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that is, since n is prime, H' = { [}cczmzr- Then, by (5.4.1),
Treo(W(k, ) = Y, Wik, g),

geH’

and Theorem (5.2) enables us to write

—1)(29y —2)+ ) ceizmzy* uE.""d [
‘Tr:-‘xo(W'(k.f))l = r—12gx—2) 22(7-. 2 Z vy CCBY [2./4]

=(n—t)%ﬂ[2\fq].

Since n is prime and f¢k*K*", hence r =n.
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Symmetric Diophantine systems
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AJAl CHOUDHRY (Singapore)

1. Introduction. In this i i i i

. ! 3 paper we will consider symmetric D i
?Stem§ in 2n independent variables x;, j =1, 2, ..., n,yand ¥, Jo= :O%hamm:
onsisting of a set of simultaneous Diophantine equationsjof the,ty‘p.e“‘ ,
(L1) TX 50 X505 vres X =i Wis Vasowop By B2 250000 My

Where fi(x,, x,, ..., x,) [written briefly as f,(x; i Z i ]
: homogeneous form in .the variag]cs {éf,fc:),r 51?1;):}’ i:'efi]sll'lsél{m;l::ccr}ilbt
so:?,i::r?s :]}::u_ ca(;l be applied to solve several such Diophantine systems. The
tly po [etealr\:\? a}rle ﬁarame’[m t‘JUt, Lfnless otherwise stated, are not necessa-
- ang uz.m_ efs all use Ls, Q’s, C’s and F’s to denote linear, quadratic,
- quartic forms. We shall_ first solv; under quite general conditions the
owing Diophantine systems in 2n variables XpYpd=1,2,...,m
1) {Li{xj}=L,-(yj), i=1,2,...,n—1,
Qix)=Qiy), i=1,2,...,n—1.
m) {Li(xj) = L.'(J’j);
Clx)) = C(yy.

A particular case of interest is the system
{L(xl’ xzs x;}) = L(yii J’:- ya)!
Clxy, x5, x3) = C(yy, y,, Vi)
Clx; = Clyy.
A particular case of interest is the system
{Q(xn s Xz, X3) = Q(¥ys Y2, ¥a)s
Clx15 X2, X3) = C(yy, ¥y, y).
Li(x}] = L:‘(yj)|
W) Lo =00,
Clx)) = C(y)).

i=1,2,...,n=2,

II: l! 23---‘ "_2

i=1,2,...,n-2,
D W N
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A particular case of interest is the system

L(x,, X5, X3) = L(yy, Y25 y3)s
Qlx,, x,, X3) = Q(yy» ¥as ya),
C(x]) X3, x_';) = C(yy, V2s }’3)-

L(x; =L(),

(V) Qi(x;) = Qi(y),

F(x)) = F(y).

Next, we shall obtain parametric solutions of the following specific
Diophantine systems:

f= 1,2,.--, H_S,

3 3
(VD ij:Zyj, r=1,3.
j=1 i=1
VIl X, +X,+ X3 =y +Y2+Ys,
(viD X XyX3 = V1V2V3-
Xy +X,+x3 =y +tyatYa
(VIII) x}+x3+x3 =y +y3+y3,
X1X3X3 = Y1Y2)a-
3 3
(1X) Y=Yy, r=23.
i=1 i=1
5 xt+x3+x3 = yi+yi+yi
*) X1 XX3 = V1V2V3
4 4
(XI) z.x}——- Zy}. r=1,2,3,5.
i=1 i=1
5 5
(X1I) Fg=3 0% r=hL234
J=1 i=

7 7
(XIIT) Z Xh= Z Y5, r=1,2,3,4,5,6.

3
xiv) Y X=Xy r=hLa4

: 5 02 s o
Finally, we shall obtain a parametric solution in Gaussian integers of th

system

3 3
vy Fa= L Tl
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All the results obtained in this paper are new. The Diophantine systems
(IDHV), (VIII), (IX), (XIV) and (XV) have not been considered earlier. The
solutions for systems (I), (VI) and (VII) given in this paper are complete while

the solution for the system (XII) has more parameters than the solutions
obtained earlier.

