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Expression of real numbers with the help of infinite series
by

JArostAW HANCL (Ostrava)

Suppose that we have a sequence {a,},-,, where a, are positive real
numbers. There are many papers describing how to express real numbers by
means of {a,},>,. J. Galambos (see [2]) deals with Cantor’s series and shows
that if we have a sequence {a,};=; such that 1/a, are positive integers, 1/a,
is a divisor of 1/a,.,, a,> a,+,, then for every positive real number
x (0<x < 1) there are positive integers ¢, (0 <g, < a,/a,+,) such that
X =) qua, Theorems 1, 2 and 3 deal with similar expressions for every
xe(0, B): here, however, the a, are arbitrary positive numbers and g, are
reciprocals of elements of some fixed unbouded set S.

Erdos in his paper [1] (see also [3]) introduced the notion of irrational
sequences of positive integers. He proved, e.g., that the sequence {2%"};%, is
irrational and also stated the problem whether there is an irrational sequence
increasing less quickly. We extend his definition of irrational sequences to
sequences of positive real numbers and Corollary 1 of Theorem 2 gives
a negative answer to his problem not only in the domain of positive integers
but also in the domain of positive real numbers.

Note that even though Theorems 1, 2 and 3 look very different, their
proofs are based on the same idea.

THEOREM 1. Let {a,}y- be a sequence of positive real numbers such that
Z,.“‘Ll l)a,=K < o.LetS={b;=1,b,,b3,...},by<bysy (n=1,2,..),be
a set of positive real numbers such that lim,., b, = co. Suppose that

(1) ( max (1/by—1/bys1))/a, < i 1/a;

k=1,2.... j=n+1

Jor every n=1,2,... Then for every A with
(2) 0<A4A<K

there is a sequence {g,}v-1, ga.€S (n=1,2,...), such that

3) A=Y 1(ag).
1
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In addition, if {a,}; -, is a nondecreasing sequence and
4 max (1/by—1/bysy) = 1—1/b,
k=1,2....

then (1) is also a necessary condition.

If K =00 and there is a positive real number B such that
(5) 1>B>1-b,/b,+,
Jor every n =1, 2, ... then for every positive real number A there is a sequence
{gnin=1, gn€S, n=1,2, ..., such that (3) holds.

Proof. 1. Assume K < oo. We first prove that condition (1) is sufficient.
Let (2) hold. The coefficients g4, g, ... will be constructed by induction. For
n=1 we define

g, =min{b: 1/(a,b) < A, beS}.

Thus 1/(a;9,) < A. Suppose that we have g,, ..., g,—; such that

n—1

Y /a9y < A

j=1
and g, is defined in the following way:

(6) gn=min {b: ) 1/(a;g;)+1/(a,b) < A, beS}.
ji=1
Thus )=y 1/(a;g;) < A. It follows that
(7) Y. /a;g) < A.
=1

On the other hand, we will prove that

Y, /a;g) = A.
J=i
First we prove by induction that

®) S Vag)+ ¥ Va,> A
j=1

j=n+1
for every positive integer n. For n =0, (8) follows from (2). Suppose that (8)

holds with »n replaced by n—1. If g, = 1 then (8) with n replaced by n—1 and (8)
are identical. If g, = by, (k(n) # 1), then (1) and (6) imply

JZ 1/a;9;)+ Z 1/a; =
=1

Jj=n+1 i

n—1

Z l/(ajgj)+ 1/(anbk[n}— 1)
=1

+ Z U‘U‘“ﬂ’ktm l_lffbktnl)f‘an

j=n+1
n=1

2 Y a;9;)+ 1 (@pbimy-1) = A;
i=1

thus the inductive proof is complete.
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Since (7) and (8) imply (3), condition (1) is proved to be sufficient.

We now prove that condition (1) is necessary. Suppose that {a,},-, is
a non-decreasing sequence, (4) holds, K < oo and there is a natural number
n such that

©) (-UbYa,> 3 Va,

j=n+1
Put

an

A= z Vai—((1=1/by)a,— Y 1/a)2.
i=1

ji=n+1

Then (9) implies 0 < A < K. Now we suppose that A can be expressed as in (3)
and we proceed to find a contradiction. (3) implies

(10) 0= Ya—(1—1bYar— 3 1/a)2—3 fag).
i=1 i=n+1 i=1

If there is a je{1,2,..., n} such that g;# 1 then (10) implies

= _Z (1—1/g)/a;+(1—1/b>)(1/a;—1/a,)

i#j
+((1—1/by)/a,— Y. 1/a)/2+(1/by—1/g;)/a; > 0.
i=n+1
Thus g, =g, =... =g, = 1. This and (10) imply
0= —(1=Uba,~ ¥ Va)2— ¥ 1ag)<O0.

It follows that the number 4 cannot be expressed as in (3), and condition (1) is
proved to be necessary.

