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if h is of the shape h =3'n—3""!'—...—3—1 for some n=1, 2, ... chosen
minimally.

The cases k > 2 even are quite different essentially because x* = x (mod 3)
for all xe Z only if k is odd. The argument of [4] is rather different, but its main
result can also be obtained from transition formulae of the sort displayed at
Lemma 1. Those formulae turn out to be somewhat more natural than those
required here and we leave them as an exercise for the mildly energetic reader.

Cases where truncations of the product do not yield partial quotients seem
more difficult.

Our indebtedness to an idea of Mills and Robbins will be evident to
readers familiar with their paper [5].
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1
On — =—+—+— and Rosser’s sieve
n x y z

by

J. W. SanDEr (Hannover)

1. Introduction. An old conjecture of Erdds and Straus says that for any
given integer n > 1, the equation

4 1 1 1
(1) S Lol o

n x y z
has a solution in positive integers x, y, z. For references to the huge amount of
(partial) results concerning the conjecture as well as its generalizations by
Sierpinski, Schinzel and others, we refer the reader to [1], problem D 11, and
[9].

We just like to mention an outstanding result by Vaughan [11] which

gives an upper bound for the exceptional set E, (N) of integers n < N for which
m/n = 1/x+1/y+1/z has no solution (m >4 is a fixed integer), namely

E,(N) < Nexp(—c(log N)*?),

where ¢ may only depend on m.

In order to prove the conjecture it obviously suffices to solve (1) for all
primes g (instead of n). Moreover, one can easily see that, if there is a solution
of 4/g = 1/x+1/y+1/z, then either exactly one of the numbers x, y, z is

divisible by g, or exactly two of them have a divisor g. The second case, namely
the equation

% 411t
9 w g9 hq
for a given prime g, is equivalent to the solvability of
3) (4g—1)(4h—1) =4tg+1, t|gh,
in positive integers g, h, t (see [9]). In [9] lower bounds for

V(x; k, l;t) = card{g < x: g =1 modk, (2) unsolvable with gh/w = t}
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have been given, where k and [ are integers satisfying (k, [) = 1 (gh/w is always
an integer). Only for t = 1, an asymptotic formula was obtained. In this paper
we will improve upon these estimates by giving asymptotic formulae for all
primes t.

It is known that for n# 1 mod24, solutions of (1) may be found
constructively (with a little more effort the remaining residue class
n =1 mod 24 can be reduced to an even thinner set of possible exceptions to
the conjecture of Erdos.and Straus). This is the reason for the condition
q =1 mod k in the definition of V(x; k, I; t) which allows us to get results not
obtainable by much simpler methods.

Throughout this paper, let p, g, ¢ (with or without subscripts) be primes.
Furthermore, let

G(4t) = {a: 1 <a<4t, (a,4)=1)

be the prime residue group mod 4t. Occasionally, we will not distinguish
between the element ae G(4t) and the congruence class a mod 4¢. It will be
shown that G(4t) has exactly two subgroups U,, U, satisfying

Ul =4lG@)l, —1¢U, (i=1,2).

For an integer m and an arbitrary subset H < G(4t), we will write “me H”
instead of “m = h mod 4t for some he H”. By (-/t) we will denote the Legendre
symool modt. Constants c,, ¢,, ..., O( ) and Vinogradov’s <€ may depend on
parameters t, k, [, ¢ and &, but must not depend on the real variable x.

THEOREM. Let t be prime, (k, )= 1. Let
@ pY@tl+1) or (p/)=1, p=1mod4

for all plk (for t=2, the condition “(p/t)=1" has to be replaced by
“p=1 mod 8”). Moreover, let 0 <& < 1/6, and ¢ > 0. Then

1 8t \12 ,
Vix; k, I; 1) = (kj(n(t )) (MU +AU) g5 )3‘,2(1-9-0(5))

+0(x(log x) ™32~ M@ =2+¢) L O(E(x, x'79),

where
1 1 LiX
=—————— EX,K)= max |n(X; u, v)———,
? 2 (2 — 10g 2)9 ( ) u;x (vu)=1 “( U) (P (u)
AU L(1 Mz (I 1)-”2(1 = )
U =L, w)” I1 (17 =0
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and yy, (i = 1,2) is the character mod 4t defined by the subgroup U; of G (4t)
(see Lemma 5 (v)).

Remark. Obviously, the condition of the theorem holds if (4) is replaced
by the simpler condition “(k,4tl+1)=1”. The theorem implies that an
unconditional asymptotic formula would follow from the well known Hal-
berstam conjecture (see [8], p. 137.).

2. Preliminaries.

LEMMA 1. Let t be prime. Then

(5) (4g—1)(4h—1) = 4tg+1, t|gh
is unsolvable in positive integers g and h if and only if
(6) d# —1 mod 4t for all d|(4tq+1).

Proof. Since t is prime, and t|gh in (5), we may assume t|g. Hence (5) is
unsolvable if and only if

V)] (4tg'—1)4h—1) = dtq+1
is unsolvable. Clearly, (6) implies the unsolvability of (7). Now suppose that
d = —1 mod 4t for some d|(4tq+ 1), d = 4tm— 1, say, for some positive integer

m. Thus there is a positive integer m’ satisfying
4tq+1 = (4tm—1)(2m'—1).
This implies 2|m’. Then (7) has a solution, namely g’ =m, h = m’/2.