2. The general method applied in this paper for solving systems of the type
(.I.l) consists in writing x;=a;0+a;, j=1,2,...,n, and yj=b;0+ua,
J=1,2,...,n and expressing each equation of the system in the form
c.(a; b, )0" =0. We then equate to zero the coefficients of 0" for all
values of r, for all except one of the equations. In this remaining equation we
€quate to zero all the coefficients of 0" except for two consecutive values of r.
The resulting equations in a;, b;, o; are solved for these variables. With these
values of a;, bj, o; all except one of the equations are satisfied for all values of 0.
The last equation reduces to a linear equation in 0 and can accordingly be
Solved. This value of 0 provides us with a rational solution of our Diophantine
System. As all of the equations of the system are homogeneous, solutions in
integers can be obtained by multiplying each of the x;, y; already obtained by
4 suitable constant.

We now consider, one by one, each of the systems mentioned above.

3. The system
(3.1) 0 L(x)=Lfy), i=1,2,...,n—1,
(3.2) Qix)=Qy), i=1,2,...,n-1,

While the general method can be applied to this system, there exists
4 simpler solution in this case. We re-write the equations (3.1) as

Li(x;—y) =0,

Considcring these as n—1 linear equations in variables X;=ypi=1,2,...,n,
We obtain a non-trivial solution of the type

i=1,2,...,n—1,

(3.3) xl_hyl =X2_-},2=x3_y3=.._=ﬂ_
iy R Z, p

We note that

n

x} _'.'l’,,-; = {Xj_,l'j"x_; +_l"_,')s

z(xjxk'_yjyk) = {xj _yj](xk + }'k}+(xj+yj](xk_yk}'

Thus, using the relations (3.3), the equation Q;(x;)—Q;(y;) =0 reduces to
A linear equation. Hence the equations (3.2) reduce to a set of n—1 linear
®Quations and accordingly the system (I) reduces to a set of 2n—2 linear
®Quations in 2n variables Xj, ¥;- The complete solution of the system (I) is now
feadily obtained.
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4. The Diophantine system
@H {Ls{xﬁ = Ly,
(4.2) C(x;) = Cly))

We substitute x; = a;0+a;, y; = b,0+0;,j=1,2,....n Then (4.1) redu-
ces to

(4.3) Li(a;=b) =0,

f= 1,2,---, n'_2|

i=1,2,...,n—2,
and we impose the further condition

e
(4.4) 2((%') _(a=b)=0.

i

As these are n—1 equations in n independent variables a;—b;, we have
a non-zero solution for a;—b;. With these values of a;, b;, the equation (4.2)
reduces to

U5  G{Clasis G)—~Clhysos+ 5}

(o) o) iel..

We assume that C(a)) # C(b)), for otherwise we already have a solution of the
system (II). Thus (4.5) can be solved for 0 and we get the following parametric
solution of the system (II). For u=1,2,...,n,

o et )L

+20,{Cla,, ...,

an =Sy -(zn 2V }e]

+2a,{C(ay, ..

a,)—C(b,, ..., b))},

- a)=C(by, ..., by}

where the a;, b; satisfy the linear equations (4.3) and (4.4). The solution is
non-trivial if

o [N

We can choose aj, bj, a; 10 satisfy a system of additional n—1 linear
non-symmetric equations in x;, y;. For, any such equation L(x) = L(y)

reduces to

{L(a)—L(b)}0+L(x)—L(x) =0
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and will hold for all values of 0 if we choose a;, b;, a; such that
L(a)=L(b;) and L(x)= L(a)).

As thcre are only n—_I equations, non-zero solutions for a;, b;, a; are always
solsmble while a;, b; simultaneously satisfy the equations (4.3) and (4.4). These
alues of a;, b;, «; then lead to a solution of the system

Li(xj} = Li(yj)a

Li(Xj) . Ef(.l’;},

C(x;)=C(y)
Where L, £ L, for i=n—1,n, ..., 2n-3.