2. Assume that K = oo, (5) holds and 4 > 0. We will construct simul-
taneously k(n) and gm—1)+15 -++» gim as follows: k(0) = 0. Suppose that we
have g,, ..., guw-1 €S and ¥ 1/(a;g;) < A. Then k(n) is the least positive
Integer such that

kin—1) k(n)

bZ(A i Z I/(algi)) < Z l/ai = Sm gk{n- N+l = 00 = gk(n} == bH{n)

i=1 i=kin—1)+1
Where H(n) is the greatest positive integer such that

kin—1)

Su/bam = Sulgm < A— Y. 1/ag)) < Sp/bum-1-
i=1

It follows that
k(n)

Z a;g) < 4,

im]
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and
k(m) kin—=1) kin—1)

A= E 1faig)) < A— Z l/(a[gi)"(A'_' Z lf(ﬂigi))(sn/bum)(bmm—1/Sn)
i=1

i=1 i=1
kin—1) kin—1)

=(A= Y Wag))(1—byu-1/baw) < B(A— Y 1/aig).

i=1 i=1
Since 1 > B, (3) follows. The proof of Theorem 1 is complete.

Remark 1. Note that sequences {g,};=, are in general not uniquely
determined.

THEOREM 2. Let S = {b,b,, ...}, by < b4y, lim,. b, = 0, be a set of
positive real numbers such that there is a positive integer D with D > b,_,—b,
for every positive integer n.

Let {a,}n=, be a sequence of positive real numbers containing a subsequence
{apmin=1 = {Ca}n=1 with the following property:

There is a positive real function F (n) < n on the set of positive integers and
a positive integer K such that

(11) 272" < K/e,

and

(12) Y 27" <
n=1

Jor every positive integer n. Then there is a positive real number B such that for
every By, 0 < B, < B, there is a sequence {g,}n=1, g.€S, satisfying

By =}, 1/(agn)-
n=1

Proof. It is convenient to define

H(n) = IOEz(Vi 2mH,

We have
(13) H(n) < log,(1/27F™) = F(n)

and
(14} 2n-H{n]+1_2u—F[n)_2n+1—H(n+l;

— 2!:4 I(§ 2—F(i])_2n.2~F(u}_2n+ 1( i 2—}‘[i}) —_ 2n-F¢ui > 0

i=n i=n+1

Assume 0 <& <1 and put

(15) w=2[c;+1]-D-K-[2¥ " +1][by +1]/c,.
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Now we prove that there are by, €S, n= 1,2, ..., such that ¢ = Y%, d, /bym
and

(16) 0<e— Z di/bkméz_l"”_m"”'
=1
for every positive integer n. The proof is by induction. For n =1 we have
dy > 2b, and thus there is a positive integer by, such that
I
dy /by < & < dy [byry-.
It follows that
(17) 0 < &—d, /by < e—edy by bisy-1/d,
= &(by1)— iy~ 1)/bry < De*/d,.

(15) and (17) imply (16) for n = 1.
Now suppose (16) holds for n = N—1: we will prove (16) for n = N.
Because of (11), (13), (15) (for n = N) and (16) (for n = N—1) we have
N-1
g— Y difbyyy <273V 27V < KJey < dy/b,.
i=1

It follows that there is by, €S such that
N—-1

dn/bimy < &— ) di/byiy < dy /by -
i=1
and it follows that
N N-=1 N—1
(18) 0<e— Z di/bk{il < (3— Z df/bkm)—(ﬁ— Z ds/bkm](dﬂfbum)
i=1 i=1 i=1
X (bxny-1/dy)

N-=1
=(e— 2 di/bx)baeyy—bagwy-1)/bewy
i=1

N-1
<(e—= ) di/byy)*(D/dy).

i=1
(11), (13), (15) and (18) imply

N
(19) 0<e— E di/bk(fpﬁZ_IZN—H'N]”“‘ZN'FW’?’
i=1

(14) and (19) imply (16) for n = N. We have proved that (16) holds for every
Positive integer n. Thus

(20) £ = E dn/bkln)'

n=1
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(15) and (20) imply

21) i 1/(cabyeny) = 8Q2[cy+1]1-D- K- [22* " +1][b, +1]) "

n=1

We have found for every ¢ (0 < & < 1) a sequence {by}n=1, bym €S, such that
(21) holds. Now we put

=Q2[c,+1]1'D-K-[2¥ " 4+ 11[b, +1]) L

If 0 < B, < B, then there is a sequence {g;}",
J#Ptu)

2. /@a.g,) < By.

n=1
n# P(j)

Put ¢=(B,—D,)/B and find {bypu)}n=1 satisfying (21). If gpu = brpey)
(n=1,2,..) then

, g;€8, such that

B, = Z 1/(gnay)

and the proof of Theorem 2 is complete.

DEFINITION 1. Let {a,};"-{ be a sequence of positive real numbers. If there
isa sequence of positive mtegers {bu}n=1 such that ) =, 1/(a,b,) is rational then
we call {a,}r-, a rational sequence; otherwise we call {a,},~, an irrational
sequence.