LEMMA 2. Let G be a finite abelian group of even order. Let H = G with
|H| > 4|G|+ 1. Then for all geG, there are hy,hye H such that g = hyh,.

Proof. Clearly,
card{(gl,gz)e(}z: 9192 =g} = |Gl.
Let H, =G, |H > 1, and H, € H,, |H,| = |H,|—1. If

card{(hy, h,)e H}: hyh, =g} = b,
then

card{(hy, h,)e H}: hyh, = g} > b—2.
By induction we get
card{(hy, h;)e H*: h,h, = g} > |G|—2|G\H| = 2|H|—|G| > 2
LeEMMA 3. Let t > 2 be prime. Then there is ge G(4t) such that
G@é)=1{g,¢* ... -9, —¢* ..., —¢'"'}.

Proof. It is well known that, if g, is a primitive root mod ¢, then g, = g, is
a primitive root mod 2t for 24g,, and g, = g, +¢ is a primitive root mod 2t
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for 2|g, (see [4, Theorem 3.9.1]). Thus we always have an odd primitive root
g, mod 2t.

If gb #—1 mod 4t for 1 < j<t—1, then set g = g,. Now suppose that
g7 = —1 mod 4t. Then 2}/m, because —1 is no square mod 4. Since g, and
m are both odd, we have

(g2+20)™ = g5 +2mtg5 ' = g7 +2t mod 4t.
Let g = g,+2t. Obviously, g is an odd primitive root mod 2t, and
g=¢gl mod2t (1<j<r-1),

hence g/ # —1 mod 4t for 1 < j < t—1. In any case, we have a primitive root
g mod 2t, ge G(4t), satisfying

¢d#F—1moddt (1<j<t—1).
It is easily seen that the numbers

=1 [ |

g!gzs---!g > — 4, —gzs---a —4g
are pairwise incongruent mod 4. This proves the lemma.

LEMMA 4. Let t > 2 be prime. Then
(1) G(4t) contains exactly (t—1)/2 squares;
(ii) a is a square in G(4t) if and only if

($)=I and a=1 mod4.

Proof. (i) We have
G(4t) = {a: 1 <a<dt, (a,4t)=1}.
Clearly, for 1 <a<t
a* = (2t—a)* = (2t+a)* = (4t—a)* mod 4t.
Thus it suffices to show that we have for 1 <a; <a, <1t, 2ta,a,,
a? # a} mod 4t.
Assuming a2 = a? mod 4t, we get
(ay—a;)(a;+a,) =0 mod t.

Since 0 < a,—a, <t, we have t|(a, +a;), which implies t = a,+a,, thus 2|t.
This is a contradiction.
(ii) First let a be a square in G(4t), which means that there is b e G(4t) such
that
a = b* mod 4t.

This implies a = b*> mod t, i.e. (a/t) = 1, and a = b> mod 4, hence a = 1 mod 4,
since 2/4a.
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Now assume that (a/t) =1 and a =1 mod 4. By the above argument
Q:={a: 1<a<4, (a/t)=1, a=1 mod 4t} = {aeG(4t): a is square}.

Exactly one of the numbers d, d+t, d+2t, d+ 3t is congruent to 1 mod 4.
Therefore,

cardQ =card{a: 1 <a<t (aft) =1} =(t—1)/2.
By (i), the proof is finished.

LEMMA 5. Let t be prime.
(i) G(4t) has exactly three subgroups U,, U,, U, with

U| =3IG@)=t—1 (@(=1,2,3).

(i) U; (i=1, 2, 3) contains all the squares of G(4t).

(iii) For each non-square a€ G(4t), there is exactly one i€ {1, 2, 3} such that
aeU,.

(iv) G(4t) has exactly two subgroups U,, U,, say, with

[U|l=4|G@t) and —1¢U; (i=1,2).
(v) The function yxy,: G(4t)— C defined by

1 for aeU,,
/(@ =<—1 for acG@a)\U,, (@(=1,2,3)
0 otherwise,

is a character mod 4t.

Proof. For t = 2, the lemma is easily seen to be true. Therefore, we may
assume t > 2. We use the representation of Lemma 3, namely

(8) G(4t)={g’ gzs---’ g'_l’ —4, _gzv--: “‘g'_l}'

(i) By the duality principle for finite abelian groups [3, p. 213], the number
of subgroups of G(4t) of order 4|G(4¢)| is equal to the number of subgroups of
order 2. Since 1 is self-inverse, but of order 1, it remains to show that G(4t)
Contains exactly four self-inverse elements.