When we take n =3, the system (II) reduces to the system

8?; (IT) {L(xp X3, X3) = L(yy, Y35 ¥3)s
-10) C(xy, X3, x3) = C(yy, 3, V3)-

The seven-parameter solution of (II'), obtained as above, is given by (4.6)

and (4.7) — o, b; being ind d i j
ey L b g independent parameters while the a;,j=1,2,3, are

i=1,2,...,n=-2,

i=n—1,n,...,2n-3,

aj=bj+[{ dL oC _ dL aocC )
0xj4 1 0Xj+2 0Xjys 0Xj+1 xj=ay

W ; g
here x,, x; refer to x,, x, respectively and ¢ is arbitrary.

5. The Diophantine system
(5.1) Q:i(x) = Q,(y)
11 ST S

sy D {C(x,-}=6(yj).

With the usual substitutions x, = a,0
j=a;0+0;,y;=b0+u
find that (5.1) reduces to ! nee

i=1,2,...,n—=2,
pi=1,2,...,nwe

53)  0{o(ay, ..., a)-Qilb,, ..., b,)} +Z(§%’)

i/ xj=nj

i=1,2,...,n=2,

(a;—b)) =0,

and (5.2) gives

54)  02(cqa,, ..., a)—Co b 9[{( 2 )2 2\’
— sy b A Tty _( h——)}c}
2 i Jax..‘ ? Jaxj xj=aj

ocC
+¥ (5—)”:“1((11-!;!) =0.

x5
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Now we impose the conditions

(5.5) Z(%%)H« a; = Z(if*)x . b,

i ~j J i

ac aC
(5.6) Z(a)x:’ a;= ?(@)“ﬂ b;,

J i
=1, 2; vouy B—=2.

(3.7) Qila)) = Qi(b)),

The equations (5.5), (5.6) and (5.7) in 2n variables a;, b; constitute a subsystem
of the system (I) considered earlier and we will get a parametric solution for
aj, b;. With these values of aj, bj the equations (5.1) hold identically. We also
presume that C(a;) # C(b;) for otherwise a;, b; already constitute a solution of
the system (III). Finally, we solve (5.4) for 0 and hence obtain a parametric
solution of the system (III). The solution is given by the expressions (4.6) for x,
and (4.7) for y,, u =1, 2, ..., n, where the aj;, bj are chosen so as to satisfy the
conditions (5.5), (5.6) and (5.7). As before, the solution is non-trivial if the
condition (4.8) holds.

When we take n = 3, the system (I1I) reduces to the system
(5’8) (I]Il} {Q(xl’ x21 x3) = Q(yl ’ yZ! y3}!
(5:9) C(xy, x5, X3) = C(yy, Y2, ¥3)-

As in the general case, we must choose a;, b;, j =1, 2, 3, to satisfy the
equations

(5.10) Z(g—Q) _ (a;=b) =0,

i i

(5.11) g(g—)ﬁ)”:ﬂjm}—b}.}=o,

(5.12) Q(a)) = Q(b)).

Now (5.10) and (5.11) give

(5.13) a;=b;+ti,, j=1,2,3,

where

(5.14) /1}={an aéc = 1 3‘7C} . j=1,2,3.
jH10Xj42 OXjy20Xjyy ) xj=a,

In the relation (5.14), x, refers to x, and x, refers to x,. Using (5.13), we find
that

‘HZQ(jm Ay A3).

3 0
Qla,, a,, a;) = Q(by, by, by)+1 Z "J(a_Q)

=1 Xj/xy=b;
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Hence the condition (5.12) will also be satisfied if we take

Ay
-1 '\0x;

3
(5.15) t=—{QUy, 4y, A} ' ¥ ;.J.(EQ) .
i xj=b;
b Thus, when. the /; are defined by (5.14), t by (5.15) and the a,j=1,2,3,
Y (5.13), a solution of the system (IIT') is given by the relations (4.6) and (4.7) in

terms of the parameters aj and by, j=1,2,3.

