeEMMA. For any sufficiently large I, we have
) y larg
(3.4) —c,r'NIPH < log M| € —ceyr' NP

Proof. For the number E,(w") with sufficiently large /, using (3.2) and the
properties of E,(z) stated in Lemma 2.1, we can prove, similarly to the proof of
Proposition 2 of Nishioka [14], the inequalities

(3.5) —cg'NP ! < log|E (@) < —cgr'NT'™ 1.
Put s = orda(z). Then we have
colol™ < la(@™) < ¢,

for all v> 0. Hence we have

—cg(sr'+D) < Z logla(o™)] < cql.

We can deduce (3.4) from (3.5) and the above inequalities. This completes the
proof of the lemma.

Put w; =fi(w) (i=1,...,m), and put 0 = (0, 0, ..., ®,). Then, by (3.3)
and the functlonal Equ&lloﬂ [M}, we can write F; Q,(w, »,, ..., w,) for some
Polynomial Q,(xg, Xy, ...y X,)€Ix[Xg, X4, ..., X,,]. Using the estimates in
Lemma 2.1, we have

(3.6) degQ, < c,or'N, and logH(Q) < ¢y N logN,.
Let R(l) be the function of [eN defined by
(3.7) R(l) = gim+i+a+er

Then, by (3.4) and (3.6), we obtain
B8)  Q,(gs Pasever T £0 i oy P1s oo ;’.,.)EB(H. exp(—R(1)))

for sufficiently large [
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Let o(l), a(l) and S(I) be the functions of Ie N defined by
(39) o()y=g"**N  g()=q**™ and S()=g™t1+A"=,
Then, by (3.4), (3.6) and (2.1), we have
(3.10) degQ,<d(l), h(@)<a(l) and 0<]Q,(0)<exp(—S()

for sufficiently large I. Now we apply Lemma 2.3 to the sequence of
polynomials {Q,},.x (taking ¢ (/) = 1 in Lemma 2.3) and the functions &, o, R,
S. By (3.4), (3.8) and (3.10), the conditions (a)—(c) in Lemma 2.3 are satisfied.
Put k = [(m+1)/2]—1. Then, by (3.1) and (3.9), the function S/(c+d8)8* is
increasing for sufficiently large I. Further, by (3.1), (3.7) and (3.9), for any given
sufficiently large positive constant C,

S 2> Cla+1)+a(+ Do+ DS U + R+ 141}
for sufficiently large l. Hence, by applying Lemma 2.3, we obtain

trdegy Q(0) = [(m+1)/2].

This completes the proof of the theorem.

4. Proof of Theorem 2. Theorem 2 can be proved similarly to the proof of
the result of Becker-Landeck [1] which improves earlier results of Galochkin
[5] and Miller [10] on transcendence measures of f(«) for an algebraic number
« in the unit disk. In what follows, we denote by ¢,, ¢,, ... positive constants
depending only on K, r, w, a(z), b(z) and f(z).

Our main purpose is to prove the following proposition.

PROPOSITION. In the notation and the assumptions of Theorem 2, for any
algebraic number o of degree d, we have

|w—a| > exp { —¢,log M (2)loglog M{a)—(d log (d + 1)+ (log M (oc))z)},
where M (x) = max (3, M (2)). In particular, @ is a transcendental number.
Proof. Our proof of the Proposition includes several lemmas. We first

prove the following:

LEMMA 4.1. For any NeN (N = 2) and le N with r' = c,Nlog N, there
exists a nonzero polynomial Q(x)e Z [x] satisfying the conditions

(4.1) deg Q < ¢3Nr',  log H(Q) < ¢ N (log N +1),
4.2) —csN2r' < log|Q ()] < —c N,

Proof. Put o, = f(w). For f(z) and N, we take the auxiliary function
E(z) which satisfies the properties stated in Lemma 2.1. Let D be the least
positive integer such that a(z):= Da(z), Db(z)ely[z]. For leN with
r'>c¢,Nlog N, put

§~=1

r={[]a@™"}"E@").