Since g in (8) is a primitive root mod 2t, we have

g¢#1 mod 4t (1<j<t=2),
and
g '=1 mod 4t,

bgcause there are no primitive roots mod 4t. Thus the congruence
@ =1 mod 4t obviously has the four solutions a = + g~ /2, +4'~'. Others
do not exist by the above remark.
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(ii) Suppose that g? ¢ U, hence g ¢ U,. This implies that if g€ U, then g’ **,
¢’*2¢U,, and similarly, if —g/eU, then —g/*!, —¢/*2¢U, We get
Ul <3(2t—2), but |[UJ| =t—1. Therefore, g€ U,, and it follows that

g%, 9% ...,¢4 tel,

which by Lemma 4 (i) are the (t—1)/2 squares of G(4t).
(iii) Let ae U, for some i€ {1, 2, 3}, a not a square. By (ii), we have g2,

g%, ...,g9'" ‘e U, hence

ag?,ag®,...,ag' 'eU,.

These t—1 numbers are pairwise incongruent mod4t, thus U, is uniquely
determined. Therefore, a cannot occur in more than one U,.

By Lemma 4 (i), G(4t) contains exactly 3(t—1) non-squares. By (ii), U,
contains (¢t — 1)/2 non-squares, and these are distinct from all the non-squares in
U;, j #i. By (i), this proves the claim.

(iv) Since a®> # —1 mod4 for all a, —1 is a non-square in G(4t). Thus (iv)
follows from (i) and (iii).

(v) We have to show that for a, be G(4t)

9 xu,(ab) = yy.(a) xu,(b).

This is clear except for the case a, be G(4t)\U,. But then aU,; = bU,, and there
is deU; such that a =db, which by (ii) implies ab = db’e U;, and (9) is
satisfied.

LeMMA 6. Let n>=3 m an arbitrary positive integer; let
1<a,<a,< ... <a,=2n. Let one of the following two conditions be
satisfied:

(i) m = n; at least one a; is odd; n>4 or {a} # {1, 5, 6};

(i) m=n—1;n>50r{a;} # {a,, 6} (1 <a, <5)or{a;} # {a,, 8—a,, 8}
(1<a, <3).

Then there are a; # a; such that for all a,

(10) a;+a; # a, mod2n.

Proof. We suppose that the conclusion (10) of the lemma is wrong, i.e. for
all a; # a;, there is a, such that

(11) a;+a; = a, mod2n.
We have

a,+a, <a,+a, < ... <ap-,+a, <a,+a, =2n+a,.
Obviously, a,,+a, = a, mod2n, and by (11)

(12) a; =min{b > 0:b=a;+a, mod2n, 2 <j< m}.
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Thus a,,-,+a, < a,, = 2n, because otherwise a,,_, +a, = b mod 2n for some
1 < b < a,, which contradicts (12). On the other hand, a,,-, +a, < a,, implies
a,-1+a, <a,_; by (11), but a, > 1. Therefore, we have

p-1+a, =a,,.
By induction, we get
a+a, =a;.;, (2<j<m-1).
This yields
(13) n=a,=0a,-1+a, =a,-,+2a, = ... = a,+(m—2)a,.

Case 1:m = n. For a, > 3, we find by (13) and n > 3 that a, < 3, which is
impossible. For a, = 2, (13) implies

a;=2j (1sj<n),

which contradicts (i). It remains to consider a, = 1. Then by (13)
(14) a=n+j (2<j<n).
For n = 3, this yields

a,=1, a,=5, a;=6,
which is excluded by (i). For n > 4, we have

a,+a;=2n+5=35 mod2n,

but 5¢{a;} by (14).

Case 2: m=n—1. For n=3 respectively n=4, we get by (13)
a, < a, = 6 respectively a, < a, = 8—a, < a; = 8, which both contradict (ii).
For n =5, (13) yields

a, <a,=10-2a, <a, =10—a, < a, = 10.
Obviously, a, €{1, 2, 3}, but then

a,+a; # a; mod 10
for all a,.
By the above consideration, we may assume that n > 6. For a, > 3, we
deduce by (13) that a, < 3, which is impossible. For a, = 2, (13) implies

a;=2+2 (2<j<n-1),
but then for n> 6

a,+a,—, =4%# a, mod2n
for all a;. Finally, for a, =1, we have by (13)

a;=n+j+1 (2<j<n-—1).
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For n=>= 6,
a,+ay;=7#a, mod2n
for all i. This finishes the proof.

LEMMA 7. Let t be prime. Let H = G(4t), H not a subgroup of G(4t), and
|H| = 4|G(4t)|. Then one of the following conditions holds:

(i) —1eH;
(i) hyh, = —1 for some h,, h,eH;
(iii) hy h, hy = —1 for some pairwise distinct h,, h,, hyeH;

(ivyt=S; He¥s:={H,, H,, H,, H,}, where H, ={1,3,7,11},
H,={1,11,13,17}, Hy={1,3,11,17}, H, = {1,7, 11, 13};

(v)t=7, Hex¥,:={H;, Hg}, where Hy={1, 3, 5, 15, 17,19},
Hy={1,3,11, 13, 19, 23}.

Proof. It is easily seen that for ¢t = 2 and ¢ = 3 either (i) or (ii) holds. Thus
we may assume that t > 5. Moreover, we suppose that (i) and (ii) are not
satisfied, i.e.

(15) —1¢H and h hy,# —1 (hy, h,eH).