6. The Diophantine system

(6.1) Li(x)=L(y), i=1,2,...,n-2,
(6.2) (1V) Q(x)=0Qiv), i=1,2,....k<np,
(6.3) C(x;) = C(y)).
With the usual substitutions X;=a;0+a; y,= b;0+a;, (6.1) reduces to
(6.4) Lia;—b)=0, i=1,2,...,n-2,
While (6.2) will hold for all values of 0 if
{6.5) (_5_%) (a.—b)=0 ;
—b) =0, =1,2,...,k,

? ax} xj=ay ! J) I :

(6.6) Qi(a)=0Qib), i=1,2,... k.

.It is easily proved that when k < n/2 and 0Q;/0x; # 0 for each i, j, it is
Possible to choose a; such that each of the equations (6.5) is a linear

Comb?nation of the equations (6.4). With these values of . we solve the
®quations (6.4) along with :

(6.7 o

! £(5), ., =
:tlr: l?e equations (6.6). T_hc equations (6.'4), (6.6) and (6.7) constitute a subsys-
Wi of the system (I) and, in general, we will get a parametric solution for a,b.
sml:,h lfljlgse values of a;, b;., a;, (6.1) and (6.2) hqld identically and we finally
a 6)& ( ;1)20; 0. The solution of the system (IV) is _then given by the relations
So.lm'an _{ ) whfar.e t}}e a;, b;, ®; are as determined above. As before, the

10n 1s non-trivial if the condition (4.8) holds.

It is noteworthy that when n = 3, we find that, in general, the system

:2.8.) L(xy, x5, x3) = L(yy, ¥5, y3),
{ 9) (Iv") Q(xf,xz,x3)=Q(y[, Va2, y.‘!)’
6']0) C(xl,x;,_,x3)=C(y1,y2,y3}
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. ; . T
has a non-trivial solution. In this case the a; are determined by the three linea
equations

4 = ?—{‘- ji=il 2,38
(61 1} (a_xj)x! =ay ax.ﬂ' , J
Also, we get
(6.12) a;=b;+td;, j=1,2,3,
where

oL dC JdL aC e
(6.13) A=<= ~3 e I i=1,2,3,
OXj410Xjrz 0Xjiz 0Xjyy xj=ay
with x,, x5 being taken as x,, x, respectively and
- 2 Ll aQ

(6.14) L= _{Q(Al’ A3, ’13)} lj§1 /'J'(Ej)x1=b1.

Then the relations (4.6) and (4.7) give a parametric solution for the system (IV’).
A notable exception is the system

3 3
(6.15) Y Ax;= _Zl Ay;, r=1,2,3,
J=1 i=

for which the above method does not yield a non-trivial solution for then the
condition (4.8) does not hold.

7. The Diophantine system

(7.1) L(x;) = L(y)),
12 V) {0(x)=00), i=1,2,...,n-3,
(7.3) F(x) = F(y).

i [ ing conditions
We write x; = a;0+a;, y; = b;0+a; and impose the following ¢
on a;, b;:

(7.4) L(a;—b) =0,

aQa) P = | = 1 2 e n_3
5 (@=b)=0, i=12,.., ’
o 3G,

JoF
(7.6) Y (6_) (a;—b)) =0,

j i/ xj=ay

(1.7) 0i(a)—0,b) =0, i=1,2,..

o [

L, n=3,
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The above equations constitute a subsystem of the system (I) and hence,

a non-trivial solution for aj, bj can be obtained in terms of the

parameters a;.
With these values of a;, b;, the equations (7.1) and (7.2) hold identically while

(7.3) can be solved for 0 to obtain a parametric solution of the system (V). The
solution is given by

m-of{n) (5],

i=%y

+60a, {F(a,, ..

o f{ot )]

+60,{F(a,, s @)=F(by, ..., b))},

v @) —F(by, ..., b))},

cey Uy

for u=1,2,.

