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For a reducible polynomial Pe Z [ x, y], we first factorize it into irreducib-
le polynomials, and obtain a lower estimate as above for each of their values.
Using these estimates and Gel'fond’s Lemma, we obtain the desired lower
estimate for |P(w, w,)|. This completes the proof of the theorem.
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On Fermat’s equation with prime power exponents
by
Cul-XIANG ZHONG (Vancouver, B.C)

1. Introduction. There are many important and interesting results for the
general equation

x4y 427" = 0.
One is the following: In 1933, using the method of singular integers, Moriya

[5] extended the theorem of Furtwingler to the Fermat equation with power
exponent p” to show that:

Suppose that the equation x?" 4 y?" 42" = 0 with n > 1 and p an odd prime
has a non-trivial solution x, y, z such that some integer r satisfies one of the
Jollowing conditions: (1) r|x, pkx, (i) rlx—y, p¥x>*—y>. Then rP~}
=1 (mod p"*!).

Again with the same method, Inkeri [2] proved the following generaliza-
tion of a theorem due to Vandiver [8]:

With the same assumption as in the last theorem,
xP=x (modp), y’=y (modp), z=:z (modp).

However, this is far from perfect. The author will improve this result in the
next section by making use of the recent result of Azuhata [1] of Science
University of Tokyo who proved in 1984 that: '

If p is an odd prime and there exist pairwise relatively prime integers x, y, z
satisfying one of the following conditions: (i) r|x, px x, (ii) r|x—y, pf x> —y?, (iii)
rlx*—yz, p¥xy+yz+zx, (iv) rix*+yz, pAx(y—z)(x*+yz), then

r’~'=1 (mod p*").

This is a considerable generalization of Moriya’s theorem. The result of

the author is the following

THEOREM. If p is an odd prime and there are relatively prime integers x, y, z
Satisfying x""+ y"" +z"" = 0, then

xP=x (mod p*"), y"=y (mod p*), 2z =z (mod p*"),
and x+y+z =0 (p*"). Moreover, if p|z then p*"|z.
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Furthermore, this result can be used as a key to give a series of important
estimates on the variables x, y, z such that x”"+ y?" = zP", These estimates can
be summarized in the following corollaries that are proved in another paper of
the author:

COROLLARY 1. If p is an odd prime, 0 < x <y < z are relatively prime
integers, pxxyz and x""+yP" =z, then

23n+n
.w(P P

ok
—_— z—x > 4 p*nPn,
10g{3p"]) and x > 4""p

COROLLARY 2. If pis an odd prime and there exist pairwise relatively prime
integers x, y, z such that 0 < x <y <z, plxyz and x™+ y™ =z, then

x> pSnp"—d-u‘ y> %p.\np" -n‘ r—x > ip.inp"-—n— [_
COROLLARY 3. Let M >0 be a given real number, p an odd prime and
0 < x <y < z relatively prime integers satisfying x*"+y"" = z"". If
y—x < M(z—x)! WP

then

p < /i(log M)*.
In fact, these estimates are generalizations of some important estimates for

X, v, z satisfying x?+ y? = zP, obtained by Inkeri [3], van der Poorten [4],
Stewart [7], and others.

2. Proof of the theorem. We divide the proof into two cases:
(a) If pyxyz then under the assumption of the theorem,

Xy = (x4 )0, (X, PO, (7, y)... 0, (P, y7 )
where Q,(x, y) = (x"+y")/(x+y). Since pfxyz, we have
(1) (x+y, Q,0x, ) = (x"+", Q,(x*, y) = ...
= (xf’“‘l o+ yP"- l’Qp(xl”"_ " ypn-l)) =1
and so

Xty =17 Qyx, ) =1, Q, (", y) =18, Q, (", Yy =~

for some integers t, t,, t,, ..., t,. From (1) it follows that if q is a prime with
qltyty ... t, then g =1 (mod p). Since ¢! = 1 (mod p*") by Azuhata’s theo-
rem, we have ¢” = ¢ (mod p*") and so

g=¢’=1 (mod p?), ..., g=4¢"=1 (mod p*").