We will prove that this implies (iii), (iv) or (v).
By Lemma 3, there are non-negative integers r and s with
r+s=t—1=|H|, and non-negative integers

1<a, < ... <a,<t—-1, 1<bh; <...<b,<t—1
such that
H={g",...,g% —g"; ..., —g"}-
Since g is a primitive root mod 2t, we have
g '=1 mod2t.
There is no primitive root mod 4¢, thus
(16) —¢'"'= —1 mod4t,
which yields by (15)
a7 bj<t—1 (1<j<ys).
The congruence
g“x = —1 moddt

has a unique solution in G(4t), namely x = —g'~!%. Now (15) implies
(18) gUeH <> —g' 1 ¢ H.

In particular, we get by (15) and (18)

(19) leH, ie a =t—1,
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and that
E:= {als <y Gy, bls seey bs}
satisfies
(20) |{e€E: 2le}| = |{e€E: 2xe}| = (t—1)/2.

Case 1: r>s. We may assume s > 0, since otherwise H would be

a subgroup of G(4t). First consider the case where 2tb; for some j. If x and
y independently run through the set {a;}, then by the pigeon-hole principle,
there are x = a;, y = a; such that

x=—bj—y modt—1,
thus

a;t+a;, = —bj mod t—1.
Since 24b;, we have a; # a,, and by (16)

g“g™(—g*) = —1 mod 4t,

ie. (iii) holds.

In case 2|b; for all j, we have {1,3,5, ..., p—2} < {a;} by (20). Hence for
t>5 and 2|m, there are a; # a, such that

(21) m=a;+a, modt—1,
because 2 =(t—2)+3 modt—1 and t—2> 3, and for 1 <n<(t—1)/2,
m=2n=2n—1)+1 modt—1,
Where 2n—1 > 1. Setting m = t—1—b; in (21), we have g; # q, such that by (16)
g“g™(—g*) = —1 mod 4t.

It remains to consider t = 5, where {a;} = {1, 3, 4}, b, = 2. Possible values for
g in Lemma 3 are g = 3, 7, 13, 17. This implies that H = Hy or H = H,, i.e.
H is one of the sets in (iv).

Case 2: r < s—1. By (20) there exists an odd bj,. If x and y run through
{b;}\{b,,} independently, then the pigeon-hole principle guarantees x = b; and
Y = b, such that

=t—1-bj,—y modt—1,
hence

(22) bj+b+bj, =0 modt—1.

By construction, b; # bj, and by # b;,. Moreover, b; # by, since 2tb;,. Thus
(22) and (16) yield (iii), namely

{(—g")(—g™)(—g"°) = —1 mod 4t.
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Case 3: r = s. If all the a;’s are even, then by (20) all the b;’s are odd. This
implies that H is a subgroup of G(4t), which contradicts the initial condition of
the lemma. Thus there is an a;, with

(23) 2§ a,.

We apply Lemma 6 (i) with m = n = (t—1)/2. For t > 11, there are a; # a, and
a¢{a;}, 0<a<t—1, such that

a+ay=a modt—1.
By (18), there is b; satisfying b; = t—1—a, hence by (16)
g9 (—g¢*) = —1 mod 4t.

By Lemma 6 (i), the same holds for ¢t = 7, except for a; =1, a; =5, a3 =6,
which implies b; = 2, b, = 3, b3 = 4 by (18). Possible values for g in Lemma
3 are g=35,11,17, 23, thus He 5, and H is of the form (v).

For t =5, we have by (23), (19) and (18) only the cases

a|=l,az=4; bl=1,b2=2 or ﬂl=3,ﬂz=4; b1=2,b3=3.

Since g may take on one of the values g = 3,7, 13, 17, we get H = H; or
H = H,4, which are sets in (iv).

Case 4:r = s—1. We apply Lemma 6 (ii) with n = (¢t —1)/2, m = (t—3)/2.
For t > 11, there are q; # a, and a¢{a;}, 0 <a <t—1, such that

a;+a,=a modt—1.
By (18), there is b; satisfying b; = t—1—a, hence by (16)
g“g™(—g") = —1 mod 4t.

By Lemma 6 (ii), the same holds for ¢t = 7, except for 1 <a, < 5 and a, =6,
which by (18) implies

{bj} ={b: 1<b<5, b#6—a}.
Whenever {1, 2, 3} = {b;} or {3, 4, 5} = {b;}, then there obviously are pair-
wise distinct b;, b;, b, such that

bi+bj+b, =0 modt—1,

hence by (16)

(—g")(—g")(—g™) = —1 mod 4t.
The only remaining case is

a,=3,a,=6; b,=1,b,=2, b3=4, by =5.

Possible values for g are g =5, 11, 17, 23, which all yield sets H of (v)..
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For t =5, we get by (19) and (18)
al=4; b1=1,bz=2,b3=3.
The values g =3, 7, 13, 17 yield sets H of (iv).