.., n with the a; b, as determined above. The solution is
non-trivial if

(o) (o) .., »o

=ay

8. The Diophantine system

{V[ xl +X2+X3 = yl+y3+y3,
) 3 3 r. PPRRRIEN . | 3 3
Xi+x32+x3=yi+y3+y3.

This is a particular case of the system (II') and the solution, obtained
Similarly, may be stated as:

3

3
®1)  x,=¢{-3a,Y aai—b}+a, Y (@} —b})), wu=1,2,3,
i=1 j=1
3 3
(8.2) Yo=0e{=3b, ¥ afal—bd)+a, ¥ (@—b})), u=1,2,3,
i=1 i=1
Where
ay = b, +t(e3—a}),
(8.3) a, = by +1(a3—ai),
ay = by+t(ai—ad)
and p, ¢, o, by j=1,2,3, are arbitrary parameters.

We now establish that the solution given above is complete. Let
X, j=1,2,3, and Yj, j=1,2,3, be any non-trivial solution of (VI),
Le. X;# Y, for any j. We shall show that there exist ;, b, t, ¢ such
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that (8.1) and (8.2) yield the solution X, Y, j=1,2,3. We first choose
o; such that

(8.4) af(Xl_ Yl)‘*'a%(Xz“Yz)‘f'a%(Xa"Ys) =0

where

and Y (X}—Y?)a; #0.
i

0:1 ?"‘ iazs az 9& iaj,a D-r3 ‘-Dé ial
As oy = a, =a; =1 is a solution of (8.4) we can easily find a parametric

- 2 - - - . y
solutilon of (8.4) and a suitable choice of parameters gives the desired solution

With these values of «;, we choose

(8.5) b;=Y—a;, j=1,2,3.
We know that
(8.6) (X, —Y)+(X,—Y)+(X3-Y3) =0.
Now (8.4) and (8.6) give
X,-Y, X,-Y, X;-Y

BT A R T
8.7) a3 —o3 O3 — o oy —o

We choose t = (X, — Y;)/(23 —3) and the a; are then defined by (8.3). Now (8.3)

and (8.7) give

(8.8) X;—a;=Y,—b;=0; j=12,3.
Hence

(8.9) X;=a+a, j=1223.

We also know that Y3 X7 =33 Y?. Using (8.5) and (89), this gives the
relation Z(a? e Z{a} B bf}gj 5
i J
Hence (8.1), (8.2) give us for u=1, 2, 3,
x, = ela, + ) (aj —bj),
4
yu = 0lb,+2) Y.(a} =b}).
J
Now

Y(a}—b}) = =3 (X} - Y)a; # 0
J J

and taking ¢ = {Y ;(a} —b})} ', we get
=X, y=Y, j=123

J J
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Thus, the solution given by (8.1) and (8.2) is a complete solution of the system
(VI). In the solution obtained above, we may take 2y =0, by =0,

to get
a solution of the system

(8.10) Y xi=Y y

In terms of the parameters 0L, Wby F=1,2

A two-parameter solution of the system (VI) has earlier been given by
Gerardin (quoted by Dickson [3. pp. 565 and 713]) and later Bremner [1] has
given a complete solution in four parameters. The advantage of the present
solution is that, apart from being complete, it can also be made to satisfy two

additional linear asymmetric conditions as discussed in the case of the general
System (II).

9. The Diophantine system
Xyt X+ X3 =y, +y,+ys,
{V"] XX+ X, WtV +y,,
X1 X2 X3 =V )15,

This is also a particular case of the system (II') and the solution, obtained
as before, is as follows:

X; =g[—aj{:x,[u3u3—bzh_‘)+o:2{u3¢q-b3b,]+13(alaz—blh2);
taa ayay—b b,by)],
Y= Q[—hj':ﬁi[f12(£3—b2h3}+&"2(0301‘—habl]+3(3[ﬁ]ﬂz—blbz}}
tolaya,a;—by by by)]

for j=1,2,3 where a, = b, +1a, (2, —x,), ay = by +ioy(a3—ay), ay=b,
oy —ay) and @, 1,0, by, j=1,2, 3, are arbitrary parameters.