v=0
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Then, as in the proof of Theorem 1, we can write I' = Q,(®, w,) for some
polynomial Q,(x, y)ely[x, y] which satisfies the conditions
deg,Q, < ¢;Nr', deg,Q, <N, logH(Q,) < cgN(logN+1),
—coN* ' < log|Qy (w, @ )| € —c1oN*.
We now modify Q, to a polynomial Q (x)e Z [x] with the required properties.
We follow an argument used by Nesterenko [11] and by Nishioka [14]. Let
A=Z[w] and % = [K (w, ,): Q(w)]. Then there exists an element { which
generates the field K (0, w,) over the field Q (@) and which is integral of degree
x over A. Let y = [K:Q] and let §,, ..., B, constitute a Z-basis of I;. There
exists a nonzero element y of A4 such that the numbers yf,, ..., 7, yo, all lie
in A[{]. Then the number ' *YQ,(w, w,) is an element of A[{] and there
exists a polynomial O, € Z [x,, x,, y] which is homogeneous in the variables
Xo. X, and satisfies 7' *NQ,(w. w,) = 0, (1, w, ), and further satisfies the
conditions
deg,0, <x—1, deg,0,<cy Nr', logH(Q,) < ci2N(logN+I),
—c 13N < log|@, (1, @, )] < —c14N?,
where deng'D is the total degree of Q'U in the variables x,, x,. We can apply
Lemma 2.4 to the above situation, and obtain a polynomial Q(x)e Z [x] with
the required properties. This completes the proof of the lemma.

Let Q(x) be the polynomial which satisfies the properties stated in the
above lemma (the parameters N and [ will be defined at the end of the proof).
Put 4 = |w—a|. We may assume 4 < I, and hence we have || < 2.

LeMMA 4.2, There exists a positive constant ¢,s such that, if
(4.3) A < exp(—cysN?r),
then Q(x) #0 and we also have the lower estimate
(4.4) |Q ()| > exp { —c16N (d(log N +1)+r'log M (x))}.

Proof. Using (4.1), the lower estimate of (4.2) and the inequality |x| < 2,
we have

[Q ()] = |0 ()] =0 () — O ()]
> exp(—csN*r')— L(Q)max {|o/ —od]; 1 <j < degQ)}
= exp(—csN3r)—Adexp(c,Nr').

Hence, if ¢, s > ¢s+cyq, then we have Q (o) # 0. This proves the first part of the
lemma. The lower estimate (4.4) follows from (4.1) and from the following
(so-called) Liouville estimate (see Chudnovsky [3], Chap. 1, Lemma 1.7):

Q@) > L(Q)' ™M (2)” =2
This completes the proof of the lemma.
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As in the proof of the above lemma, the triangle inequality

1Q ()] = 10 ()] =10 (w)—Q ()],
together with (4.1), the upper estimate of (4.2) and (4.4) leads to the following
LemMMA 4.3. If the inequality (4.3) in Lemma 4.2 holds, then we have
(4.5) c1gNr! < ¢y9 {d(log N +1)+r'log M (2)}.

We now finish the proof of the Proposition. By Lemmas 4.2 and 4.3, if we
take N and [ (with r' > ¢, N log N) such that the inequality (4.5) does not hold,
then we have

A > exp(—cysN3r).
This can be done first by taking N = [c,0log M ()] and next by taking
I =min{leN; r' = c,,(Nlog N +dlog(d+1)N~'log N)}.
This establishes the Proposition.

We need the following result by Chudnovsky (see Chudnovsky [3],
Chap. 1, Lemma 1.12).

LEMMA 4.4. Let P(x)e Z[x] be a nonzero polynomial of degree d, and let
0 be a complex number. Then there exists a root o of P of multiplicity s such that

IP(O) > |0—af* {2d*H (P)L(P)} " .

Proof of the theorem. Let P(x)eZ[x] be a nonzero polynomial
whose degree is at most d and whose height is at most H. We assume dH = 3.
Then, by Lemma 4.4, we can take a root o of P of multiplicity s such that

|P(@) > |o—oaf {2d*H (d+1)H} *** > |w—af*exp(—4d log (dH)).

Put d, = degu; then sd, < d. By an inequality due to Mahler, we also have
slog M (a) < log L(P) < log{(d+1)H}. The Proposition together with these
estimates yields the theorem.

5. Proof of Theorem 3. Put w; = f;(w) (i = 1, 2). Assume that w and w,
are algebraically dependent. Under this assumption, we prove the algebraic
independence of w and w, with their measure of the algebraic independence
stated in the theorem. This clearly includes the proof of the lower bound for the
transcendence degree of the field Q (w, w,, w,) over the field Q stated in the
theorem. In what follows, we denote by c,, ¢,, ... positive constants depending
only on K, r, w, a;(z), b;(z) and f;(z).

Let P(x, y)e Z[x, y] be a nonzero irreducible polynomial with deg P < d
and H(P) < H. Put t = d+log H, and assume t > 1. Our assertion is proved
by the usual method, originated by Gel'fond, which uses elimination theory
(see, for example, Chudnovsky [3], Chap. 7, §3). If we apply Lemma 2.1 for
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J1(2) and f, (z), and replace Z [w], Q(w) and K (w, w,) appearing in the proof
of Lemma 4.1 by Z [w, ®,], Q(®, w,) and K (v, »,, ®,) respectively, then we
can prove the following lemma similarly to the proof of Lemma 4.1.