LEMMA 8. Let He #5 respectively He #; (as defined in Lemma 7). Then
there are hy, h,e H, hy # h, such that

hih, = —1 mod 20 respectively —h3h, = —1 mod 28.
Proof. We have
32:11=132-11 = —1 mod 20,
which proves the lemma for He #%. For He #,, we notice that
5219 =112-3= —1 mod 28.
For H = G(4t), we define the following properties:
(Py(H): pl4tg+1) = peH;

(P»(H)):  For every he H, there is a prime divisor p of 4tq+1, such that
p = h mod 4t;

(P3):  d|(4tq+1) = d# —1 mod 4t.
Then let
Wi(H; x; k, I t) = card{g < x: ¢ =1 mod k, (P,(H))},
Wa(H; x; k, I; t) = card{g < x: g =1 mod k, (P,(H)), (P.(H)), (Ps)}.
#s and #, have been defined in Lemma 7. For t #5, t #7, let #,=0.

PROPOSITION 1. Let U, U, be the two subgroups of G(4t) in Lemma 5 (iv).
Then
2
Vi k,by= Y WU x; k, L 0+0( ¥

i=1 HE G(4r)
|H| <|G(4n)|/2

+0( Y Wi(H; x; k, ;).

Hex,

Proof. By the definition of V(x; k, I:t), (2), (3) and Lemma 1,
(24) V(x; k,l;t)=card{g < x: ¢ =1 mod k,(3) unsolvable}
=card{g<x: g=1modk,(Py)} = Y Wy(H;x;k,I;1).

Wi(H; x; k, [ 1))

HE G(4n)
First assume that H = G(4t) with |H| > 4|G(41)|+ 1. Applying Lemma
2 for g = —1, there exist residue classes h,, h,€ H such that

(25] hth-_—" —-1 m0d4t.

7 — Acta Arithmetica LIX. 2
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Obviously,
(26) hy # hy,

otherwise h = —1 mod 4, which is impossible. If g is counted in W,(H; x; k, I; t),
then by definition 4qt+1 has property (P,(H)), i.e. 4tqg+1 has prime factors
p: and p, satisfying

27) pr=h, mod4t, p,=h, mod4t.

By (26), p; # p,, thus p;p,|(4tqg+1), and by (25) and (27), p1p. = —1 mod 4t,
contradicting (P). Therefore, |H| > 1|G(41)|+ 1 implies

WoH; x; k,1;t)=0
By (24), we get

(28) Vixsk, L= Y  WyH;x; k1)
HE G(4r)
|H| <|G(a1)|/2
= Y Wo(H; x; k, Ly+0( ) Wi (H; x; k, 15 1).
HE G(4r) HEZ G(41)
|H|=|G(4n|/2 |H|<|G(4nl/2

Now let H = G(4t) with |H| = }|G(41)|, and H not a subgroup of G(4t).
Then Lemma 7 may be applied. If (i), (i) or (i) holds, then by the above
argument, we can find a divisor d|(4tq+1), and d = —1 mod 4¢t, again
contradicting (P;). Therefore, W, (H; x; k, I; t) = 0 in these cases. We are left
with the cases (iv) and (v) in Lemma 7, and these are taken care of by 5 and
5. Thus (28) and Lemma 5 (iv).give

2
(29 Vi k Lby=)Y WaUsx; k, Lo+0( Y Wi(H;x; k, 13 1)
= \H fifélg((::l}lf 2

+0( Y Wi(H; x; k, I; 1)),
Hex,

An easy inclusion-exclusion argument shows for i =1, 2 that

Wy (Uy; x; k, I; 1) = card {g < x: g =1 mod k, (P{(U))), (P2(U)))}

=Wi(Usxs k, 5)+0( Y Wi(H;x; k, 1;1)).
HEU
\HI< Ui

This and (29) prove the proposition.
3. The main term. Iwaniec’s half dimensional sieve. In this section we deal

with the terms W, (U; x; k, I; t) occurring in Proposition 1, where U is
a subgroup of G(4t) with |U| = 4|G(41)|.
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For a finite set &/ of positive integers, a set 2 of primes, and z > 1, let

(30) Piz)= []p, S(#,2)=card{aeo: (a, P(z)) =1}.
o
Furthermore, let w(d) be a multiplicative arithmetic function satisfying
(31) O0<wp@)<p, olp)=0 for p¢Z,;
L. .2 w(p) w(p) 1 z

(32) —c;+=log—< —Io < logp< e, +=log—

) ' 2 gwﬂ.w€§<z P g wﬁzp<zp_w(p) gp 2 2 gw
for any z>w > 1, and some constants ¢; > 1, ¢; > 1. Define
(33) 2@ =] (1—“’—"’})

p<z p

(34) oy ={aes/: a=0 modd},
35) R(et, d) = ot~ 50 x

for some X = X_, > 1.

PRrOPOSITION 2. Let U be a subgroup of G(4t) with |U| = 3|G(4t)|. Let the
greatest odd divisor a' of each ae o satisfy a'eU. Let

2 < {peP: peGEN\U},
and let (31) and (32) be satisfied. Then for Q° < z? < A:= max, 4a

l ¥
s, = 20X (14520 (SEEL )y 5 R(o,
log A 4<a/0
d|P(z)
where s = log A/logz, |0| < 1, y as in the theorem, and the function F(s) as
defined in § 4 of [5].
This is a straightforward generalization of Theorem 2 of [5], which can be
proved in the same way. The only notable difference is the following: In [5], we
have

aes/ = a=1modd4, Zc{p=-1mod4},

which guarantees that, if p, € 2 divides a, then there is a p,€# such that
P1p;la. In Proposition 2, the assumptions on <7 and 2 yield the same property,
since U is a group. In addition we need h,h, e U for hy, h,€ G(4t)\U. This has
already been proved in Lemma 5 (v).