As in the case of the system (VI), the solution is complete and the proof
Cing similar is omitted.

10. The Diophantine system

”0” x;+-\'3 +.¥_‘=}’l+_}’2+}’3.
(10.2) (VIII) XT+X34x3 = pi+ 3+ 93,
(10.3)

X X3X3 =Y, V,¥;.
In view of the identity
X1+ x3+x3—-3x,x,x, = (y +2x5 +x3)(xF +x3 +x3—x, X3 =Xy X3—X3X,)
1""hene\.rcz‘r (10.1) and (10.2) hold together with the condition
X +Xx,+x; =0,

T Acta Arithmetica 59.3
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the equation (10.3) will also be satisfied. Accordingly a solution of the system
(VIII) is given by (8.1), (8.2), (8.3) in terms of parameters o, f, %;, b; where u;, b;
satisfy the conditions

2, +o, 423 =0, b +by+by;=0.

Another solution of this system can similarly be derived from the solution
of the system (VII).

11. The Diophantine system

(11.1)

% xi+x3+x3=yi+yi+ys,
(11.2)

x1+x3+x3 =yi+ri+)i.

This is a particular case of the system (IIT') and its solution, obtained as
before, may be written in terms of six parameters «;, b;, j =1, 2, 3, as follows:

3 3

(11.3) x, = —3a, ¥, «;(ai—b})+a, ) (@3—b}), u=1,2,3,
=1 j=1
3 3

(11.4) Vo= —3b, Y afa}—b})+a, Y (@—b), u=12,3,
j=1 j=1

where
a, = by +to,04(a,—03), @y =by+ioza(a;—ay), az= by +tory oy (0t — )
and
t = —2{Yafai(x, —oy)?} by ooy (o, —a3) +byog oy (o3 —y)
+byo0p(a, — 0y}

A numerical example obtained by taking o, =2, a, = 3, a3 = 4, b, = 6%
b, =73, by =93 is as follows:

28122+ 101542 + 174992 = 6700% + 7131% + 179307,
28123 + 101543 + 174993 = 6700° + 7131 +17930°.

No solutions of this system have been obtained earlier.

12. The Diophantine system

X1 XyX3 = V1)V2 Vs

This is also a particular case of the system (III') and its solution, obtaiﬂﬁ";i
as before, may be written in terms of six parameters a;, by, j=1, 2,”

2002 W2 9 i 2 )
X1+ x3+x3=y1+y:s+yi,
(X) {
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as follows:
(21 x;=-— j{otl(aza3hbzb3l+orz(a3al—bsb,)+a3{alaz—blh2]}
(12.2) yi= —bilo,(ayas—b,b,)+a,( B
5 2by)+o, asal—b3b,}+a3{alaz—blsz}

+a(a,a,a3—b, b,b,),
for j=1,2, 3 where #athads=2ibaba)

(123)  a; = b, +1o, (3 —2), ay = by +1a,(03—a), ay = b,+ta,(a?—a2)
and o
(124) 1= -2 {Za%(a% ‘_fxgjl} ! {byay (a3 _ai)'f‘bzaz(a%‘—’x%)

+byo,(af —ad)).

A six-parameter solution of the s : ; ;
Gloden [5, pp. 36-37]. ¢ system (X) has earlier been given by

13. The Diophantine system

4 4
X Y x=Yy r=1,23,5
i=1 i=1
We write
xl zX]+X2+X -

X3ZLX1+X2'_X3, x4= _‘XI'_X2+X_]-
Then we have the identities

4 4
2x%=0, x} = 4(X?+ X+ X3),
E 5 5 1 ji=1
4 4
i3
P Xj =24X, X, X,, x; = 80X, X, X,(X? + X2 + X3).
i=1 )
Thus if we als i
" alsowrite y, = Y, +Y,+ Y., y, = Y. — Y. —
Vo= — Y-Y,+Y,, thexn in \:iew 201' th;’;bzove ):cli tYZt ==l ¢ - %
Satisfied If entities, the system (XI) will be
1
[{3-” Xi+ X7+ X3 = Y2+ Y2+ Y2,
139
) X\ X,X; =Y, Y,X,.
A six

bep -parameter solution of this system has been obtained above and
ce a SIX-parameter solution of (XI) follows immediately.
We now impose the further condition

(13
3) _Y1'_Y2+Y3—'=0.