LemMma 5.1, For any NeN (N = 2) and leN with r' = ¢,NlogN, there
exists a nonzero polynomial Q(x, y)eZ [x, y] satisfying the conditions

(5.1)  deg,Q <c¢,Nr', degQ <c;N, logH(Q)<c,N(logN+I),
(5.2) —csN3r' < loglQ (w, w,)] < —cgN3.

Let Q (x, y) be the polynomial constructed in the above lemma. As in the
proof of Theorem 2, the parameters N and [/ will be defined at the end of the
proof. Hereafter we assume

(5.3) N=c,d and r'>=cglogH.

LEMMA 5.2. There exists a positive constant ¢q such that, if
(5.4) IP (@, w,)| < exp(—coN3r),
then the polynomials P and Q are relatively prime, and further their resultant
R(x) with respect to the variable y satisfies the conditions
(5.5) degR < ¢,,dNr', logH(R) < c¢,,N{d(logN+1)+logH},
(5.6) log|R (w)| < —c¢, N3,

Proof. Take ¢, large enough compared with ¢s in (5.2); then by
Gel'fond’s Lemma (see, for example, Chudnovsky [3], Chap. 1, Lemma 1.4),
P cannot divide Q, and hence P and Q are relatively prime because of the

irreducibility of P. We can easily deduce (5.5) from (5.1) and from the definition
of R(x). Put p=deg,P and g = deg Q. Since

IR ()] < (1+]|)**H (P H(Q) (p+q)" " *max (|P (@, w,)], 1Q (@, w,)]),
using (5.1)-(5.4), we obtain (5.6) and the lemma is proved.

Using Theorem 2 together with (5.5), we can prove the following:

LEMMA 5.3. If the inequality (5.4) in Lemma 5.2 holds, then we have
(5.7) IR (w)| > exp{—c,3T log T(dNr'log (dNr')+ T?)},
where T = N (log N +1)t.

By Lemmas 5.2 and 5.3, if we take N and [ (with r' = ¢,Nlog N and with
(5.3)) such that (5.6) is inconsistent with (5.7), then the inequality (5.4) does not
hold. This can be done by taking

N = [ciadt(logt)®]  and [ =min{leN; r' = ¢,st* (logt)*},
and we obtain

|P (@, @,)| > exp(—coN3r) > exp(—c,6d’t® (log1)"?).

6 — Acta Arithmetica LIX.1
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For a reducible polynomial Pe Z [ x, y], we first factorize it into irreducib-
le polynomials, and obtain a lower estimate as above for each of their values.
Using these estimates and Gel'fond’s Lemma, we obtain the desired lower
estimate for |P(w, w,)|. This completes the proof of the theorem.
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ACTA ARITHMETICA
LIX.1 (1991)

On Fermat’s equation with prime power exponents
by
Cul-XIANG ZHONG (Vancouver, B.C)

1. Introduction. There are many important and interesting results for the
general equation

x4y 427" = 0.
One is the following: In 1933, using the method of singular integers, Moriya

[5] extended the theorem of Furtwingler to the Fermat equation with power
exponent p” to show that:

Suppose that the equation x?" 4 y?" 42" = 0 with n > 1 and p an odd prime
has a non-trivial solution x, y, z such that some integer r satisfies one of the
Jollowing conditions: (1) r|x, pkx, (i) rlx—y, p¥x>*—y>. Then rP~}
=1 (mod p"*!).

Again with the same method, Inkeri [2] proved the following generaliza-
tion of a theorem due to Vandiver [8]:

With the same assumption as in the last theorem,
xP=x (modp), y’=y (modp), z=:z (modp).

However, this is far from perfect. The author will improve this result in the
next section by making use of the recent result of Azuhata [1] of Science
University of Tokyo who proved in 1984 that: '

If p is an odd prime and there exist pairwise relatively prime integers x, y, z
satisfying one of the following conditions: (i) r|x, px x, (ii) r|x—y, pf x> —y?, (iii)
rlx*—yz, p¥xy+yz+zx, (iv) rix*+yz, pAx(y—z)(x*+yz), then

r’~'=1 (mod p*").

This is a considerable generalization of Moriya’s theorem. The result of

the author is the following

THEOREM. If p is an odd prime and there are relatively prime integers x, y, z
Satisfying x""+ y"" +z"" = 0, then

xP=x (mod p*"), y"=y (mod p*), 2z =z (mod p*"),
and x+y+z =0 (p*"). Moreover, if p|z then p*"|z.
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