PROPOSITION 3. Let U be a subgroup of G(4t) with |U| = $|G(41)|. For all
acsf, let aeU. Let

={peP: peG(4)\U},
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and let (31) and (32) be satisfied. Then for Q% < A = max,.ya, we have

1/2 l -1/2
st /A= (s (1-22)(1-) " (1+)
pe?@
xX(logA}‘”z(l+0(e“‘=(q—l-g-é-c—)§—g—)v))+ Y. IR(#,d),

d<4/Q
d|P(«/ 4)

with parameters as in Proposition 2, and yy as defined in Lemma 5 (v).

Proof. Applying Proposition 2 for z = \/; , and reasoning as in the proof
of Theorem 3 in [5] with

L(l, XU) o H (l _)CU(P))_I

peP P

instead of L(1, y4), the desired result follows by Lemma 5 (v).

Remark. It should be mentioned that there is a misprint in the
formulation of Theorem 3 in [5], namely the condition has to read:
= {p= —1 (mod 4)}.

Now we apply the half dimensional sieve to our problem. We define for
arbitrary positive integers k, | with (k, ) = 1, primes t and g, real x,z > 1, and
a subgroup U of G(4t) with |U| = 3|G(4¢)|,

(36) A = o 4 (x) = {4tq+1: g < x, q=1 mod k},
37 P =Py = {peP: peG(4r)\U}.
Observe that in particular

(38) 2¢ P, ¢

LeMMA 9. For squarefiree d satisfying pe 2 for all p|d, there is an integer I
with (I',[d,k]) =1 and

7| = {n(x; (d,k1,I) for d,k)|(4tl+1),
=

0 otherwise.

Proof. We consider the congruence system
(39) m=I|modk, 4tm+1=0 modd

for the integer variable m. The second congruence of (39) is always solvable,
since (t,d) = 1 by (38). Hence there is a unique solution I’ mod [d, k] of (39)
satisfying (I',[d, k]) = 1 if and only if (d, k)|(4tl+ 1) (see [2, p. 21]). This proves
the lemma.
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Let
(40) X = Lix/e(k),
p/e(p) for pe?, ptk,
41
“1) (p) = { otherwise,

where ¢ denotes Euler’s function, and  is multiplicative. By the definition of.
R(s,d) and Lemma 9, we have

Lemma 10. Let d be squarefree. Let
(42) peGE)\U or pidtl+1)
Sfor all plk. Then

n(x; dk,I)=Lix/@(dk)  for (d,k)=1, pe? (pld),
0 otherwise.

R(&:’/,d)={

PROPOSITION 4. Let 0 < &< 1/6, and let (42) be satisfied. Then

1 8t 1/2 1\ 12 2
W, TR -
(U;x;k, L) = (P(k)( (1— )L( xv)) pll(l pz) (1 p(p—l})

x Lix(log x)"'2(1 + 0(¢")+ 0E(x, x* 79,

where |0| < 1, and the other parameters as defined in the theorem.

Proof. By (41), (31) is obviously satisfied. In order to be able to apply
Proposition 3, it remains to check (32). By definition of w(p), we have

I
ZMIOSP= y 08P=Zlogp _—

pEx p&x.peé'p_l p-ﬁxp 1
ptk pe?
Similarly,
w(p) gp
log k).
pe:—?

Partial summation and Dirichlet’s prime number theorem give for je{1,2},
x=3,
lo lo
¥y22= ¥ ¥ —-§£+0(1}

P<x p—J heG(4\U psx
peF p=hmod 41

>

- neGanwu P(41)

This yields (32) with constants ¢, and ¢, only depending on t and k.

log x+0(1) = $log x+O(1).
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By what was said between Propositions 2 and 3, we have
(43) Wi (U; x; k, ;1) = S(s7, /A).
By Bertrand’s postulate in arithmetic progressions (see for instance [10]),
n(2y; k, )—n(y; k, ) >0
for (k,l) = 1 with k sufficiently large and y > ¢5(k) for a suitable constant cs.

This implies that there is a positive constant ¢, such that there exists a prime
q =1 mod k satisfying ¢sx < g < x for large x. Hence

A = maxa = ¢;x,
ae.s

where ¢; > 0. Without loss of generality, we may assume ¢, < 1. We choose
Q = (¢7x)%, hence

AlQ < x'7
This yields

(log A)~ ”l(l +0(e°” (%E—Q)?)) = (log x)~ "2 (1+ O(&)).

Applying Lemma 10 to the error term, and summing ) |R(</, d)| over all
modules, (43) and Proposition 3 give the desired result.