304 A. Choudry

This is possible by choice of ;, b; in the solution of the system (X) given by
(12.3) and (12.4). In fact, the solution of (13.1), (13.2), (13.3) is given by

{13-4J X == _“ja:xl{uz““—hzhjl-l-22(a3a| _bﬁbll—f_za(“lal_blhzl}

J
-l—DIj({tlﬂ_-,_ﬂ_‘—blbzb:gL

(13.5) Y, = —bjjn'?l(ﬂ:as_hzf’s]"'3‘2(“3“1 —byby)+a5(a,a,—b,by)]

4

+a;(a,ayay—bybyby)

forj =1, 2, 3 where oy = «; +u,, by = b, +b, and the a; are defined by (12.3)
and (12.4). Thus, we have obtained a four-parameter solution of the system

4
2 Xj=
i=1

j=

3
v r=1,2,3,5.
1

The system (XI) has been considered earlier by Gloden [5, pp. 42-43] who
also obtained a six-parameter solution.

14. The Diophantine system
5
X = _Z Vi

This is the well-known Tarry-Escott problem of degree 4. From the
relations

r=1,2,3,4.

I [ o

(X1I)

I [ v

},}r. r=1,3.-

J

3
Y X;=
i=1

we derive the relations

3 2 3 2
Y X+ Y (==Y (=X)y+Y Y, r=123,4,
=] i=1 i=1 i=1

and it follows from a well-known theorem [4, p. 614] relating to the
Tarry-Escott problem that

J

2
(mY;+dy,

3 2 3
Z (mX;+d) + Z (=mY;+d) = _Z (—mX;+d)+
r=1,2,3,4

where m and d are arbitrary.
The parametric solution of (8.10) obtained earlier thus leads to a 7-para-

meter solution of the system (XII).
Earlier, Chernick [2, p. 629] has given a two-parameter solution and

Gloden [5, pp. 41-42] a three-parameter solution of the system (XII).
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15. The Diophantine system

(XT11) 2Xi= Y ¥, r=1,2,3.4.56.
i=1

i=1

I) - d e 1 h_, S et s I 3 ; - a ] : !" ’1
rocee ”lg ds n the pIL\«IUUS ht‘.‘(.tl()n._ Lhe -[Jdl;llllLlLl‘ 50 l.llll)!l Ol the

4 3
X=Xy, r=1,23,5,
j=1 j=1
E);atamed earlier, ]ead?' to a six-parameter solution of the system (XTII). Gloden
» P 43] has also given a 6-parameter solution of (XTII), different from the

Present solution.

16. The Diophantine system

(16.1) Xp+Xa+ X3 =y 4+, 4y,
(16.2) (XIV) XPHx3+x3=yi+pi+d,
(16.3) Xt+x3+x3 = pt+yi+yl.

W : it o . ;
e write x; =a;0+a,, YVi=a;10+a;, j=1,2,3, with a, =a, and

mpose the following conditions on aj, o

(16.4) (a,—ay)af+(a, —ay)ad +(ay—a,)a = 0,

(16.5) (@ —ay)aq +(ay —as)od +(a;—a,)od = 0,

(16.6) (a3 —a3)a, +(ai—ad)a, +(ai—ad)ay = 0.
We choose ; such that

(16.7) ooy Fayay+aza, = 0.