COROLLARY 1. Let {a,}s=; be a sequence satisfying all the assumptions of
Theorem 2 and let S ={1,2,...}. Then {a,},=, is a rational sequence.

COROLLARY 2. Let {c,},= be a sequence of positive real numbers such that
limsup(log,log,c,)/n < 1. Then {c,}x-, is a rational sequence.

ExXaMPLE. {22/ 7"}2 |, {(n)*}%, (k is a real number), {n"},, {S"}2=, (S
is a positive real number) are rational sequences.

Remark 1. The problem remains open whether {22""}~, is a rational
sequence.

THEOREM 3. Let S ={b,, b,,...} be a set of positive real numbers
by <b,<..., lim,., b,= oo, such that

22) 1>K>1-b,_,/b,

for every n = ny. Let {a,};’-, be a sequence of positive real numbers containing
a subsequence {aypin=1 = {Cnfn=1 such that

(23) liminf 1/(C,K") > 0.

Then there is a positive real number B such that for every 0 < B, < B there is
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a sequence {g,}r-, with g,€S and

(24) By = ¥ 1/a.g,).
n=1
Proof. Set S§; = {b,,, byg+1, ...}. In view of (23) there is a positive integer
A with A/C, > K" for every positive integer n. Put
(25) d, = 24-[b,,+1]1/C,.

Now the proof is similar to the proof of Theorem 2.

By induction we prove that for every 0 < & < 1 there are h,, h,,...€S;
such that

£= zl d,/h,

and

for every nonnegative integer n. Smce 0<e< 1, (26) holds for n =0. Now
assume that (26) holds with n replaced by n—1. Because of (25) and of the
inductive assumption there is a positive integer n, such that

n—1
dﬂ/blll <é— Z di/hi < dﬂrfbnl—l
i=1
where n, # no. Put h, =b,,. It follows that
(2?) 0<e— E d/h &— Z di/hI_(E_ z di/h )(dn/bm](bm-lx‘(dn}

i=1

= (=% d/h)1=by-1/ba).

(22), the inductive hypothesis and (27) imply (26). Thus the proof is complete
and

£= Z d,/h,.

It follows that
(28) eRA [bpg+1+11) 7' = Y 1/Cuhy).
n=1

Put B = 1/(2A*[byo+1 +11). If 0 < B, < B, then there are g,€S,, where n is

a positive integer, n # k(i), such that

@

B,>R= 3} 1/a.g.)
=1
n"ﬂc[i]
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If e = (B,—R)/B, we find h,eS,,n=1, 2, ..., such that (28) holds. It suffices
to put gy = h, (n=1,2,...) and (24) is satisfied. The proof of Theorem 3 is
complete.
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The classification of pairs of binary quadratic forms
by

JORGE MORALES (Baton Rouge, La)

Introduction. We consider ordered pairs (Q;, Q,) of binary quadratic forms
with coefficients in Z. In the present paper we classify such pairs up to
equivalence, where two pairs of forms (Q,, Q;) and (Q}, Q%) are said to be
equivalent if there is a transformation U in SL,(Z) such that Q;(Ux)
= Qi(x)fori=1,0r 2. If 0, and Q, are linearly dependent then the problem is
obviously equivalent to the classification of single forms, which goes back to
Gauss’ Disquisitiones Arithmeticae.

It can be shown (see Appendices I and II) that the number of equivalence
classes of pairs with given discriminants d,, d, and codiscriminant 4 is finite if
and only if A% # 46,6,. Moreover, the classification of pairs with 4% = 46,4,
turns out to be elementary (see Appendix II).

Thus the interesting case is when 42 # 46,6,. The classification we will
give uses a new invariant, called the index and denoted by u. Our main result is
that there is a natural finite group & that acts transitively and freely on the set
of equivalence classes of pairs with prescribed set of invariants (d,, ,, 4, p) (see
Theorem 1.3 and Corollary 1.5). This approach to classification is illustrated by
a pumerical example in Appendix IV.

The group ® turns out to depend solely on the Sylow 2-subgroup of the
Picard group of a certain quadratic order. As a consequence, the evaluation of
the order of ® gives an explicit formula for the number of classes of pairs with
given invariants (8,, d,, 4, u). We also obtain the formula for the number of
pairs with prescribed (é,, d,, 4) found by Hardy and Williams (see [3]) for
positive-definite forms with fundamental discriminant.

1. The index of a pair of symmetric forms. Recall that quadratic forms
correspond bijectively to even symmetric bilinear forms. In this section we
study triples (M, b,, b,) where M is an oriented free Z-module of rank two and
b;: M - M* = Hom,(M, Z) (i = 1, 2) are nondegenerate (i.e. injective) sym-
metric homomorphisms. We shall say that (M, b,, b;) and (N, ¢,, ¢;) are
equivalent if there exists an orientation-preserving isomorphism f: M — N such
that f*c, f = b, for i = 1, 2, where as usual f* stands for the dual map of f.
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