That is, every prime factor g of any integer among t,, t,, ..., t, is congruent to
1 modulo p*". Similarly, we can prove that

" " " - n=1 Ul
z4x=5", Q,(z.0) =5, Q,( xN)=sL 0, X7 ) = —sf',
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and

z+y=r", Q,(z, ) =rf", 0, (2" y) =18, ..., Q (2" ",y ) = —rl,

and moreover if ¢ is a prime and g|ss, ... s,rr,r, ... r, then we also have
g =1 (mod p?"). Hence

X= —rry...r,= —r (mod p*"),
y= —55,...5, = —s (mod p?"),
z=—tt; ...tl, = —t (mod p*"),
and so
XP 4 pP" 42" = — (" 45" +17") = 0 (mod p*").
Again

X =(=rP"+s"+17)/2 = —r” (mod p*),
y=("=s"+1")/2 = —s" (mod p*"),
z=(r"+s"—17")/2 = —¢"" (mod p*"),
X0 = [=(rr )"+ (s, +(11,)")/2 = =™ (mod p*),
¥o = [lrr )P = (557" +1,)"")/2 = —s™ (mod p*),
2P = [(rr )" +(ss,)"" —(1,)")/2 = —¢*" (mod p*").

Combining the last two groups of congruences, we obtain the conclusion of the
theorem.

(b) If p|xyz, there is no loss of generality in assuming that p|z. Under the
assumption of the theorem, we have

s @y, YY) = — el
QP{Z, x}zsqu‘ . Qp[zpn-l‘xpn-lj= —‘Sﬁ";
QP(Z’ y) — rfl’"‘ i Qp[zpn-l‘ ypn- 1) — —rﬁ".

With the same method as in (a), we can prove that if ¢ is a prime and
qlss,...srry...r,, then g =1 (mod p>"). Hence we have

X+y=p"n”,  Q,(x,y)=pf,
z4+x =3s",

y+z=r",

x=—rry...r,= —r (mod p*), y= —ss,...s,= —s (mod p*"),
and so
XP" 4y 2P = — (P 4+ 57") = 0 (mod p").
Again since
X = (=rP s pm ) 2 = — 1 (mod p*),

y = (r"—sP" 4 pmP"""P")/2 = —s*" (mod p*")
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and

xXP = [—(rry)™ +(ss,)”" +p™" """ (1t,)7"]/2 = —r?" (mod p*"),

yP = [(rr )P —(ss))P" +p™" 7" 1 (12,)7")/2 = —s™ (mod p*"),
so we obtain

x? = x (mod p*), y? =y (mod p*").
Noticing that
z =" +s""—p™" " "t?")/2 =0 (mod p3"),
we also have
2P = z (mod p3").

That completes the proof of the theorem.
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Arcs containing no three lattice points
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Javier CILLERUELO (Madrid)

1. Introduction. In [1], A. Cordoba and myself developed a method to
study the location of lattice points on circles centered at the origin. There we
proved the following theorem:

THEOREM A. On a circle of radius R centered at the origin, an arc whose
length is not greater than

ﬁR”Z - 1/(4[m/2]+2)
contains at most m lattice points.
We could not decide whether the exponent

1 |
2 4 [m/2]+2

is sharp for each m. In particular, we do not know if the number of lattice
points on arcs of length R'/? is bounded uniformly in R or not. Probably it is
not.

Obviously, Theorem A is sharp for m = 1. The case m = 2 was first proved
_by A. Schinzel and used by Zygmund [2] to prove a Cantor—Lebesgue theorem
In two variables.

It is not too hard to prove that the exponent 1/3 cannot be improved.

In this paper we get the best constant C, such that an arc of length CR'/?
Cannot contain three lattice points.

THEOREM 1. (i) On a circle of radius R centered at the origin, an arc whose
length is not greater than 2i/§R“3 contains at most two lattice points.
(ii) For every & > 0, there exist infinitely many circles x*+y* = R? with

arcs of length Z{ﬁR,E”i-f: containing three lattice points.

2. Preliminary lemma and notation. Let us denote by r(n) the number of
Tepresentations of the integer n as a sum of two squares, i.e. r(n) is the number
of lattice points on the circle x2+ y* = n. Therefore we shall associate lattice
Points with Gaussian integers: a*+b* = n determines a Gaussian integer
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