. T_hen_(16.4) and (16.5) become identical while (16.6) reduces to a linear
Quation in a,, a,, a,. We thus get the following solution for a.:
5
ay = o (3 — ad) — o0y (o3 — o) (o — 203 + 02) — a5 (o2 — o2)2,
a, = az[ag-—aflz—a_‘[a‘:'—fx%}(tx%—25:%—!—0:%)——0(;{:!%—15}2,
ay = ay(oF —o3)” — ot (o3 — a3)(03 — 203 + a2) — (a3 — 22,
When «;, a; are determined by (16.7) : i
I i 4 vy ( 16.7) and (16.8), the resulting x, y; satisf
6.1) and (16.2) for all values of 0, while (16.3) reduces to a linear eqdalijon in (i,

is last equation is s : 3 i i
et (xﬁv;; n is solved for 0 and we thus get the following solution of the

(16.8)

3

3
v 3_ 3
x, =20, Y (a}—a}, Do—3a, Y (af —a?, )a2, u=1,2,3
o = s s
3 3
Yo=20, _Z] (aj —8je1)a;—3a,44 Y (a} —a?, Jaz, u=1,2,3,
is i=1

W ;
here a; satisfy (16.7) and a; are defined by (16.8).
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Taking o, = 6, a, = 3, 23 = —2, we get the numerical solution
5658" + 5583"+(—3254)" = 6738"+(—1329) +2578"
for r=1,3,4.

No solutions of this system have been obtained earlier.

17. The system
3

(xv) 2 x; —3 y:, r= l, 3. ?.

=1 ji=1
We write x, =X, —-X,—X;, x,=-X,+X,—X;, x3=—X;'—X}31)§'}3,
X=X+ X+ X, y =Y, -V, Y2 = f_Y1+Yz_Y3, Y= —H—hTs
ya =Y, +Y,+Y;. Then we have the identities

4
Z JCJ-=0,
ji=1

i x] = 56X, X?_X‘{S(X;‘+X§'+X§)+10(X3X§+X§X§+X§XE)}.
i=1 :

Hence we will get a solution of the system (XV) if we can find X;, Y,
j=1,2,3, such that

{l?l) X1+X2+X3=Y1+Y2+Y3-
(17.2) X, X; % =Y hY,
(17.3)  3(XF+XF+XH+10X2 X2+ X2 X3+ X3 XD)
=3(YA+ YA+ YA+ 10(Y2 Y2+ Y2 Y2+ Y2 YD)

The system of equations (17.1), (17.2), (17.3) is solved just as th_e system
(XIV) by substituting X; = a;0+a;, Y, = a;,, 0+, j=1, 2, 3, and imposing
the following conditions on a;:

||'Mu

4
Y. X = WX G X,

i=1

(17.4) (a, —ay)a 05 +(a, —az)aza, +(ay—a)a, o, =0,

(17.5) (@, —a,) {33 + 5o, (03 + 23)} + (@, — a3) {303 + 5o, (a3 + o)}
+(ay—a,) {303 +50;5(0f +a3)} =0,

(17.6) (a,—ay)ayo, +(a,—as)a o, +(ay—a,)ayo, = 0.

Now (17.4) and (17.5) will be identical if
303 +5u, (03 +03) 3034 50,03 +af) 3ud+Suy(af +ad)
0,0y 030 oy oy =0
1 | 1
or, if
(17.7) (3o, — 0ty —a3)% +2(200, —at3)* + 603 = (_).
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This has no solution in rational integers but solutions in Gaussian integers
do exist. Using (17.4), the equation (17.6) reduces to a linear equation in a; and
the solution of (17.4), (17.5), (17.6) is given by

4y ¥ a0y, G =00, a3=0,0,
where the x; satisfy (17.7).

With these values of a;, o;, the equations (17.1), (17.2) hold identically for
all values of 0 while (17.3) reduces to a linear equation in (. This gives
a non-zero solution of 0 and we may thus obtain a parametric solution of the
System given by (17.1), (17.2), (17.3). This eventually leads to a parametric
solution in Gaussian integers of the system (XV).

As an example, taking o, = 5+3i, o =3+3i, ay=06i, we get the
following solution:

(201 —243i)" + (135 + 285i) +(132 — 16i)

= (265 + 2850y +(327—21 Li) +(— 124 —48ijy
for r=1,3,7
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