4. The error terms W,(H; x; k, I; t). Rosser’s sieve. We will estimate the
error terms occurring in Proposition 1 by Rosser’s sieve [6]. We use the
notation of the preceeding section, in particular (30), (34) and (35). The
conditions (31) and (32) are replaced by

(44) O<wp)<p, wp =0 for p¢?,

- .
45 |20 logz\"(" . cs
el u-sl_pl-::( p 8 logw +logw

for all z > w = 2, and some constant cg = 2. The smallest » > 0 satisfying (45)
is called the dimension of the sieve. The sets .o/ and % are chosen in the
following way: For H < G(41), let

o = o (x)=1{dtg+1: g< x}, P=2Py=1{peP: peG(4)\H}.
In particular,
(46) 2¢ 2, t¢P.
We obviously have an integer I, (I',d) = 1, such that
(47) o, =mn(x;d, 1)
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for squarefree d satisfying pe 2 for all p|d. Setting

X =Lix,
w(p) = p/rp(p) for pe2,
otherwise,

we get from (47)

(48) Rw,d)={“‘-‘;d-f )~Lix/p() for pe? (pld),
0 otherwise.

By the definition of w(p), (44) is obviously satisfied. Now we consider (45).
We have

1 1 Z 1
A w0 i
wEZp<zm m=0

=2mp w$n<:ﬂ nzw

1 1

n{n—l] W

Hence for z>w>2

1 1 1
w&zpCz g( P— l) wﬁgcz mzl ”m wszpc_ P"'] (H')
p=hmod4r p=hmod4r p=hmod4r

By the quantitative version of Dirichlet’s prime number theorem (see for
instance [7, p. 450]), ie.

1 1 1
pgz s = e loglog z + ¢, +O(log z)’
p=hmod4t

and partial summation, we get

1 1 1
—_ w‘gﬂ 103(14;—_—1)=m(loglogz—loglogw)+0( gw),
p=hmoddr
Thus
1 =1 logz L/p(4n) 1 Y
| —— =t 1 i

wél:lﬁz ( P_l) (108“*) ( +O(logw))
p=hmod4r

This implies

=i =
49 1—“’—(‘")) = (1——'—)
) wa'sl_p[‘cz( p “sll, P—I

ped®
l =]
= I [1 (1——_‘"1
heG(4t)\H wsp<z P
p=hmod 41
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log z)nmn( ( 1 )))
= 1+0
heGIt;[r}\H ((108 w logw
logz |G(at\H|/|G(41)| i
_(logw) 140(o=)).

Thus (45) holds for some constant c¢g. The dimension

|G(41)\H]|
50 e )
e |G (40)|
of the sieve satisfies
12<x<1

for |H| < 4|G(4t)|, which will be important to give terms of lower order than
the main term.

PROPOSITION 5. Let H = G(4t), let 0 <e < 1. Then
Wy(H; x; k, I; t) < e *x(logx)™ ' "*+ E(x, x°),
with % as defined in (50).

Proof. Since (44) and (45) hold as shown above, we may apply Theorem
1 of [6]. We set

y=xt, z=x¥,

hence s = 2. Then by (48) and (49),

(51)
S(o,2) <Lix [] (l —ﬁ)(F(Z)+e";;Q(2)(logy)_”3)+ Y. IR(, d)|
p<z i d<y

< e *x(log x) "' "*+ E(x, x%).
By Bertrand’s postulate, we have 4 = max,.,a > 2tx, thus
Wo(H; x; k, ;1) < S(of, A) < S(o, A¥?) < S(o#, 2),

which by (51) proves the proposition.
COROLLARY 1. Let H < G(4t), |H| < %|G(4t)]. Then
Wo(H: x: k, I; 1) < x(log x) ™32~ 1/3=2),
Proof. By Bombieri’s theorem (see [8]), we have

E(x, x°) < x/(log x)*
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for some small ¢ > 0. Since
IG(41) = p(41) =2(t—1), |H|<3}IG@)—1=1t-2,
we get
|G(4t)\H| t 1,1
» |G(41)| ?Z(r—l)_2+2t~—2'

Now Proposition 5 implies the corollary.

5. The error terms connected with ;. Rosser’s sieve again. For a fixed
prime p,, (py,2t) =1, and H = G(41), let

oA =, (x) = {(4tg+1)/ps: q < x, pl(deqg+1)},
P =Py ={peP: peG(4)\H}.

Since 2¢ 2, t ¢ 2, and by the condition on p,, we get for squarefree d satisfying
pe? for all p|d

(52) |4 =card{g < x: 4tq+1 =0 mod p,, (4tq+1)/p, =0 mod d}
=card{q < x: 4tg+1 =0 mod p,d} = n(x; p,d, [
for some I, (I', pyd)=1.
Setting
X = Lix/o(p,),
p/o(p) for pe?, p #p,,
wp)=+1 forpe?, p=p,,
0 otherwise,

we have by (52)

n(x; pyd, I)=Lix/o(p,d) forpe? (pld),
52 Rty dy= {0 otherwise.

ProprosITION 6. Let H < G(4t), he H, H* = H\(h}; p, =h mod4t. Let
O<eg< 1. Then

4tq+-1
Wm-l=card{‘}"~<‘x: P, (4tg+1), P| ?9-! = pEH*}
1
satisfies
1
Wpu < ¢ * x(logx)~ ' *+ E(x, x),
g @(p,)
where
. _1G@o\HY|
|G(42)|
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Proof. Since 2 = 2, is the same as in the preceeding section, (44), (45)
and (49) hold. Thus we may again apply Theorem 1 of [6]. Let

y=x%, z=x%
By (49) and (53), we have for # = 2.

54 S, z) <22

1 —
pe?

+ ) |R(+, d)|

d<y

<

e ™ x(logx)~ ' "*+E(x, x°).
@(py)

If A=max,ya< .\/J_C, then
wm.l “"<- ]ﬂ] g \ﬁ:
and the proposition is proved. If 4 > \/; then
Wy, < S(o, A) < S(o, /x) < S(, 2),
which again proves the proposition by (54).
CorOoLLARY 2. Let H < G(4t), |H|<3|G(4t), heH, H* = H\{(h};
py = h mod4t. Then for W,,, as defined in Proposition 6
! —32-1f2-2
W,,. € —x(log x)™ 32~ 1=,
Py
Proof. As in the proof of Corollary 1, Bombieri’s theorem yields the
result, using Proposition 6.

6. Proof of the theorem. Using Proposition 4 for U = U, and U = U,, we
get the main term and a suitable error term in the theorem by Proposition 1.
Condition (42) in Proposition 4, namely

px@tl+1) or peG4)\U,
has to be satisfied for U = U, and U = U,. This is equivalent to

(55) pX@tl+1) or peU,nU,.

By Lemma 5 (ii) and (iii), ae U,nU, if and only if a is a square in G(4t). Thus
(55) is the same as (4) by Lemma 4 (ii) for ¢t > 2. The case t = 2 is clear.
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In order to prove the theorem, it remains to bound the two error terms in
Proposition 1. Corollary 1 takes care of the first one, namely

(56) Y W,(H; x; k, I; t) < x(log x) ™32~ 1/2t-2),
HEG(41)
|H| <|G(40)]/2
Now let He #,. By Lemma 8, there are h,, h,e H, h, # h,, such that
7 hih, = —1 mod 20.

Let g be counted in W,(H; x; k, I; 5), and assume that there is a prime p,
satisfying

py =h, mod20, p}|(20g+1).

By the definition of W,(H; x; k, [; 5), there is a prime p, = h, mod 20 such
that p,|(20g+1). Thus

pi pI(20g +1).
Now (57) implies
pip, = —1 mod 20,
contradicting (P,). Hence pi }(20g+ 1). Therefore, we have
(58) Wy H; x; k, ;5 Y  W,,.s
p1<20x+1

(as defined in Proposition 6). Similarly, we get

(59) WH;x k5N Y W,

P17
p1<28x+1

for H e s# . By the definition of ', and Corollary 2, (58) respectively (59) yields

> Wi(H; x; k, I; 1) < x(logx)~¥2-12=2 % 1

Heax, p<ax+1P1
< x(log x)~ 32-1421-2) log log x

<& x{log x)- 32-1H{21—-2)+e

for any & > 0. This completes the proof of the theorem.

Remark. Finally, we remark that, using a slightly more general version of
Corollary 2 and a shorter argument, one could avoid the comparatively tedious
Lemma 7. Then, however, we would miss the result that, except for t = 5 and
! =7, H in Lemma 7 satisfies one of the conditions (i), (ii) or (iii), which implies
that the corresponding W,(H; x; k, I; t) is zero. In fact, except for t =5, 7,
Section 5 is superfluous.
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ACTA ARITHMETICA
LIX.3 (1991)

On the Mobius sum function
by
RoBerT J. ANDERSON (DeKalb, I11.)

1. Introduction. Let M(x) =) ,<.u(n), u(n) being the Mébius function.
The inequality M(x) = O(x'/2**) for every ¢ > 0 is equivalent to the Riemann
hypothesis. A major question in the theory of M(x) is whether or not the
stronger bound

(1) M(x) = O(x'?)
holds. Although (1) is probably false, the best known estimate of large values of
IM(x)]x 7172 is

lim |M(x)lx~ "2 > 1.06

X—= @

due to Odlyzko and te Riele [5].
For any x let

. o _(=1)Crx)*
MI)=1E 2 it

If x, >0 then
IM (xg) +2M*(xg Yixg /2 < Tim |M (x)}x~"/2,

This is a result of Jurkat [4, p. 148], also see Anderson and Stark [I,
Pp. 99-1007. In particular, (1) implies

) M*(x) = O(x~ /2.

Let r(t) =ty ,<,u(n)n"'. The function M*(x) is the cosine transform of
r(e~1); thus,

1
M*(x) = [ r(t™ ')cos 2nxt dt
0

[4, p. 152]. By definition

M*(x) = [r(t™")sin 2nxt dr.

0



	s094.tif
	s095.tif
	s096.tif
	s097.tif
	s098.tif
	s099.tif
	s100.tif
	s101.tif
	s102.tif
	s103.tif
	s104.tif
	s105.tif

